
Modelling pooling strategies for 
SARS-CoV-2 testing in a university 
setting 
 

Gibran Hemani1,2, Amy C Thomas4, Josephine G. Walker2, Adam Trickey2, Emily Nixon4,5, 

David Ellis6, Rachel Kwiatkowska2, Caroline Relton1,2, Leon Danon7,8, Hannah Christensen2,3, 

Ellen Brooks-Pollock3,4 

 

Affiliations 

1. MRC Integrative Epidemiology Unit, University of Bristol 

2. Population Health Sciences, Bristol Medical School, University of Bristol 

3. NIHR Health Protection Research Unit in Behavioural Science and Evaluation 

4. Bristol Veterinary School, University of Bristol 

5. School of Biological Sciences, University of Bristol 

6. School of Mathematics, University of Bristol, Fry Building, Woodland Road, Bristol 

BS8 1UG, UK 

7. Computer Science, University of Exeter, Exeter, UK 

8. Alan Turing Institute, British Library, London, UK  

 

Corresponding author: Gibran Hemani (g.hemani@bristol.ac.uk) 

Abstract 
Pre-symptomatic and asymptomatic transmission of SARS-CoV-2 are important elements in 

the Covid-19 pandemic, and until vaccines are made widely available there remains a 

reliance on testing to manage the spread of the disease, alongside non-pharmaceutical 

interventions such as measures to reduce close social interactions. In the UK, many 

universities opened for blended learning for the 2020-2021 academic year, with a mixture of 

face to face and online teaching. In this study we present a simulation framework to 

evaluate the effectiveness of different asymptomatic testing strategies within a university 

setting, across a range of transmission scenarios. We show that when positive cases are 

clustered by known social structures, such as student households, the pooling of samples by 

these social structures can substantially reduce the total cost of conducting RT-qPCR tests. 

We also note that routine recording of quantitative RT-qPCR results would facilitate future 

modelling studies. 

Introduction 
In the midst of the COVID-19 pandemic, university students represent a demographic in the 

population who are likely to experience low rates of symptomatic infection1 while being in a 

high contact social setting2,3. Extensive testing is required to monitor and manage 

potentially high rates of SARS-CoV-2 infection within a student population, particularly to 

minimise transmission to vulnerable individuals and groups, both within and outside of the 

student population4. Recent modelling work demonstrated that very frequent testing would 

be required to impact transmission5, which comes at a high cost. The reverse transcriptase 
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quantitative polymerase chain reaction (RT-qPCR) test has been in widespread use globally 

for the detection of viral RNA taken from saliva or nasal and throat swabs6. One strategy to 

reduce the financial cost of regular mass testing is to pool samples7 - a single test is 

performed on a group of individuals, which can optionally be converted into Dorfman’s 

algorithm in that if the group tests positive, follow up tests are performed on the individuals 

in the group to identify those infected8. Another benefit of this approach is that pooling 

reduces test reagent use, the supply of which may be outstripped by demand. More 

complex pooled testing algorithms have been proposed that could offer higher efficiencies 

but are difficult in practice to implement9. 

 

There have been several studies evaluating pooling approaches for RT-qPCR for SARS-CoV-2 

in order to identify cases that may be asymptomatic or pre-symptomatic
9,10

, and a pilot 

programme for pooled testing within universities is now underway
11

. In this analysis we 

explore the key decisions needed to design an effective test pooling strategy. 

 

Size of the pool  

There exists a tension between reducing the cost by pooling samples versus the potential 

adverse impact of pooled samples on the sensitivity of the test. In the context of RT-qPCR, if 

only one infected individual is present amongst the samples in a pool, the samples from the 

uninfected individuals will dilute the viral load within, potentially increasing false negative 

rates. The trade off between cost and sensitivity when using Dorfman’s algorithm is strongly 

related to prevalence. When prevalence is low, few pools will contain infected samples, and 

so the number of pools that require follow-up tests will be low. Hence it will be beneficial to 

have pools with relatively large numbers of individuals in this scenario. By contrast, when 

prevalence is high, we might expect larger pool sizes to frequently test positive, and so the 

number of follow up tests required to identify specific individuals who are infected will be 

large. This dynamic can inform optimal pool sizes. A more complex follow up strategy that 

starts with large pools and iteratively creates sub pools to minimise testing numbers will 

have the disadvantage of a longer lead time between sample collection and test result, 

which has practical consequences because informing the infected individual swiftly is of 

importance in limiting spread12. 

 

Household or contact-based pooling 

Another consideration is who is pooled with whom as it is likely advantageous for the test 

sensitivity to pool individuals who are close contacts and therefore liable to be all infected 

or all uninfected at the same time. In the university setting, a method for reducing social 

contacts is to assign students to small ‘living circles’ (e.g. five people per living circle). 

Because transmission often occurs in households, we might expect clustering of cases within 

living circles. Testing by living circle could improve test sensitivity under the assumption that 

if one person is infected then others are likely to be also, thus the dilution of the viral load is 

minimised. This pooling strategy could also reduce costs because fewer pools will be 

detected as positive than under random pooling, and therefore fewer pools will require 

follow up tests to identify infected individuals. 

 

Follow up testing 

A third consideration is how follow up of positive pooled samples, to determine which 

individuals are specifically infected, impacts overall performance. In the UK this is currently 
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mandated for positive pooled tests but deserves exploration. If tests are performed by living 

circle, then the follow up tests may be rendered largely moot if everyone within a living 

circle is expected to self-isolate when any one member of the living circle is tested positive. 

However, the impact on behaviour change if only returning pool-level test results to 

individuals needs to be quantified, such as whether individuals assume they have been 

infected and are immune. 

 

Additional to pooling of samples in RT-qPCR assays, other low-cost screening methods are 

emerging. The lateral flow device operates by detecting viral antigens directly13, and though 

it has been reported to have lower sensitivity compared to RT-qPCR14,15 it may still be cost 

effective, and of sufficiently high overall sensitivity if the test is administered twice over 

three days
11

.  

 

At the University of Bristol students within halls of residence are divided into living circles – 

groups within which individuals are permitted to mix as if in a household. Here we analyse 

the sensitivity and cost of pooling samples for SARS-CoV-2 testing by RT-qPCR within a 

university setting to represent a universal testing strategy that would identify asymptomatic 

infection. We use data on the sizes of living circles to simulate clustering of infections, 

allowing for varying levels of social contacts within and between living circles. We explore 

the effects of pool size and living-circle based pooling, follow up testing strategy, and 

heterogeneity of viral load between individuals.  

Methods 
Modelling overview 
Our objective is to simulate performing RT-qPCR for presence of SARS-CoV-2 in samples 

from all individuals under different disease transmission scenarios. There are four main 

components to the model – viral load sampling, disease transmission between students, 

pooling allocation of collected samples, and testing performance. We compare different 

aspects of testing performance across three strategies – per-individual testing, pooled 

testing, or pooled testing with per-individual follow-up in positive pools.  

 

Data 
The samples generated in these simulations are allocated into living circles and halls of 

residence that match the distributions from undergraduate students at the University of 

Bristol. In total there are 8,477 students allocated to 1,529 living circles, divided across 37 

halls of residence. The median number of students per living circle is 5, and the maximum is 

44. The distribution of students per living circle is shown in Supplementary Figure 1. 

 

Heterogeneity of viral load and RT-qPCR detection 
To generate heterogeneity in the viral load of infected individuals, we first developed a 

model based on RT-qPCR mechanics whereby each individual � is assumed to have some 

quantification cycle value (��,� ) – defined as the number of cycles (�) required to reach the 

fluorescence threshold ���  at which viral RNA is detected and considered positive within the 

RT-qPCR process. Quantification cycle value is a function of their sampled viral load ��,�  and 

the RT-qPCR efficiency (�), assuming each sample is tested individually. The efficiency can 

vary by sample and reflects, for example, random contaminants within the sample. In order 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 20, 2021. ; https://doi.org/10.1101/2021.01.19.20248560doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.19.20248560
http://creativecommons.org/licenses/by/4.0/


to test positive, an individual’s ��,�  value must be below 35 (i.e. amplification of viral RNA 

reaches a detectable fluorescence level in the RT-qPCR reaction before the 35th cycle). The 

exponential growth phase of the RT-qPCR kinetics can be modelled16 such that the number 

of viral particles after � cycles is given by 

 

��,� � ��,��1 	 ��
� 

 

where ��  is the efficiency of the reaction for sample �. We can therefore express the number 

of cycles (� = ��,�) required to reach the viral fluorescence threshold ��� as 

 

��,� � �
log ����/��,��
log�1 	 ��


 

 

We generate a per-individual viral load time-course, where the viral load changes over time 

similar to that shown in Mina et al (2020). Specifically, we assume that each infected 

individual has a viral load at time point � that is 

 

��,� � ������� � �� , α � 2, β � 1/2
 � ��,��	
0.184  

 

A value of � � �� , the number of days individual � has been infected for, that lies between 0 

and 21 days17 is sampled uniformly to be the time point of the infection course the 

individual is tested. ��,��	 represents the individual’s maximum viral load, and the 

denominator (0.184) is the maximum value of the gamma function with parameters α � 2 

and β � 1/2. Therefore, the heterogeneity in viral load between individuals is generated by 

a) when during their infection course they are tested and b) the peak viral load over the 

course of the infection. Assuming a given individual-specific RT-qPCR efficiency (��), the 

maximum �� value per individual is 

 

��,�,��	 � �
log ����/��,��	�

log�1 	 ��

 

 

 

In order to obtain realistic maximum viral load values, we generate ��,�,��	 and ��  such that 

- The distribution of �� amongst positive cases resembles that from previous 

publications18 

- The distribution of � values resembles that from previous publications6,16,19 

- The maximum sensitivity (!) of undiluted samples (" � 1) matches those !�" �
1
  �  0.98 

- The maximum sensitivity of 10x diluted samples match those estimated from 

calibration tests of !�" � 10
  �  0.80 

 

The value of 98% maximum sensitivity for 1x dilution is taken from Arevalo-Rodriguez et al 

(2020)20 as the 90% upper bound of sensitivity across 34 studies reporting RT-qPCR 

sensitivity, and also supported by Visseaux et al (2020)21. The value of 80% sensitivity at 10x 

dilution is estimated on the assumption that the ��,� value will increase by 3.32 and that 
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20% of the values at 1x dilution will be shifted to be above the threshold of 35 cycles 

(assuming 100% efficiency). 

  

In order to determine the distributions for ��,��	  and � we assume that both are 

independently beta distributed such that 

 

��,� � %&�� �α�� , β��� � '��,
���
 � ��,����
( 	 ��,����
 

 

 

and  

�� � %&���α� , β�
 � '�
���
 � �����
( 	 �����
  

 

Following Kudo et al (2020)19 and Vogels et al (2020)6 we fix �
���
 � 1.4 and �����
 � 0.9, 

but we must determine values of α��, β��, ��,
���
, ��,����
, α�  and β�  to satisfy the 

conditions stated above. To achieve this we use a general optimisation function which 

performs the following procedure 

 

1. Sample values of ��,�,��	  for 500,000 individuals (an arbitrarily large number to 

reduce sampling error) for a set of values for )��, *��, ��,
���
, ��,����
 

2. Sample values of ��  for a set of values for )� and *�  

3. Calculate the viral load per individual ��,��	 � ���/�1 	 ��
��,�,��� where the 

reference value ��� is set to 1 arbitrarily 

4. Calculate the viral load in the sample after 10x dilution by dividing V�,��D � 10
 �
��,��	/10 

5. Calculate the resultant expected C�,�,�	

�D � 10
 � �����/��,��������� 

�����!���
 

6. Calculate the loss function . �  �/���,�,��	�" � 10
 –  !�" � 10

"  	
 �/ ����,���

�" � 1

–!�" � 1
�

"
 

7. Repeat from 1 to minimise the value of .. 

 

We use the default settings in the optim function in R 4.0.222 to solve this optimisation 

function, resulting in the following parameter values: 

- )�� � 1.65 

- *�� � 1.23 

- ��,
���
 � 35.5 

- ��,����
 � 15.8 

- )� � 1.75  

- *� � 1.98 
 

These values give rise to the distributions of viral load and RT-qPCR kinetics shown in 

Supplementary Figure 2. Reproducible code to determine these parameters are provided in  

https://explodecomputer.github.io/covid-uob-pooling/cq.html. 
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Transmission model 
To generate clustering of cases according to social structures amongst the students, such as 

living circles and halls of residence, we use a single time-step agent-based transmission 

model to capture transmission that can occur within a week – approximately the serial 

interval for COVID-19. At time step 0, a random set of individuals from the total population 

is selected to be infected according to some initial prevalence /�0
. The individual 

reproduction number, or the number of people each individual goes on to infect is set as  

 

4� � /5�665��4
 
 

Where 4 is the reproduction number. We allow the 4 value to vary across simulation 

scenarios. The individuals who are infected are determined by contact patterns and the 

level of containment assumed for a particular simulation scenario. We assume that 

transmission can occur in one of two contexts: within the same living circle, or anywhere 

else. Hence, at time step 1, a new set of individuals will be infected, leading to an updated 

prevalence /�1
. Table 1 lays out the probability that a transmission event occurs in each 

context, based on different data sources or assumptions. For the base case analysis, we use 

the transmission event probabilities based on the CON-QUEST survey23, and present 

sensitivity analyses in Supplementary figure 3. 

 

Testing pool allocation 
We adopted two strategies to assign individuals to testing pools. First, we allowed 

assignment to be random. Second, we attempted to maximise grouping within test pools 

given living circles. The living circle sizes within the University of Bristol vary from 1 to 44, 

with a median of 5. However, within each simulation scenario the pool size is fixed (though 

we try different pool sizes between simulation scenarios). To maximise grouping of living 

circle members within a testing pool we used a simple bin packing algorithm, binPack from 

the BBmisc R package (version 1.11)24, which uses a greedy algorithm to maximise pool 

occupancy whilst minimising distribution of living circle members across multiple pools. 

 

Testing model 
For all individuals in the sample the values of ��  and ��,� are sampled as described in the 

‘Viral Load’ section above, which gives rise to per individual viral loads ��,�. To calculate the 

test result for a pooled sample 7, we estimate the pool viral load across samples 8 in a pool 

of size " samples using 

 

�#,� � ∑ �$,�$
�
"  

 

and estimate whether the pool would be detected as positive given the inequality ��,# : 35 

where 

 

��,# �
log ����/�#,��

 log �1 	 min�
$ '�#$(
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Note that we assume that the reaction efficiency of the pooled sample is equal to the 

lowest efficiency amongst the 8 samples contributing to the pool, in part to be conservative 

in evaluating the efficacy of pooling, and in part on the assumption that efficiency is 

adversely impacted by sample impurities. 

 

We assume a diagnostic specificity of 99.5% for a single RT-qPCR test, and therefore the 

pool+followup results will have a false positive rate of 0.005".  

 

The cost of testing was estimated based on consumable costs alone, assuming that 

overhead or facility costs would be the same for any model of testing, and that each 

laboratory would have sufficient capacity and equipment (nucleic acid extraction and qPCR 

instruments, and storage freezers) to conduct the tests. We determined the cost of sample 

collection to be £3.47 (comprising of saliva sampling funnel (£1.86; Isohelix), collection tube 

(£1.42; Isohelix), storage tube, and pipette tip (£0.19)) and the cost of a PCR test to be 

£12.46 (based on 1 extraction using QIAsymphony® (QIAGEN) kits at £4.46 per sample, and 

one PCR reaction using the Altona SARS-CoV-2 RealStar RT-PCR Kit 1.0 at £8.00 per sample. 

 

Lateral flow device 
For the lateral flow device tests (LFD) we assume specificity of 99.68% and a sensitivity that 

is a function of viral load, !'��,�(. The Joint PHE Porton Down & University of Oxford SARS-

CoV-2 test development and validation cell13 provides a mapping of RT-qPCR kinetics against 

LFD sensitivity, which we interpolated using a sigmoidal model using the SSlogis function in 

R (Supplementary figure 4, https://explodecomputer.github.io/covid-uob-pooling/lfd.html). 

The probability of testing positive for infected individuals is sampled as  

 

/�.>" � 1, ��?&@�&A � 1
 � %��5� �1, !'��,�(� 

 

and for uninfected individuals 

 

/�.>" � 1, ��?&@�&A � 0
 � %��5��1,0.9968
 
 

In practice the LFD protocol is to perform the test twice, across 3 days, and as such we also 

estimate the sensitivity of getting at least one positive result given changes in viral load 

across this time window. We assume a cost of £5 per LFD test
25

. 

 

Simulation setup 
We explore the performance of pooling strategies under the following simulation scenarios 

 

Initial prevalence: 0.001, 0.01, 0.05 

R value: 0.8, 1, 3 

Containment: ‘high’, ‘medium’, ‘low’ 

 

Pool sizes are chosen to be 2, 3, 4, 5, 10, 15, 20, 25 or 30, and individuals are allocated to 

pools according to their living circles or at random. This results in 486 simulation scenarios, 

each of which is repeated 100 times. 
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The simulations were all conducted using R 4.0.2 and made reproducible via a Snakemake 

pipeline26. Code can be accessed here: https://github.com/explodecomputer/covid-uob-

pooling 

Results 
Pooled testing volume depends on epidemiological context 
A major motivation for a pooled testing strategy is to reduce the financial cost by reducing 

the number of assays that need to be performed. In a simple pooling approach that does 

not follow-up positive pooled samples to determine the specific individuals infected, this 

reduction in costs will be related to the number of samples included in the pool, but results 

in all individuals in the pool behaving as if they are infected. However, as is well established, 

if positive pools are to be followed up then the total number of tests could drastically 

increase when prevalence is high (Figure 1), particularly when pool sizes are larger. For 

example, when initial prevalence is at 5% and the R value is high, a strategy of pool size of 

20 comprising random samples will require as many tests as a simpler approach of testing 

everybody, if positive pools are followed up for individual testing. However, if we pool 

based on living circle in this context where most cases are clustered, then fewer pools will 

contain positive individuals, and the number of tests could be attenuated by 15%.  

 

Test sensitivity 
The rate at which infected individuals are tested positive varies across the various 

simulation scenarios. Pooling samples reduces test sensitivity as expected, but how the 

performance depends substantially on the loss is related to clustering of cases, pooling 

strategy and prevalence (Figure 2). Higher clustering of cases reduces loss of sensitivity as 

pool size increases, because the dilution of nucleotides is reduced when clustered cases are 

pooled together. A similar amelioration of the impact of dilution occurs as the prevalence 

increases. The improvement in sensitivity achieved by pooling by living circle is particularly 

pronounced when disease transmission is largely restricted to be within living circles, as this 

minimises isolated positive cases within pools. The sensitivity of LFD improves substantially 

when it is applied twice; however, in most scenarios pooling approaches will outperform the 

sensitivity of LFD. 

 

Cost effectiveness of testing strategies 
We based the cost effectiveness of a particular strategy on its positive predictive value 

(PPV), defined as the probability, given a positive test result, that an individual really has the 

disease. PPV is a function of prevalence, sensitivity and specificity. Figure 3 shows that the 

strategy that maximises the PPV to cost ratio varies substantially by prevalence. When 

prevalence is low then pooled tests are likely to reduce the proportion of false positives and 

therefore can improve on individual based tests. When prevalence is high, the sensitivity is 

relatively similar across all strategies, the false positive rate is a small fraction of total 

positives, and so the low cost of LFD appears favourable. 

 

Estimating prevalence 
Large scale testing can also be valuable as a surveillance tool. We evaluated the accuracy 

prevalence estimates for different testing strategies (Figure 4) and found that individual 

tests and pooled tests with follow ups offered good estimates of the prevalence. However, if 
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pooled tests without follow up were to be used to estimate the prevalence then 

assumptions would need to be made about the proportion of samples within a test that are 

likely to be positive in order for that to be a cost-effective way of estimating prevalence 

accurately.  

Discussion 
A regular testing regimen across the student body may demand test pooling as the only 

viable strategy that financial and reagent resource limits permit. We present a framework 

which can be adapted to accommodate changes in estimates of viral load and RT-qPCR 

operating parameters, such as efficiency and sensitivity, as these estimates emerge and 

evolve. This study illustrates that there are trade-offs to be made in using this approach, 

which may require ethical arguments to inform decision making. In particular, reducing 

testing costs will incur a modest reduction in sensitivity, and some of the lowest cost 

pooling approaches have low specificity which could lead to large numbers of students self-

isolating whilst not actually being infected. We note that the current pilot project for 

voluntary pooled testing in UK university students places students in pool sizes of up to 5 

individuals in a household and follows up any positive pooled samples11. This strategy 

appears to be the most cost effective across scenarios in our simulations, including when 

compared against the LFD. 

 

Pooling samples in a way that is informed by social contacts appears to be an effective 

strategy to improve pooling performance but does come at a cost of higher management 

and organisational cost at the levels of sample collection and laboratory systems. Clustered 

samples may however fall into the same pools without a management layer required, for 

example if samples from the same classroom or hall of residence are collected together. In 

these simulations we used living circle as a predictor of case clustering, and note that 

though it is an imperfect predictor it improves performance over random pooling. Any 

management scenario that is able to group individuals into test pools based on shared 

exposures (or shared lack of exposures) will likely improve pooling performance above the 

random case. 

 

A key limitation of the costing analysis is that the logistics and time required to pool samples 

using maximal bin packing was not considered. It’s likely that the most realistic way to 

achieve pooling by living circle would be for samples to be submitted together and grouped 

within the lab according to when they are submitted. The true cost per PPV of pooling is 

therefore likely to be affected by the limitations of implementing pooling. Similarly, practical 

considerations within the laboratory infrastructure do place limitations on the complexity of 

the sample grouping strategies. 

 

Per-individual follow-up testing within positive pools improves the specificity of test results 

but can become costly as prevalence increases. Outbreaks have been seen to be controlled 

within university settings (e.g. 27) which suggests that structural measures are effective and 

it is unlikely that prevalence will ever be particularly high at any given point5. Given that 

close contacts of positive cases are advised to self-isolate regardless of their test status, 

follow-up testing of positive pools may provide unactionable information when then pools 

are composed of social contacts. However, the value of testing the contacts of infected 
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individuals has recently been shown in other simulations28, where it was suggested that 

testing of contacts is likely to identify substantially more true negatives than false negatives. 

 

Changes in the ratio of cost of sampling compared to cost of PCR test will affect the 

difference in costs between pooling sizes, and if PCR test costs are reduced then the 

advantages of pooling will be limited. However, if reagent supply is limited, this may drive 

up the cost of PCR tests while also providing further incentive to pool samples.  

 

Our simulations indicate that the LFD has sensitivity and specificity profiles comparable to 

those of higher order pooling strategies. Emerging evidence does appear to contradict this 

finding, in which it has been suggested that LFD has substantially worse sensitivity than RT-

qPCR
29

. There are three ways in which our simulations could be over-estimating the 

sensitivity of LFD. First, if in practice LFD is routinely performed using self-administered 

swabs and RT-qPCR is performed by a trained technician then this will have an adverse 

consequence on the sensitivity of LFD. Second, if the viral distribution follows a different 

shape to that which we assume, in particular with a large mass in the range of 30 B �� B
35, then this is the range in which LFD has been suggested to have a substantial drop off in 

sensitivity13. Third, the relationship between LFD sensitivity and RT-qPCR �� values may be 

biased upwards in reference 13,30. 

 

There are a number of limitations to this study. First, we do not have data on the true 

heterogeneity of viral load amongst infected students, and higher heterogeneity could have 

unpredictable effects on the efficacy of pooling by living circle. If individuals with higher viral 

load are more infectious then the pooling of close contacts with those individuals will 

potentially increase sensitivity. Second, we used a theoretical framework to infer the RT-

qPCR sensitivity beyond 10x dilution, and therefore the most reliable pool size within these 

simulations is at 10x dilution. However, we note that the projected sensitivity of the test 

beyond 10x dilution is in line with sensitivity estimates from experiments published 

previously31. Third, we only used a simple 2-time-step model to simulate clustering. The 

intention behind this approach was to simply obtain different levels of clustering of cases, 

but the true extent of clustering is not known. We show that the improvements in 

performance of pooling by living circle is attenuated when cases are less clustered 

(Supplementary figure 3), and will tend towards the random pooling values. Additionally, if 

tests were performed regularly then one might expect that there will not be enough time 

for tertiary infections to occur before infected cases are discovered. Fourth, alternative 

viable approaches in addition to RT-qPCR and LFD such as reverse transcription loop-

mediated isothermal amplification32,33 have not been modelled here. 

 

In this study our simulation is predicated on the detection of infected individuals. However, 

for the purposes of controlling the spread of the disease whilst limiting unnecessary 

quarantines, those who have very low viral load are much more likely to be post-infectious 

or non-infectious than they are to be pre-infectious34. Therefore, approaches such as LFD or 

large pool sizes may not lead to substantially higher transmission and yet they could be 

substantially cheaper. On the comparison between LFD and pooling RT-qPCR, LFD has the 

advantage of being substantially faster, but operationally its sensitivity appears to be lower 

than initial laboratory testing indicated35. By contrast, pooling of samples in practice may in 

fact exceed the sensitivity performance that we assumed in these simulations31. 
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It is also of note that the new Variant of Concern 202012/01 (VOC), which is thought to have 

originated in the UK in late Summer or early Autumn 2020, and which has spread rapidly in 

the UK since then (even during the November lockdown), is estimated to be between 1.4 

and 1.8 times more transmissible than the original (wild-type) SARS-CoV-236. Early results 

suggest that this new variant is associated with significantly higher viral loads in the upper 

respiratory tract, than was the case with wild-type SARS-CoV-237. If a higher viral load is 

maintained across the infection course, then all tests will gain in sensitivity, and adopting 

pooling approaches (or the LFD) will have a reduced adverse impact on sensitivity when 

compared against the single RT-qPCR test. 

 

Overall, we show that RT-qPCR pooling strategies are likely to be improved if individuals can 

be pooled based on likelihood of joint infection, and this could be achieved by pooling 

within known living or contact circles. Though we used student living circles as a basis for 

the simulations, the results could extend to households in general. An adaptive strategy, 

whereby different pooling schemes are used depending on the estimated prevalence and R 

values (e.g. from local authority reporting), could be optimal. 
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Containment 

scenario 

Description Same living 

circle 

(household) 

Anywhere else 

High containment Hypothetical 

circumstance 

where most 

transmission 

outside of 

living circles 

is limited 

0.9 0.1 

Social contact 

survey 

(students)
38

 

Based on 

contact 

patterns 

from a pre-

pandemic 

survey 

0.38 0.62 

CON-QUEST 

survey
2
 

Based on 

student 

contact 

patterns 

surveyed 

during the 

pandemic 

(June to 

November 

2020) 

0.76 0.24 

Table 1: Probabilities of transmission events for an infected individual to infect others in the 

same living circle or elsewhere. Each row represents a different containment scenario. 
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Figure 1: Comparison of number of tests required across different RT-qPCR strategies. The 

x-axis represents the pool size, with a value of 1 corresponding to a test per individual. The 

y-axis represents the number of tests to be performed. Rows of boxes represent the starting 

prevalence before transmission occurs, and columns of boxes represent the degree of 

transmission in terms of reproduction number (R). 

  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 20, 2021. ; https://doi.org/10.1101/2021.01.19.20248560doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.19.20248560
http://creativecommons.org/licenses/by/4.0/


 

Figure 2: Comparison of test sensitivity across different testing strategies. The x-axis 

represents the pool size. Horizontal lines represent different individual-based testing 

approaches. The y-axis represents the sensitivity, defined as the proportion of infected 

individuals who are detected as positive. Rows of boxes represent the starting prevalence 

before transmission occurs, and columns of boxes represent the degree of transmission in 

terms of reproduction number (R). 

  

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 20, 2021. ; https://doi.org/10.1101/2021.01.19.20248560doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.19.20248560
http://creativecommons.org/licenses/by/4.0/


 

 

Figure 3: Comparison of cost per test effectiveness (in terms of positive predictive value) 

across different testing strategies. The x-axis represents the pool size. Horizontal lines 

represent different individual-based testing approaches. The y-axis represents the cost per 

positive predictive value (PPV) achieved. Rows of boxes represent the starting prevalence 

before transmission occurs, and columns of boxes represent the degree of transmission in 

terms of reproduction number (R). 
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Figure 4: Comparison of prevalence estimates across testing strategies. Each plot 

represents a different testing strategy, the x-axes represent the true prevalence at the time 

of sampling, and the y axes represent the prevalence estimated by that testing strategy. For 

the pooled PCR strategy, it is assumed that everyone within the pool is positive. 
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