Supplementary Material

A. Gated Recurrent Units Preliminaries

Figure A1. depicts the architecture of the Gated Recurrent Units (GRU) cell, where $x_i, z_i, r_i, \tilde{h}_i$, and h_i denote the input, update gate, reset gate, candidate hidden state, and hidden state, respectively, at timestamp *i*. W_h, W_z, W_r, U_h, U_z , and U_r are the trainable weight matrices. The mathematical formulation of the GRU cell is provided in Eq(1) through Eq(4):

$$z_{i} = \sigma(W_{z}x_{i} + U_{z}h_{i-1} + b_{z}) \quad Eq(1)$$

$$r_{i} = \sigma(W_{r}x_{i} + U_{r}h_{i-1} + b_{r}) \quad Eq(2)$$

$$\tilde{h}_{i} = tanh(W_{h}x_{i} + r_{i} \circ U_{h}h_{i-1} + b_{h}) \quad Eq(3)$$

$$h_{i} = z_{i} \circ h_{i-1} + (1 - z_{i}) \circ \tilde{h}_{i} \quad Eq(4)$$

where \circ denotes element-wise multiplication, tanh() denotes the hyperbolic tangent activation function, and $\sigma()$ denotes the sigmoid activation function. The update gate z_i decides how much information should be updated from the input and is computed as Eq(1). Similarly, the reset gate r_i decides how much information should be ignored from the past information and is computed as Eq(2). The candidate hidden state \tilde{h}_i is computed as Eq(3) using the input and the hidden state of the previous timestamp h_{i-1} . Finally, the hidden state at timestamp t_i is computed as Eq(4), using the candidate hidden state \tilde{h}_i and the hidden state of the previous timestamp h_{i-1} . Since the reset and update gates decide how information from the history of the past inputs should be combined with current inputs to form the new the hidden state, we can utilize the hidden state as the vector containing the information about the patient's total medical history.

Figure A1. The architecture of the Gated Recurrent Units cell.

B. Hyperparameter Details

 Table B1. Hyperparameter settings of all models.

Model	Hyperparameters		
Logistic regression w/ multi hot encoded input	Learning rate: 0.00001; L_2 weight decay regularization coefficient: 0.001; maximum epochs: 50; batch size: 2		
Logistic regression w/ randomly initialized embedding layer	Learning rate: 0.0000005; L_2 weight decay regularization coefficient: 0.001; Dimensionality of the embedding: 128; maximum epochs: 50; batch size: 2		
Logistic regression w/ pre-trained embedding layer	Learning rate: 0.000005; L_2 weight decay regularization coefficient: 0.001; Dimensionality of the embedding: 128; maximum epochs: 50; batch size: 2		
Multilayer perceptron w/ multi hot encoded input	Learning rate: 0.000001; L_2 weight decay regularization coefficient: 0.001; the number of hidden units of the hidden layer: 128; maximum epochs: 50; batch size: 2		
Multilayer perceptron w/ randomly initialized embedding layer	Learning rate: 0.0000005; L_2 weight decay regularization coefficient: 0.001; Dimensionality of the embedding: 128; the number of hidden units of the hidden layer: 128; maximum epochs: 50; batch size: 2		
Multilayer perceptron w/ pre-trained embedding layer	Learning rate: 0.000001; L_2 weight decay regularization coefficient: 0.001; Dimensionality of the embedding: 128; the number of hidden units of the hidden layer: 128; maximum epochs: 50; batch size: 2		
Recurrent neural network model w/ randomly initialized embedding layer	Learning rate: 0.00001; L_2 weight decay regularization coefficient: 0.001; Dimensionality of the embedding: 128; the number of hidden units of the fully connected layer: 128; maximum epochs: 50; batch size: 2		
Recurrent neural network model w/ pre-trained embedding layer	Learning rate: 0.00001; L_2 weight decay regularization coefficient: 0.001; Dimensionality of the embedding: 128; the number of hidden units of the fully connected layer: 128; maximum epochs: 50; batch size: 2		

C. Training Time

Table C1. Average training time per epoch of all models.

Model	Training time per epoch (seconds)
Logistic regression w/ multi hot encoded input	5.210
Logistic regression w/ randomly initialized embedding layer	7.154
Logistic regression w/ pre-trained embedding layer	7.137
Multilayer perceptron w/ multi hot encoded input	6.960
Multilayer perceptron w/ randomly initialized embedding layer	8.610
Multilayer perceptron w/ pre-trained embedding layer	8.745
Recurrent neural network model w/ randomly initialized embedding layer	106.118
Recurrent neural network model w/ pre-trained embedding layer	165.309

D. Values of the average AUC and the standard error in Figure 2

Table D1. Average area under the receiver operating characteristic curve (AUC) and standard error of all models based on 5-fold cross validation.

Model	Average AUC	Standard error
Logistic regression w/ multi hot encoded input	0.783	0.041
Logistic regression w/ randomly initialized	0.751	0.042
embedding layer		
Logistic regression w/ pre-trained embedding layer	0.801	0.030
Multilayer perceptron w/ multi hot encoded input	0.816	0.039
Multilayer perceptron w/ randomly initialized	0.767	0.050
embedding layer		
Multilayer perceptron w/ pre-trained embedding layer	0.825	0.027
Recurrent neural network model w/ randomly	0.811	0.032
initialized embedding layer		
Recurrent neural network model w/ pre-trained	0.846	0.014
embedding layer		