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The heterogeneity of human populations is a challenge to mathematical descriptions of epidemic

outbreaks.

Numerical simulations are deployed to account for the many factors influencing the

spreading dynamics. Yet, the results from numerical simulations are often as complicated as the
reality, leaving us with a sense of confusion about how the different factors account for the simulation
results. Here, using a multi-type branching together with a graph tensor product approach, I derive
a single equation for the effective reproductive number of an infectious disease outbreak. Using this
equation I deconvolute the impact of crowd management, targeted testing, contact heterogeneity,
stratified vaccination, mask use and smartphone tracing app use. This equation can be used to gain
a basic understanding of infectious disease outbreaks and their simulations.

Infectious diseases spread in heterogenous populations
of susceptible individuals. There is variability in the
number of potential contacts [1], age groups [2] and ad-
herence to non-pharmaceutical interventions [3]. These
heterogeneities may sound too complex to be handle
by means of analytical descriptions, leaving us with
the choice of numerical simulations. Numerical simu-
lations are the right context to introduce all kinds of
parametrizations [3-5]. Yet, we want a basic understand-
ing as well, albeit sacrificing numerical precision. Here I
demonstrate that a combination of multi-type branching
process theory and graph tensor products disentangles
the contributions of different factors and containment
strategies to the outbreak dynamics.

The susceptible, infected and removed (SIR) model is a
good representation of infectious disease outbreaks when
the recovery from the disease confers immunity. In the
case of COVID-19 it is not clear how long a person re-
mains immune to the disease after infection, but it is
expected to be at least of the order of months. In the
SIR model the disease states are susceptible to acquire
the disease, infected and removed due to death or recov-
ery from the disease. Infected individuals can transmit
the disease to susceptible individuals when they are in
contact. In the case of COVID-19, contact means phys-
ical proximity for a certain amount of time. In the case
of HIV contact means sexual intercourse, syringe-needle
sharing or mother giving birth baby.

Some individuals visit crowded places during a day,
getting in contact with several people. Others work at
home and get in contact with few house mates. With rel-
evance to sexually transmitted diseases, there is a broad
distribution in the number of sexual partners of individ-
uals across a population [6]. T will call this contact het-
erogeneity. The number of physical proximity contacts
in a day, or the number of sexual partners within a year,
can vary from zero to 100s and it is better represented
by a probability distribution.
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Individuals are also different regarding their percep-
tion of containment strategies. In the ongoing COVID-
19 pandemic face masks and smartphone tracing apps
are not used by all individuals. For HIV and other sex-
ually transmitted diseases additional heterogeneities in-
clude sexual orientation, condom use, drug use, among
other factors. I will call this type heterogeneity, where a
type can be any property taking values over a discrete set
of small size that can have an impact on the infectious
disease dynamics. The types are characterized by their
frequency in the population and the mixing patterns be-
tween individuals according to type.

Another source of variability is the disease dynamics
within individuals. This dynamics could be correlated
with the contact or type heterogeneities. For example,
the population is stratified by age and age influences the
infectious dynamics within individuals. Here I focus on
the contact and type heterogeneity and assume that the
disease dynamics within individuals is uncorrelated from
the contact and type heterogeneity. The transmission
dynamics will be characterized by the generating time,
denoted by 7, defined as the interval from the time of
infection of an individual to the time it transmit the dis-
ease to a susceptible individual. I will denote by g(7) the
probability density function of the generating time.

Here I model a population of susceptible individuals as
a multi-type Markov process in the limit of large popula-
tions. I will assume that the statistical properties of indi-
viduals, including to who they transmit the disease, are
dictated by their types. Using the multi-type branching
process formalism, I have calculated the expected num-
ber of infected individuals of epidemic outbreaks on het-
erogeneous populations [7]. In a nutshell, the multi-type
formalism replaces the average reproductive number, an
scalar, by a matrix of reproductive numbers, making an
distinction between patient zero an any other infected in-
dividual. In more detail, each individual contacts other
individuals at some rate A. The mixing pattern is repre-
sented by the probability ey, that an individual of type
a reaches a type b individual upon contact. Each contact
results in disease transmission with probability » and the
effective disease transmission rate is denoted by 8 = Ar.
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Infected individuals are removed, die to recovery, isola-
tion or death, at a rate . Under these assumptions, the
reproductive number matrix for patient zero has elements

RO,ab = —€ab (1)

where (-) denotes the average over the heterogeneity of
contact rates A across individuals. For infected cases
other than patient zero, I take into account the disease
spreading bias to individuals with a higher contact rate.
The patient zero can be thought as an individual selected
at random from the population. Any other infected indi-
vidual is not selected at random, it is found with a prob-
ability proportional to its contact rate: S/N(f3), where
N is the population size. Once infected, the individual
found by contact will engage in new contacts at a rate 3.
Therefore, the reproductive number matrix for patients
other than patient zero has elements
(8%)
Rab <B>'}/ €ab (2)

Ry gives the average number of infectious at the first
generation, RoR at the second generation and RyR%~!
at the d generation. The actual time when an infected
case at generation d becomes infected equals the sum
of d generation times and it has a probability density
function ¢g*?(t), where the symbol * denotes convolution
(g*? = fg g*@=V(7)g(t — 7)dr). Therefore, the average
number of new infected individuals at time ¢ is given by

(equation (36) in Ref. [7])

D
I(t)=> No>_ (RoR™),, g*() (3)
ab d=1

where N, is the number of patients zero of type a and D
is the maximum generation.

The shape of the distribution of generation times de-
termines the functional dependence of the number of new
infections with time [8]. In contrast, it does not change
the epidemic threshold. Fore the sake of simplicity I will
use the SIR model. For the SIR model the distribution
of generating times is the distribution of recovery times.
Given that recovery takes place at a constant rate, the
distribution of generation times is exponential

g(r) =~e " (4)

In this case, equation (3) has two limiting behaviours
depending on the parameter
D—-1
0=—— (5)
P
where p is the largest eigenvalue of R [7]. When p > 1
and 6 > 1, then for 4t < 6 the number of new infectious
grows exponentially according to

I(t) ~elp=1 (6)

Note that R, and therefore p, is inversely proportional
to . In contrast, when 6 < 1, then for vt > 6 the
number of new infectious grows as a power law with an
exponential cutoff

I(t) ~tP~te™t (7)

Therefore the outbreaks dynamics is determined by the
largest eigenvalue of the reproductive number matrix R
and the maximum number of generations D. The power
low prediction has been observed in numerical simula-
tions of virus spreading in the Internet [9] and the first
COVID-19 outbreak [10].

The branching process is suitable to model the early
phase of epidemic outbreaks. It has limitations to es-
timate the late dynamics when there is a reduction in
the number of susceptible individuals. A compartment
model represented by differential equations is more suit-
able to understand the late dynamics. Nevertheless, the
key quantity of the compartment model is still the repro-
ductive number matrix R [11]. Therefore I will focus on
the impact of heterogeneities on the largest eigenvalue p.

The type mixing matrix, with elements ey, is repre-
sented by a directed weighted graph with loops. A di-
rected edge (arc) is drawn from a to b when eq, > 0.
Loops account for infected individuals of a given type
infecting susceptible individuals of the same type. The
arcs weights e, quantify the probability of finding type a
coming from type b. Figure 1 illustrates type graphs as-
sociated with vaccination, mask use or smartphone use.
In each case there are two types: vaccinated or not, wears
mask or does not, smartphone tracing app user or not.
The associated mixing matrices are 2 x 2 matrices and
it is straightforward to calculate the largest eigenvalue.
The challenge begins when we consider a combinations
of those or other population stratifications at once. We
would have to include several types and deal with matri-
ces of largest dimension, making an analytical description
cumbersome and prompting calculation errors.

When different type stratifications are independent,
meaning that being of one type in one stratification is
uncorrelated with being of another type in another strat-
ification, we can tackle the problem with graph tensor
products. Under the assumption of independence, the
type graph taking into account n independent popula-
tion stratifications can be represented by the graph ten-
sor product of each independent stratification

G=G0W xa® x...x g™ (8)

An example is shown in Fig. 1. In turn, the type mixing
matrix of graph G can be written as a Kronecker product
of the type mixing matrices of graphs G,

e = 6(1) X 6(2) NEEED e(n) (9)

The eigenvalues of the Kronecker product of two matrixes
are given by the pairwise product of the eigenvalues of
each matrix (Theorem 13.12, [12]). An obvious corollary,
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FIG. 1. Type graphs for vaccination (G1), mask use (G2),
smartphone tracing app use (G3) and their graph tensor prod-
uct (G1 x G2 X G3). Open circles represent individuals not
covered by the containment strategy. Squares represent vacci-
nated individuals, diagonal lines wearing a mask and symbol
filling using the smartphone tracing app.

the largest eigenvalue of e is equal to the product of the
largest eigenvalues

A=AAy- A, (10)

where A; denotes the largest eigenvalue of e(¥). Finally,
the largest eigenvalue of R in equation (2) is given by

_ B A 1
P=lgy o (1)

We can use equation (11) to estimate the effectiveness
of mixed strategies to contain an infectious disease out-
break. To illustrate how it is done, let us consider the
case of a population where crowd management, targeted
testing, vaccination, mask use and smartphone tracing
apps have been deployed. Crowd management reduces
the contact rate A, in turn reducing 8 = Ar. The
main component of targeted testing is testing the con-
tacts traced from an infected case. Since the testing of
the traced contacts effectively eliminate them from the
disease transmission chain, targeted testing can be also
modelled by an effective reduction of the contact rate.
Therefore, crowd management and targeted testing are
modelled by the transformation

(8%) (8%)
® 76 12

where ¢ and 7 are the reduction in transmission rate due
to crowd management and targeted testing.

Vaccination is modelled by the type graph G; in Fig.
1 and the associated type mixing matrix

01-w
6(0):|:()1—U] (13)

where v is the fraction of vaccinated individuals. More
generally, we consider stratified vaccination according to
a type (e.g., age group). Let a;; be the mixing matrix
elements of the type driving the vaccine stratification
and v; the fraction of i-type individuals that are vac-
cinated. When j is vaccinated then e;; = 0. When j is
not vaccinated it can be infected by the non-vaccinated
connections and e;; = a;;(1 —v;) = a;;(1 — v)z;, where
v=> v and z; = (1 —v;)/(1 —v). Once again, mak-
ing use of the graph tensor product, we write the mixing
matrix of stratified vaccination as

e = e x (aox) (14)

where o denotes the Hadamard, element-wise, product.
The largest eigenvalue of e(!) is

A =(1-v);m (15)

where (1—w) is the largest eigenvalue of e(®) and p; is the
largest eigenvalue of a o x. Note that the x; can be opti-
mized to obtain the vaccination strategy that minimizes
p1 given a total vaccination capacity v.

Mask use is modelled by the type graph G, in Fig. 1.
I assume a fraction m of individuals wearing mask, no
transmission between mask users (e;; = 0), transmission
with attenuation efficiency 0 < a; < 1 from a mask user
to a non-user (e;2 = a1(1 —m)), transmission with at-
tenuation efficiency 0 < ay < 1 from a non-mask user
to a user (e2; = a1(1 —m)) and transmission between
non-mask users (e2; = 1 —m). In this case the mixing
matrix and the largest eigenvalue are

(2) _ 0 a1(1 — m)
e = aom 1—m (16)

1—m+ /(1 —m)?+4m(l — m)agay
B 2

Ay (17)

Smartphone tracing app use is modelled by the type
graph Gs in Fig. 1. T assume a fraction u of smartphone
tracing app users. The chain of transmissions between
app users is truncated because of the forward and back-
ward tracing. This will be modelled as no disease trans-
mission between app users (e;; = 0), which is an effective
approximation to be tested. With these assumptions we
obtain the type mixing matrix and the largest eigenvalue

e<3>_[0 1_“} (18)

u l—wu

_ L—u++/(1—u)?+4u(l —u)

As 5

(19)

Figure (2) shows the largest eigenvalue of the different
containment strategies as a function of the fraction of
individuals subject to the intervention (vaccinated, mask
user, smartphone tracing app user). It is evident that the
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FIG. 2. Largest eigenvalue as a function of the relevant pa-
rameter for the listed containment strategies. Lines are the
analytical predictions (20) and the symbols numerical esti-
mates: circles for vaccinated fraction v, squares for mask
wearing fraction m, triangles for app user fraction wu, * for
vaccinated fraction v together with m = 0.2, and [] for app
user fraction u together with m = 0.2.

largest eigenvalues associated with mask use and smart-
phone tracing app use are concave functions of the cor-
responding users fraction. Therefore, for small user frac-
tions there is not much reduction of the largest eigen-
value. These containment strategies requires that many
individuals become users. For example, 50% of mask
users will reduce the reproductive number by just 20%.
Furthermore, mask use is more effective that smartphone
tracing app use. This is because mask use reduces the
probability of transmission between mask users and non-
users, while the smartphone tracing app does not.

Now I combine the containment strategies. Substitut-

4
ing equations (12)-(19) into equation (11) we obtain
p=pocT(1—v)p1
L—m++/(1—m)2+4m(l —m)agay
2
L—u+ /(1 —u)?+4u(l —u) (20)

2

where po = (82)/(B)7 is the basic reproductive number
of the standard SIR model. This equation is the starting
point for a comprehensive understanding of how interven-
tion strategies impact the expected reproductive number.
In the absence of contact heterogeneity ((3%) = (8)?)
and no interventions (¢ = 1, T = 1, v = 0, p; = 1,
m = 0, u = 0), we recover p = pg. In the present of
multiple containment strategies, we can use (20) to es-
timate the aggregate impact. For example, combining
a 50% of mask users with a 50% of smartphone tracing
app users will reduce the reproductive number by about
a half. Add to that a 50% vaccination and it will reduce
the reproductive number by about a third.

I have performed agent based simulations to test Eq.
(20). I have generated a virtual city where places are
represented by nodes in a network and the flow of peo-
ple between two places is represented by a link between
the associated nodes [11]. Agents are located at differ-
ent places and they switch place following the network
links, at certain rate that varies between individuals. A
SIR model is simulated in the virtual city introducing a
patient zero and constraining the disease transmission to
individuals at the same place [11]. The value of A is esti-
mated as A(z) = p(z)/p(0), where x = v, m or v and p(z)
is obtained from a fit of (6) to the early growth phase of
the numerical data [11]. The analytical prediction (20)
is in good agreement with the numerical estimates 2, al-
though the theoretical line always underestimates the nu-
merical values. The underestimation can be due to the
contribution of eigenvalues besides the largest.

In conclusion, the analytical predictions estimate and
explain the impact of multiple containment strategies on
the reproductive number of an epidemic outbreak.
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