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BACKGROUND. Diabetes and hypertension are
among top public health priorities, particularly in low
and middle-income countries where their health and so-
cioeconomic impact is exacerbated by the quality and
accessibility of health care. Moreover, their connection
with severe or deadly COVID-19 illness has further in-
creased their societal relevance. Tools for early detec-
tion of these chronic diseases enable interventions to pre-
vent high-impact complications, such as loss of sight and
kidney failure. Similarly, prognostic tools for COVID-
19 help stratify the population to prioritize protection
and vaccination of high-risk groups, optimize medical re-
sources and tests, and raise public awareness.
METHODS. We developed and validated state-of-the-
art risk models for the presence of undiagnosed diabetes,
hypertension, visual complications associated with dia-
betes and hypertension, and the risk of severe COVID-
19 illness (if infected). The models were estimated us-
ing modern methods from the field of statistical learning
(e.g., gradient boosting trees), and were trained on pub-
licly available data containing health and socioeconomic
information representative of the Mexican population.
Lastly, we assembled a short integrated questionnaire
and deployed a free online tool for massifying access to
risk assessment.
RESULTS. Our results show substantial improvements
in accuracy and algorithmic equity (balance of accuracy
across population subgroups), compared to established
benchmarks. In particular, the models: i) reached state-
of-the-art sensitivity and specificity rates of 90% and

56% (0.83 AUC) for diabetes, 80% and 64% (0.79 AUC)
for hypertension, 90% and 56% (0.84 AUC) for visual
diminution as a complication, and 90% and 60% (0.84
AUC) for development of severe COVID disease; and ii)
achieved substantially higher equity in sensitivity across
gender, indigenous/non-indigenous, and regional popu-
lations. In addition, the most relevant features used by
the models were in line with risk factors commonly iden-
tified by previous studies. Finally, the online platform
was deployed and made accessible to the public on a
massive scale.
CONCLUSIONS. The use of large databases represen-
tative of the Mexican population, coupled with modern
statistical learning methods, allowed the development of
risk models with state-of-the-art accuracy and equity for
two of the most relevant chronic diseases, their eye com-
plications, and COVID-19 severity. These tools can have
a meaningful impact on democratizing early detection,
enabling large-scale preventive strategies in low-resource
health systems, increasing public awareness, and ulti-
mately raising social well-being.
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1. Introduction

The use of statistical models has contributed to the de-
velopment of risk indices for the presence or future de-
velopment of various diseases (e.g. diabetes, cancer, and
cardiovascular disease) or the occurrence of disruptive
health events (e.g. bone fractures and strokes)1. The de-
ployment of these risk assessment models through online
platforms seeks to aid with expanding access to disease
prevention and health awareness and improving resource
management in healthcare institutions.
The present work reports on the development of state-

of-the-art models for estimating the risk of having di-
abetes and/or hypertension—two of the most common
chronic diseases in Mexico and Latin America —as well
as assessing some of the most relevant health risks as-
sociated with them: visual impairment and COVID-19
severity. In particular, leveraging large datasets repre-
sentative of the Mexican population, we developed mod-
els that identify high-risk profiles for 1) diabetes and
hypertension, 2) development of visual impairment as
a complication of diabetes or hypertension (for patients
with diabetes and/or hypertension), and 3) the devel-
opment of severe COVID-19 disease leading to requiring
intensive care or death (for COVID-19 infected patients).
Overall, we show that the tool has substantial im-

provements in sensitivity and specificity on Mexican pop-
ulation, compared to the available benchmarks. More-

1See this large repository of risk calculators for example: https:
//qxmd.com/calculate.

over, to maximize the accessibility and ease of use of
the tool, we homogenized the variables in a single ques-
tionnaire and prioritized the use of information that is
commonly known to an average person.

2. Diabetes and Hypertension

Importance of Early Detection
According to the WHO, more than 500M people live
with diabetes and 1.3Bn live with hypertension world-
wide [28, 54]. Just for diabetes, its prevalence is pre-
dicted to continue growing at a 3% CAGR reaching 630
million people by 2045. Notably, both diseases cause a
range of complications from which the most prevalent are
neuropathy, kidney damage, visual impairment, heart at-
tacks, and strokes. The progression of associated com-
plications derives into a high economic and social impact
due to early death and disability.
In Latin America and the Caribbean, the annual direct

and indirect costs of diabetes and hypertension reached
US $57.1 million in 2015 [10]. In Mexico, diabetes is the
first cause of death and disability (DALYs) mainly due
to the development of kidney failure, diabetic retinopa-
thy, diabetic foot, and amputations [1, 43]. Moreover,
the burden is expected to increase given that only 50%
of the patients suffering from these two chronic diseases
are aware of it [3, 32]. One of the crucial factors that in-
fluence the limited diagnosis rate is that approximately
60% of the population lacks social security and in con-
sequence, has no access to preventive health services or
adequate treatment [58]. Additionally, these conditions
are associated with the progression and severity of other
pathologies, such as Alzheimer’s disease and COVID-19.
Among many other benefits, an early diagnosis of

these diseases can result in an 80% reduction of indi-
vidual total annual healthcare expenditure, for example,
from $12,500 to $2,500 in the USA [2]. This reduction
is achieved through adequate monitoring and control of
the disease that can prevent the development of major
renal and ophthalmic complications. Additionally, early
intervention strategies targeting habits, nutrition, and
physical activity among people with a risk of develop-
ing diabetes and hypertension can reduce between 30%
and 70% the probability of developing the disease and
its complications in the long term [37, 23, 44].

Current methods for risk estimation
There are numerous questionnaires to quantify individu-
als’ risk of having or developing diabetes and cardiovas-
cular diseases [35, 31, 9, 39]. In 1993, the American Di-
abetes Association (ADA) published their first risk cal-
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culator to target undiagnosed diabetes based on decision
tree predictive modeling. The model showed a sensitivity
of 79% and specificity of 65% [36]. In 2009, Bang et al.
[9] developed a screening tool based on multiple logistic
regression for estimating the risk of having undiagnosed
diabetes or prediabetes. The risk model was tested with
information from persons of the U.S. population from
different ethnic groups. This screening tool was adapted
into a web-based risk calculator and is the current model
employed by the ADA. Nowadays, another questionnaire
widely used is the Finnish Diabetes Risk Score (FIND-
RISC) that calculates diabetes risk based on age, body
mass index, waist circumference, physical activity, fruits
and vegetable consumption, history of anti-hypertensive
drug treatment, and history of high blood glucose [42].
Several adaptations of the FINDRISC have been pro-
posed, such as the Latin American (LA-FINDRISC) and
the Colombian versions (ColDRISC) [7, 49]. Despite
its simplicity and wide usability, a recent evaluation of
FINDRISC reported a sensitivity of 70% and specificity
of 67% [11].
Specifically for hypertension risk assessment, the avail-

able models are more scarce and inaccurate, it is more
common to find risk calculators for acute cardiovascular
diseases such as myocardial infarction, angina pectoris,
or stroke. One of the few risk models for hypertension
was developed by Kshirsagar et al. [39], who created a
scoring algorithm to determine the risk of developing hy-
pertension in a time-lapse of 3, 6, and up to 9 years. This
risk model was fitted to a predominantly white popula-
tion (83%) of middle age and older adults.
Overall, systematic reviews have found varying results.

A recent review published in 2018 evaluated 73 differ-
ent risk calculators for CVD and found a wide variation
among estimates for the same patient. Furthermore, the
authors concluded that most calculators have deficient
communication strategies that translate to low action-
ability [14]. Similar systematic analyses of diabetes risk
calculators reported a lack of statistical robustness, risk
overestimations, and limited implementability due to the
requirement of specialized lab tests [50, 5, 17]. However,
the increasing availability of large databases with clinical
and sociodemographic information of local populations,
as well as the availability of modern statistical learn-
ing methods, pose an opportunity to raise accuracy and
adaptability to local populations [15, 38, 57].

2.1. Methodology

• Data

For the training and validation of the diabetes and

hypertension risk models, we used the database of
the Mexican National Health and Nutrition Sur-
vey 2018 (ENSANUT 2018). The ENSANUT sur-
vey is the result of a joint effort of the Mexican
Health Secretary, the National Institute of Public
Health (INSP), and the National Institute of Statis-
tics and Geography (INEGI). The main goal of the
ENSANUT is to collect detailed information on the
health status and nutritional conditions of the pe-
diatric and adult Mexican population. The EN-
SANUT is carefully designed to be representative
of the Mexican population at the national and state
levels, with a thorough territorial and sociodemo-
graphic sampling strategy. The 2018 edition col-
lected information on 50,000 households distributed
among the 32 states. In total, the ENSANUT 2018
contains information of more than 60,000 people
from 4 age groups: pre-school children (0-4 years
old), school-age children (5-9 years old), teenagers
(10-19 years old), and adults (20 and more) [60].

For the present project, the data from the 43,071
adults surveyed was used. We divided the vari-
ables into the following categories: basic informa-
tion, sociodemographics, general health informa-
tion, chronic diseases, health habits, physical func-
tionality, physical activity, anthropometric mea-
sures, and diet. We further divided all categories
into subcategories.

To account for the undiagnosed population, we used
the data of respondents for which a biomarker was
available. For diabetes, we considered respondents
with a glycated hemoglobin (HbA1c) test (n =
12, 919) and for hypertension those with blood pres-
sure measurements (n = 17, 474). We classified
people as diabetic when they presented a medical
diagnosis or a measured HbA1c level of 6.4% or
greater [4]. For hypertension, we considered indi-
viduals with a medical diagnosis or a measurement
of either more than 140 mmHg systolic pressure, or
more than 90 mmHg diastolic pressure [46].

• Selection of Variables

To find an optimal set of predictive variables we
first identified questions that were appropriate to
include and could be answered by most respondents
without the help of a medical professional and with-
out any biochemical measurement. Afterwards, we
employed a forward-stepwise regression that added
a new subcategory of questions at each step [33].
The criterion for the procedure was to maximize
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the out-of-sample area under the receiver operating
characteristic curve (AUC) of a Lasso logistic model
trained using 5 fold cross-validation [27, 61, 34].
Thereafter, the resulting set of questions was re-
duced via a backward-stepwise regression removing
one variable at each step, following the same crite-
rion as before [34]. Lastly, few manual adjustments
were made to produce a common set of variables for
both models without sacrificing accuracy.

• Model and Validation

Several statistical algorithms were compared, with
the best results yielded by gradient boosting clas-
sifiers. To avoid overfitting the following regular-
ization hyperparameters were introduced: number
of classifiers, learning rate, subsample, the maxi-
mum number of available features to a single clas-
sifier, and the minimum number of samples per leaf
[29, 34]. The hyperparameters were tuned using grid
search with cross-validation [40].

All the reported evaluation metrics, such as the area
under the receiver operating characteristic curve
(AUC), sensitivity, specificity, and the disparity
between subgroups were calculated using out-of-
sample validation scores (based on 10-fold cross-
validation [34]), and confidence intervals for such
metrics were computed using bootstrap sampling
[25].

• Importance of Features and Equity across
Subgroups

Importance of features. Feature importance was
measured by sensitivity analysis based on permuted
values [53, 6, 16]. In particular, for each variable,
the method randomly permutes the values among
all observations in the dataset and compares the risk
scores before and after the permutation. Variables
for which the risk scores before and after permu-
tation differ the most are the most sensitive and
important for the model.

Equity across subgroups. To measure the dis-
parity or equity of model performance across sub-
groups, we first calculate the sensitivity of the mod-
els for each population subgroup (setting a com-
mon discrimination threshold corresponding to 55%
specificity). We then measure disparity in model
performance as the average difference between the
model sensitivity (Sg) on each group g and the sensi-
tivity (S) of the model on the population as a whole:
δ = 1

|G|
∑

g∈G |S − Sg|. 95% confidence intervals

for each sensitivity were computed using bootstrap
sampling [25].

The relevant dimensions for population segmen-
tation used were: sex (male/female), origin
(indigenous/non-indigenous)2, and geographic re-
gion.

• Benchmark Methodologies

Diabetes. The diabetes model was benchmarked
against the aforementioned risk calculator devel-
oped by ADA [9] and the LA-FINDRISC risk score
[7].

To perform a thorough evaluation of the ADA risk
calculator on a Mexican population, we developed
an automated computer program that transformed,
fed, and evaluated a large representative sample
of the Mexican population from ENSANUT (n =
9, 794) to the web-based calculator made available
by ADA3. The output of the web-based ADA calcu-
lator was recorded for each ENSANUT observation
and compared against the ENSANUT ground-truth
to assess its accuracy on the Mexican population.

For the LA-FINDRISC risk score, we replicated the
algorithm following the specifications given by the
authors and evaluated its performance with the data
of 9,318 respondents of the ENSANUT for which all
required variables were available.

Hypertension. The algorithm proposed by Kshir-
sagar et al. [39] was implemented as a benchmark
for the hypertension model, and its performance was
evaluated on a representative sample of 11,367 re-
spondents from ENSANUT. Because the purpose of
the present work is to build and evaluate risk assess-
ment tools that do not require any biological mea-
surement, we implemented a version of the Kshir-
sagar et al. algorithm that does not include blood
pressure as an input variable.

2.2. Results

• Diabetes

Accuracy. Substantial accuracy improvements
were achieved by the model compared with the
benchmarks (Figure 2). Overall, the model achieved
an AUC of 0.83 in out-of-sample scores, in com-
parison with an 0.74 AUC of the ADA benchmark

2We used a linguistic criterion to determine indigenous origin as
is usually done in Mexico [20]

3Calculator available at: https://www.diabetes.org/risk-test
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and 0.75 AUC of the LA-FINDRISC benchmark (a
12% and 11% relative improvement respectively).
In particular, Figure 2 shows that the model can in-
crease sensitivity from 80% to 90% (a 13% relative
improvement) compared to the benchmarks while
maintaining specificity constant at 56%. Similarly,
it shows that the model can increase specificity from
56% to 70% (a 25% relative improvement) com-
pared to the benchmarks while maintaining sensi-
tivity constant at 80%.

Figure 2: ROC curves of the diabetes model and bench-
marks.

Importance of features. The variable with the
largest impact on the diabetes risk index was found
to be the age, followed by family history of diabetes,
recent change of weight, and current weight (Figure
3). Comorbidities associated with metabolic syn-

drome such as obesity, high levels of cholesterol and
triglycerides, and hypertension follow in contribu-
tion. Demographic and socioeconomic variables, in-
cluding education level and region of residence, as
well as physical activity, also showed considerable
importance.

Figure 3: Importance of features for the diabetes model.

Equity across subgroups. The ADA bench-
mark shows considerable levels of inequity (Fig-
ure 1); with a disparity of 9.7% across sex groups,
8.7% between indigenous and non-indigenous pop-
ulation, and 8.2% across regions. Specifically, the
ADA benchmark shows a lower sensitivity for the
female and indigenous people, the latter dropping

Figure 1: Equity across subgroups for the diabetes model and benchmark.
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below 70%. The LA-FINDRISC benchmark showed
lower levels of inequity with a disparity of 1.9%
across sex groups, 6.4% between indigenous and
non-indigenous population, and 7.5% across regions.
In comparison, our model performed well across all
subgroups, with low disparity at 1.5%, 2.5%, and
3.2% for each respective division.

• Hypertension

Accuracy. Substantial accuracy improvements
were achieved by the model compared with the
Kshirsagar et al. benchmark (Figure 5). Over-
all, the model achieved an AUC of 0.79 in out-of-
sample scores, in comparison with an 0.67 AUC of
the benchmark (an 18% relative improvement). In
particular, Figure 5 shows that the model can in-
crease sensitivity from 73% to 85% (a 16% relative
improvement) compared to the benchmark while
maintaining specificity constant at 50%. Similarly,
it shows that the model can increase specificity from
50% to 70% (a 40% relative improvement) compared
to the benchmark while maintaining sensitivity con-
stant at 73%.
Importance of features. The variable with the
largest impact on the hypertension risk index was
found to be the age (Figure 6). Other highly rele-
vant variables include weight and family history of
hypertension, followed by demographic and socioe-
conomic variables as well as comorbidities such as
diabetes, high levels of cholesterol and triglycerides,
and obesity.
Equity across subgroups. Our model performed
equally well in all subdivisions with a disparity of
1.2% between sex groups, 1.3% between indigenous

Figure 5: ROC curves of the hypertension model and
benchmark.

and non-indigenous population, and 3.6% across re-
gions of residence. In comparison, Figure 4 shows
that the benchmark has a rather substantial gap in
performance between sex groups, with the sensitiv-
ity dropping below 60% for the male population;
and a more moderate performance gap between in-
digenous and non-indigenous groups, with higher
sensitivity for the non-indigenous population.

Figure 4: Equity across subgroups for the hypertension model and benchmark.
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Figure 6: Importance of features for the hypertension
model.

3. Diabetic and Hypertensive
Retinopathy

Importance of Early Detection
The role of hypertension and diabetes in vision loss rep-
resents both a challenge and an opportunity to improve
patients’ life quality and outcomes [18]. Persistent high
blood glucose levels, as well as high blood pressure,
causes blood vessel abnormalities in the retina—diabetic
or hypertensive retinopathy—characterized by thicken-
ing or blockage of the arteries, swelling, bleeding, and in
severe cases, macular edema and/or retina detachment
[65, 12].
The prevalence of diabetic retinopathy (DR) is of sig-

nificant importance globally. One in three people with
diabetes develops some degree of retinopathy over their
lifetime [66], making it the leading cause of vision loss in
working-age adults. This complication and its increas-
ing prevalence threatens particularly, the public health
institutions in developing countries like Mexico, where
it represents the first cause of irreversible blindness in
the country, causing great economic impact due to di-
rect and indirect costs, including loss of productivity and
payment of disability insurances.
However, a key opportunity for reducing the social and

economic impact of vision-threatening retinopathy is to
target the disease at early stages (i.e. mild and mod-
erate retinopathy) when vision loss is still preventable.
However, considering the absence of salient symptoms at
early stages [52], this strategy requires the development

of awareness campaigns and accurate early-detection
tools.

Current methods for Risk Estimation
Several questionnaires exist to quantify individuals’
risk of having or developing sight-threatening diabetic
retinopathy [51, 62, 26], however, we couldn’t iden-
tify any available risk assessment tool for hypertensive
retinopathy. One screening tool with substantial usage
in Europe is the model developed by Aspelund et al.
which is used to estimate the risk of developing sight-
threatening retinopathy in one year after an eye revi-
sion, as well as giving a time-lapse recommendation for
the following examination [8]. The algorithm was fit-
ted and tested in a Nordic population (Iceland and Den-
mark) with supporting validation on several European
countries. In Mexico, Mendoza-Herrera et al. 2017 de-
veloped a screening tool for diabetic retinopathy, which
consists of two self-declared variables (age and physi-
cal activity) and two measurements (blood pressure and
capillary glucose level) [47].

3.1. Methodology

• Data

To develop the models for diabetes-related visual
diminution and hypertensive retinopathy, we em-
ployed the subsets of diagnosed diabetic and hy-
pertensive patients from the ENSANUT 2018 data
set. These components of the survey include several
variables related to the treatment and progression
of each disease [60].

• Selection of Variables

Following the objective of creating a single ques-
tionnaire for all risk calculators, we started with
the set of variables from the diabetes and hyper-
tension models. Then, for the model of diabetes-
related visual diminutions, we created a new set of
variables by adding several questions regarding dia-
betes progression and treatment that we determined
were appropriate to include and could be answered
by most respondents without the help of a medical
professional, and without any biochemical measure-
ment. Similarly, we constructed a set of variables
for the hypertensive retinopathy model. Thereafter,
each resulting set of questions was reduced via a
backward-stepwise regression removing one variable
at each step following the criterion of maximizing
the out-of-sample area under the receiver operating
characteristic curve (AUC) of a Lasso logistic model
trained using 5-fold cross-validation [27, 61, 34].
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Lastly, few manual adjustments were made to pro-
duce a common set of variables for both models
without sacrificing accuracy.

• Model and Validation

Several statistical algorithms were compared, with
the best results yielded by gradient boosting clas-
sifiers. To avoid overfitting the following regular-
ization hyperparameters were introduced: number
of classifiers, learning rate, subsample, the maxi-
mum number of available features to a single clas-
sifier, and the minimum number of samples per leaf
[29, 34]. The hyperparameters were tuned using grid
search with cross-validation [40].

All the reported evaluation metrics, such as the area
under the receiver operating characteristic curve
(AUC), sensitivity, specificity, and the disparity
between subgroups were calculated using out-of-
sample validation scores (based on 10-fold cross-
validation [34]), and confidence intervals for such
metrics were computed using bootstrap sampling
[25].

• Ensemble Model

To create a more general screening tool for retinal
damage caused by metabolic disorders, we created
a model for both diabetes-related visual diminution
and hypertensive retinopathy. Towards it, we imple-
mented a simple ensemble model that outputs the
highest risk score of the two models.4 For evalua-
tion, we applied the ensemble model out-of-sample
on the ENSANUT data and compared it against its
ground-truth.

• Importance of Features and Equity across
Subgroups

Importance of features. Feature importance was
measured by sensitivity analysis based on permuted
values [53, 6, 16]. In particular, for each variable,
the method randomly permutes the values among
all observations in the dataset and compares the risk
scores before and after the permutation. Variables
for which the risk scores before and after permu-
tation differ the most are the most sensitive and
important for the model.

Equity across subgroups. To measure the dis-
parity or equity of model performance across sub-

4Prior to comparison, we applied a piece-wise linear function
to the output of each model, to balance their sensitivity and
specificity at two discrimination thresholds corresponding to
medium and high risk.

groups, we first calculate the sensitivity of the mod-
els for each population subgroup (setting a com-
mon discrimination threshold corresponding to 60%
specificity). We then measure disparity in model
performance as the average difference between the
model sensitivity (Sg) on each group g and the sensi-
tivity (S) of the model on the population as a whole:
δ = 1

|G|
∑

g∈G |S − Sg|. 95% confidence intervals
for each sensitivity were computed using bootstrap
sampling [25].

The relevant dimensions for population segmen-
tation used were: sex (male/female), origin
(indigenous/non-indigenous)5, and geographic re-
gion.

• Benchmark Methodologies

Diabetes-related visual diminution We consid-
ered two risk models as benchmarks: Mendoza-
Herrera’s model based on data from a Mexican pop-
ulation [47] and Aspelund’s model fitted and tested
with a Nordic population [8].

Mendoza-Herrera et al., employed a probit model to
determine the risk of undiagnosed diabetic retinopa-
thy [47]. We replicated their model following the
specifications given by the authors and evaluated
its performance with the data of 1348 diabetic re-
spondents of the ENSANUT for which all required
variables were available.

The screening tool developed by Aspelund et al.,
employs a Weibull proportional hazards model. The
main objective of this tool is estimating the risk of
developing sight-threatening retinopathy in the fol-
lowing 12 months after an examination [8]; however,
the same statistical model can calculate the risk of
developing this condition at a given time of diabetes
progression [59]. We implemented this second ver-
sion of the model, following the specifications of the
authors for the parameters of the model, and evalu-
ated its performance with the data of 1348 diabetic
respondents of the ENSANUT for which all required
variables were available.

Hypertensive retinopathy No benchmark was
found for hypertensive retinopathy.

5We used a linguistic criterion to determine indigenous origin as
is usually done in Mexico [20]
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3.2. Results

• Diabetes-Related Visual Diminution.

Accuracy. Substantial accuracy improvements
were achieved by the model compared with the
benchmarks (Figure 8). Overall, the model achieved
an AUC of 0.76 in out-of-sample scores, in compar-
ison with an 0.61 AUC of the Mendoza-Herrera et
al. benchmark and 0.62 AUC of the Aspelund et
al. benchmark (a 25% and 23% relative improve-
ment respectively). In particular, Figure 8 shows
that the model can increase sensitivity from 68%
to 85% (a 25% relative improvement) compared to
the benchmarks while maintaining specificity con-
stant at 48%. Similarly, it shows that the model
can increase specificity from 48% to 67% (a 40%
improvement) compared to the benchmarks while
maintaining sensitivity constant at 68%.

Importance of features. The variable with the
largest impact on the risk index was found to be
the perceived difficulty to see (Figure 9). Following
in importance are variables related to the treatment
and progression of diabetes such as diabetes evo-
lution time, medication, complementary treatment,
and time since the last medical visit. Other highly
relevant variables are age, depression, trouble sleep-
ing, and urinary tract infections.

Equity across subgroups. The benchmark from
Aspelund et al. shows a very large difference be-
tween the sensitivity of the model in the male and fe-
male populations, favoring the first (Figure 7). The

Figure 8: ROC curves of the diabetes-related visual
diminution model and benchmarks.

benchmark from Mendoza-Herrera et al. shows a
considerable disparity between indigenous and non-
indigenous populations, favoring the latter. Both
benchmarks show a large disparity across regions.
In comparison, our model performed similarly well
in all subdivisions with a disparity of 3.2% be-
tween sex groups, 2.6% between indigenous and
non-indigenous population, and 4.3% across regions
of residence.

Figure 7: Equity across subgroups for the diabetes-related vision diminution model and benchmarks.
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Figure 9: Importance of features for the diabetes-related
visual diminution model.

• Hypertensive Retinopathy.

Accuracy. The model performed reasonably well,
achieving an AUC of 0.76 in out-of-sample scores.
Figure 10 indicates the sensitivity and specificity of
the model at different discrimination thresholds. As
mentioned in the subsection 3.1, there were no rele-
vant benchmarks found for hypertensive retinopathy
risk calculators.

Figure 10: ROC curve of the hypertensive retinopathy
model.

Importance of features. The variable with the
largest impact on the risk index was found to be
the perceived difficulty to see, followed by depres-
sion, variables related to the treatment of hyperten-
sion, and urinary tract infections (Figure 11). Other

highly relevant variables include age, weight, having
difficulty sleeping, and region of residence.

Figure 11: Importance of features for the hypertensive
retinopathy model.

Equity across subgroups. Our model showed
considerable disparities across subgroups: 10.4% be-
tween sex groups, 9.6% between indigenous and
non-indigenous population, and 8.0% across regions
of residence. Figure 12 shows that the model has
a higher sensitivity in the female and indigenous
populations. However, as shown below, the visual
diminution ensemble model was able to mitigate
them.

Figure 12: Equity across subgroups for the hypertensive
retinopathy model.

• Visual Diminution Ensemble Model

Accuracy. A substantial improvement in preci-
sion was achieved with the visual diminution ensem-
ble model, in comparison with each of its indepen-
dent components: diabetic and hypertensive vision
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diminution. Overall, the model achieved an AUC of
0.84, in comparison with a 0.76 AUC for both inde-
pendent models (an 11% relative improvement). In
particular, Figure 13 shows that the model can in-
crease sensitivity from 80% to 90% (a 13% relative
improvement) compared to the independent models
while maintaining specificity around 55%. Similarly,
it shows that the model can increase specificity from
55% to 72% (a 31% relative improvement) compared
to the independent models while maintaining sensi-
tivity constant at 80%.

Figure 13: ROC curves of the visual diminution ensem-
ble model and components.

Equity across subgroups. The ensemble of
visual diminution models also greatly improved
the equity across subgroups. Figure 14 shows
that the ensemble model achieves very low lev-
els of disparity, at around 2% for all segmentation
variables (sex, indigenous/non-indigenous, and re-
gions), much lower than disparity levels found for
the independent models.

Figure 14: Equity across subgroups for the visual
diminution ensemble model.

4. COVID-19 Severity

Relevance of COVID-19 Severity Risk Stratifica-
tion
Several studies have identified age, weight, sex, and co-
morbidities such as diabetes, hypertension, and asthma
to be relevant risk factors associated with more severe
cases of COVID-19 [64, 13]. Although most low and
middle-income countries have a younger population, they
show a higher infection fatality rate (IFR) than high-
income countries; attributed to deficiencies in the qual-
ity and accessibility of health care. Estimations show
that the IFR of similar diseases to COVID-19 doubles in
upper-middle-income countries, nearly triples in lower-
middle-income countries, and increases by a factor of 3.7
in low-income countries [30]. Additionally, most diabetic
and hypertensive patients live in low and middle-income
countries; with roughly 80% for diabetes and 65% for
hypertension [32, 28, 54]. Mexico for example is among
the ten countries with the highest mortality rates from
COVID-19 (~8.7%) [56]. There, 20% of patients with
confirmed COVID-19 diagnosis suffer from diabetes or
hypertension, and, of all fatal cases, 50% suffered from
at least one of these comorbidities [19, 22].
It is in low and middle-income contexts that prognostic

tools for COVID-19 severity can be most useful. There,
governments mostly depend on non-pharmaceutical poli-
cies to avoid hospital saturation. Thus, surveillance and
testing must be improved to reduce the spread of infec-
tion and to tailor efficient interventions [63]. Accurate
prognostic tools for severe illness of COVID-19, account-
ing for undiagnosed comorbidities, can improve stratifi-
cation of the population to prioritize protection and vac-
cination of high-risk groups, optimize medical resources
and tests, as well as to raise public awareness.

Current methods for Risk Estimation
Several institutions from different countries have im-
plemented tools for evaluating the risk and severity of
COVID-19 [41, 30, 64, 45]. However, most calculators
assume user knowledge about their potential comorbidi-
ties like diabetes and hypertension, key risk factors, dis-
regarding the high rate of underdiagnosis in developing
countries [32, 28]. In Mexico, the Social Security Insti-
tute (IMSS) developed a calculator to estimate the risk
of COVID-19 complications based on basic health infor-
mation and present comorbidities [21]. This prognostic
tool was adapted into a web-based risk calculator and is
available to the public.
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4.1. Methodology

• Data

For the training and validation of the COVID-
19 complications risk model, we used the data on
COVID-19 cases from the Mexican General Direc-
torate of Epidemiology (DGE) [24]. The dataset
consists of the results of all the COVID-19 tests ap-
plied in Mexico—amounting to more than 1.6 mil-
lion tests and 730,317 positive cases—relevant infor-
mation about each tested person, and the outcome
of the positive cases (whether or not the patient re-
quired hospitalization, intensive care, intubation, or
died).

We only considered patients with a positive diagno-
sis of COVID-19 that were older than 20 years and
excluded active ambulatory patients (with less than
15 days since symptoms onset and no hospitaliza-
tion nor death) [55]. We classified as severe all the
cases of patients that developed complications that
resulted in death or that required intensive care.

• Selection of Variables

Following the objective of creating a single question-
naire for all risk calculators, we started with the set
of variables used by the diabetes and hypertension
models. This set already accounted for most risk
factors associated with severe cases of COVID-19:
age, sex, diabetes, hypertension, obesity, and smok-
ing [13, 64]. We fitted one model to the data us-
ing only variables available in the set and a second
one with added risk factors such as the presence of
chronic obstructive pulmonary disease, chronic renal
disease, and immunosuppression. The added vari-
ables yielded no significant improvements in AUC
compared with the basic set of variables, and thus
we did not include them in the final version of the
model.

• Model and Validation

Several statistical algorithms were compared, with
the best results yielded by gradient boosting classi-
fiers. To avoid overfitting the following regulariza-
tion hyperparameters were introduced: number of
classifiers, learning rate, subsample, and the min-
imum number of samples per leaf [29, 34]. The
hyperparameters were tuned using grid search with
cross-validation [40].

All the reported evaluation metrics, such as the area
under the receiver operating characteristic curve
(AUC), sensitivity, specificity, and the disparity

between subgroups were calculated using out-of-
sample validation scores (based on 10-fold cross-
validation [34]), and confidence intervals for such
metrics were computed using bootstrap sampling
[25].

• Importance of Features and Equity across
Subgroups

Importance of features. Feature importance was
measured by sensitivity analysis based on permuted
values [53, 6, 16]. In particular, for each variable,
the method randomly permutes the values among
all observations in the dataset and compares the risk
scores before and after the permutation. Variables
for which the risk scores before and after permu-
tation differ the most are the most sensitive and
important for the model.

Equity across subgroups. To measure the dis-
parity or equity of model performance across sub-
groups, we first calculate the sensitivity of the mod-
els for each population subgroup (setting a com-
mon discrimination threshold corresponding to 60%
specificity). We then measure disparity in model
performance as the average difference between the
model sensitivity (Sg) on each group g and the sensi-
tivity (S) of the model on the population as a whole:
δ = 1

|G|
∑

g∈G |S − Sg|. 95% confidence intervals
for each sensitivity were computed using bootstrap
sampling [25].

The relevant dimensions for population segmen-
tation used were: sex (male/female), origin
(indigenous/non-indigenous)6, and geographic re-
gion.

• Benchmark Methodologies

We used the prognostic tool developed by the IMSS
as a benchmark for the COVID-19 severity model.
To evaluate its performance, we developed an au-
tomated computer program that transformed, fed,
and evaluated the data from the DGE data set (n =
179, 889) to the web-based calculator7. The output
of the web-based IMSS calculator was recorded for
each DGE observation and compared against the
DGE ground-truth to assess its accuracy.

6We used a linguistic criterion to determine indigenous origin as
is usually done in Mexico [20]

7Calculator available at: http://www.imss.gob.mx/covid-19/
calculadora-complicaciones
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4.2. Results

Accuracy. Both our model and the IMSS benchmark
achieved high accuracy scores (Figure 16). However, a
considerable improvement in sensitivity was still possi-
ble: the model achieved an AUC of 0.84 in out-of-sample
scores, in comparison with an 0.80 AUC of the bench-
mark (a 5% relative improvement). In particular, Figure
16 shows that the model can increase sensitivity from
85% to 90% (a 6% relative improvement) compared to
the IMSS benchmark while maintaining specificity at
around 60%. Similarly, it shows that the model can
increase specificity from 61% to 68% (an 11% relative
improvement) compared to the benchmark while main-
taining sensitivity constant at 85%.

Figure 16: ROC curves of the COVID-19 severity model
and benchmark.

Importance of features. The variable with the largest
impact on the risk index was found to be the age. Other

highly relevant variables include state of residence, sex,
and comorbidities such as diabetes, hypertension, and
obesity (Figure 17).
These high-relevance risk factors are in line with those

found in most COVID-19 severity risk studies interna-
tionally [64, 13]. However, the state of residence variable
was not studied or found in the aforecited studies. The
relevance of this variable here found could be related to
varying socioeconomic and quality of healthcare systems,
as, for example, it is known that the fatality rate condi-
tional on endotracheal intubation can vary widely across
hospital networks [48], potentially due to differences in
the quality of care. Finally, these results are in line with
recommendations from Ghisolfi et al., on the importance
of applying sub-national adjustments to COVID-19 IFR
estimations [30].

Figure 17: Importance of features for the COVID-19
severity model.

Equity across subgroups. Both our model and the
risk calculator developed by IMSS showed a very low
disparity in all considered divisions, with the largest gap
found across sex groups at only slightly over 3% (Figure
15).

Figure 15: Equity across subgroups for the COVID-19 severity model and benchmark.
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5. Integrated Risk Assessment
Platform

For public access at a large-scale, the risk models were
deployed on a web and mobile platform and made acces-
sible without cost through several institutional channels
and social networks. The platform contains a short ques-
tionnaire, after which it provides a report with four risk
indices: diabetes, hypertension, retinal damage due to
diabetes or hypertension, and risk of severe COVID-19
complications. The questionnaire adapts to the answers
of the user to maximize the certainty of the results. If
the user has a medical diagnosis of diabetes or hyper-
tension, the questionnaire expands to include questions
regarding the progression and treatment of each disease.
Lastly, the report includes a report containing the

risk indices, as well as information and references about
health education on chronic diseases and their preven-
tion, and contextualized links to public and private
health institutions. The report is sent by email or text
message to the users. Figures 18 and 19 show the vi-
sual appearance of the integrated platform’s question-
naire and report.

6. Conclusions

The use of large databases representative of the Mexi-
can population, coupled with modern statistical learning
methods, allowed the development of risk models with
state-of-the-art accuracy and equity for two of the most
relevant chronic diseases, their eye complications, and
COVID-19 severity. Hence, these results highlight a) the
relevance of collecting local, high-quality, public health
surveys like ENSANUT, to assess and develop contextu-
alized risk assessment tools; and b) the potential accu-
racy edge provided by statistical learning algorithms.
Similarly, this work highlights the relevance of assess-

ing the accuracy of risk models in terms of algorithmic
equity, beyond general population averages. Here we
found that substantial disparities exist in several bench-
mark models currently in use, for subgroups defined by
sex, indigenous origin, and geographical regions. In this
vein, a contribution of the present work consists of show-
ing that more accurate models based on the aforemen-
tioned characteristics can improve overall accuracy as
well as equity across relevant subgroups.
Finally, the tools here presented can have a meaningful

impact towards democratizing early detection of chronic
diseases and their complications, by fostering public
awareness and enabling large-scale preventive strategies

in low-resource health systems, with the potential to ul-
timately raise social well-being.
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Figure 19: Results report
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