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Abstract

Although the COVID-19 disease burden is heterogeneous across space, the U.S. National Academies of Sciences,

Engineering, and Medicine recommends an equitable spatial allocation of pharmaceutical interventions based,

for example, on population size, in the interest of speed and workability. Utilizing economic–epidemiological

modeling, we benchmark the performance of ad hoc allocation rules of scarce vaccines and drugs by comparing

them to the rules for a vaccine and for a drug treatment that minimize the economic damages and expenditures

over time, including a penalty cost representing the social costs of deviating from an ad hoc allocation. Under

di↵erent levels of vaccine and drug scarcity, we consider scenarios where length of immunity and compliance to

travel restrictions vary, and consider the robustness of the rules when assumptions regarding these factors are

incorrect. Because drugs and vaccines attack di↵erent points in the disease pathology, the benefits from deviating

from the ad hoc rule di↵er. For drug treatment, optimal policies often allocate all available treatments to one

jurisdiction for a period of time, while ad hoc rules act to spread out treatments across jurisdictions. For vaccines,

the benefits from deviating are especially high when immunity is permanent, when there is compliance to travel

restrictions, and when the supply of vaccine is low. Interestingly, a lack of compliance to travel restrictions

pushes the optimal allocations of vaccine towards the ad hoc and improves the relative robustness of the ad hoc
rules, as the mixing of the populations reduces the spatial heterogeneity in disease burden.
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Contribution

Much of the discussion around pharmaceutical interventions for COVID-19 has focused on what segments of the
population to prioritize for vaccines. Two important questions have received much less attention but could be just as
significant in reducing the economic and public health costs of COVID-19. First, there is the question of how much
of a limited vaccine to allocate across jurisdictions within a country and within each jurisdiction. Should we allocate
based on relative population size, some normalized measure of disease burden (e.g., cases per 100,000), or should we
base the allocation on numbers of essential workers? Second, other pharmaceutical interventions, such as antiviral
drugs are coming online and will be in limited supply at least initially. How should these drugs be allocated across
and within States? We investigate these questions by benchmarking the economic and public health performance of
ad hoc allocation rules against optimally-derived rules. We also investigate how robust allocation rules are to com-
pliance to nonpharmaceutical interventions, such as travel restrictions, and to uncertainty on the degree of immunity
conveyed by the pharmaceutical interventions and prior infection. Knowledge on compliance to travel restrictions
is critically important to the allocation question, as research has shown that varying levels of compliance across ju-
risdictions impacts the spatial distribution of disease burden. Whether the economic and public health implications
from spatial allocation rules are as significant as allocation within jurisdictions to di↵erent classes of people is an
open question and likely depends on the objectives of the policymakers. We find economic and public health gains
from spatially targeted rules even after considering additional costs associated with deviations from the ad hoc rules.
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Antiviral Drugs

• Spatial Prioritization: Drugs should be directed towards the region that has fewer infections; optimal
allocation gives rise to extreme allocations where it is preferable to give all of the allotment to one jurisdiction
for a period of time rather than an allocation based on relative levels of infected individuals.

• Epidemiological Consequences of Spatial Prioritization: Compared to the ad hoc allocation rule,
where more treatments go to locations with more infected individuals, the optimal allocation results in a higher
number of cumulative cases in the jurisdictions that have a higher initial level of infected individuals and fewer
cumulative cases in the jurisdictions that have a lower initial level of infected individuals. Over the period of
four months, however, how well the optimal more extreme allocation does in aggregate (across jurisdictions)
relative to an aggregate ad hoc allocation is dependent on epidemiological, behavioral, and logistical factors.

• Robustness of Spatial Allocation: The optimal allocations are not robust to incomplete information on
compliance to travel restrictions and immunity, and perform worse than the ad hoc allocations in cases where
they are designed under one set of assumptions but yet the true state of the world is di↵erent.

• Policy Recommendation: Until we have more information about compliance and immunity, our analysis
leads us to conclude that ad hoc allocations may be the least risky option for the allocation of antiviral drugs.

Vaccines

• Spatial Prioritization: Compared to an ad hoc allocation rule based on relative population size as rec-
ommended by the US National Academies of Science, Engineering, and Medicine, the optimal allocation of
vaccine favors the least-burdened jurisdiction, resulting in an unequal distribution from a resource allocation
perspective.

• Epidemiological Consequences of Spatial Prioritization: The optimal allocation results in a more
equal level of infection across jurisdictions in each period while the ad hoc allocation results in a more equal
distribution of aggregate cumulative infections.

• Robustness of Spatial Allocation: In terms of economic expenditures and cumulative cases, the optimal
allocation is less impacted when assumptions on immunity are incorrect than when wrong about compliance
to travel restrictions.

• Policy Recommendation: Imposing strict travel restrictions, or e.g. forcing quarantine when traveling to
another jurisdiction, and prioritizing vaccination in jurisdictions that have lower initial disease burden could
prevent a significant number of cases.
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1 Introduction

While researchers race against time to develop vaccines and drug treatments against coronavirus disease 2019

(COVID-19), policymakers around the globe are focusing on how to allocate the limited supplies. Most of the

scientific literature on allocation has focused on demographic considerations within one jurisdiction (Buckner et al.,

2020; Emanuel et al., 2020a; Roope et al., 2020) or on a global scale (Emanuel et al., 2020a; Liu et al., 2020;

Yamey et al., 2020). This prior work has made important contributions to the debate, but a missing piece in the

allocation question is how to divide up limited quantities across jurisdictions that might have similar demographic

but di↵erent epidemiological characteristics, because vaccine stockpiles may be managed at a federal level but

distributed at more local scales (e.g. state). A recent report on the allocation of a future COVID-19 vaccine by

the U.S. National Academies of Sciences, Engineering, and Medicine (2020) (NASEM) states that “[i]f the federal

government were to provide states with an allotment of COVID-19 vaccine, in the interest of speed and workability,

federal allocation to states could be conducted based on these jurisdictions’ population size.” Such a rule could also

be deployed by states, provinces, or territories when deciding how to allocate within their boundaries.

In this paper, we explore the economic and epidemiological trade-o↵s associated with such fixed ad hoc allocation

rules across jurisdictions by comparing them to the optimal rule for each jurisdiction conditional on the level of

scarcity of the vaccine or drug. While most of the discussion revolves around allocation of a vaccine, a similar

allocation problem may arise if an antiviral drug were to become available (for a discussion on antiviral treatments

for SARS-Cov-2, i.e. the virus that causes COVID-19, see Hu et al., 2020). Because drugs and vaccines have

di↵erent goals—treating infected individuals and prophylaxis, respectively—the economic and public health trade-

o↵s of di↵erent allocation rules may be unique to the type of pharmaceutical intervention. The baseline ad hoc

allocation rules we consider are rules of thumb that favor “speed and workability.” For vaccines, we follow the U.S.

National Academies of Sciences, Engineering, and Medicine (2020) allocation based on the jurisdictions’ population

size. With respect to antiviral drugs, we base the ad hoc allocation on the jurisdictions’ number of infected

individuals.

In a world where two jurisdictions are identical in terms of population and infection levels, the ad hoc rules would

divide the limited supply equally between the jurisdictions. However, it is much more likely that two jurisdictions,

even if equally sized, have heterogeneous levels of infections (e.g. in terms of cases) at the time a vaccine or drug is

developed. Mechanisms leading to heterogeneous disease burden include the timing of the outbreak, how preventive

measures—such as mandatory face mask in public areas, shelter-in-place, travel restrictions, and social, or physical,

distancing—vary from one area to another, and the degree to which local populations are compliant to preventive, or

nonpharmaceutical measures (see Polyakova et al., 2020; Thomas et al., 2020, for more details on how SARS-CoV-2

prevalence varies across space).
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Based on prior literature on spatial-dynamics of disease management, heterogeneity in disease burden is likely to

lead to significant deviations in the optimal spatial allocation from the ad hoc rules (see Zaric and Brandeau, 2001,

for example). Therefore, while compliance to preventive measures may seem independent from vaccine and drug

allocation, they a↵ect the pre-existing conditions (i.e. the conditions before the vaccine or drug is licensed) and

the conditions under which the limited supplies will be allocated. For example, compliance to shelter-in-place and

travel restrictions results in little to no leakage of the virus from one jurisdiction to another. When regions are non-

interacting, Brandeau et al. (2003) show for a general susceptible–infected–susceptible (SIS) model that the optimal

allocation of resources depends on numerous intrinsic factors, including the size of the populations of each region

and the initial level of infection. In the case of noncompliance to travel restrictions or populations are interacting,

Rowthorn et al. (2009) show when there is no immunity that treatment should be preferentially directed towards

the region that has the lower level of infection. In the case of COVID-19, whether noncompliance makes the ad hoc

rule relatively more cost-e↵ective is an open question.

The optimal allocations are conditional on the disease dynamics, compliance to travel restrictions, and the scarcity

of the vaccines and drugs. In reality, the science is unresolved on whether immunity to SARS-CoV-2 is permanent

or temporary, and it is di�cult to anticipate and subsequently estimate the extent to which populations in di↵erent

jurisdictions comply with the travel restrictions. On the other hand, the ad hoc allocations have the advantage of

being based on easily observable factors (e.g. a jurisdiction’s population size). To gain insights into the robustness

of optimal and ad hoc policies, we investigate the economic and public health consequences that could occur if we

design an optimal policy or evaluate the performance of ad hoc rules under a set of assumptions on immunity and

compliance that turn out to be incorrect.

We make a number of contributions to the literature. First, we develop an economic–epidemiological model and

solve for the optimal allocation of both drugs and vaccines over time to minimize the economic costs from damages,

expenditures related to the pharmaceutical intervention, and a workability cost imposed on the planner for deviating

from the ad hoc rules (i.e. the costs incurred because of the noncompliance to the ad hoc allocation). Prior literature

considering the trade-o↵s involved with ad hoc rules does not consider that deviating from them entails potential

workability costs (see, for example, Dangerfield et al., 2019). Second, we find that the vaccines and drugs should be

optimally allocated over time depending on (i) if the jurisdiction has initially a lower or higher disease burden, (ii)

if immunity is permanent (Zhou et al., 2014) or temporary, (iii) whether there is compliance to travel restrictions

or not, and (iv) the amount of vaccine or drug available. We show that, compared to the ad hoc rule, the optimal

allotment of drugs gives rise to extreme cases where all the drugs are given to one jurisdiction for a period of time.

For the optimal allotment of vaccines, the benefits from deviating from the ad hoc rule are especially high when

immunity is permanent, when there is compliance to travel restrictions, and when the supply is low. Third, we show

that in general optimal rules are robust to uncertainty about the duration of immunity but di↵erences in public
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health outcomes (cumulative cases) appear when compliance to a travel restrictions is assumed when in fact there

is not compliance; it is, however, much preferable from a public health outcome perspective to comply with travel

restrictions.

Our findings illustrate that allocating a future vaccine or drug based on an ad hoc allocation rule leads to an

overutilization in jurisdictions where disease prevalence is higher, an underutilization in jurisdictions where disease

prevalence is lower, and overall a higher number of cumulative cases. Whether these ine�ciencies outweigh the

“speed and workability” inherent in ad hoc rules is an important question for policymakers. Our research can aid

in that discussion by illuminating the trade-o↵s involved in such complex epidemiological, economic, and social

decisions by providing optimal benchmarks from which to compare ad hoc rules.

The paper is divided as follow. In Section 2, we detail the di↵erent types of interventions, we present the components

of the economic-epidemiological model, and detail the technique used to analyse the allocation question. Section 3

presents the results while Section 4 concludes the paper.

2 Material and Methods

We develop an economic–epidemiological model to describe the dynamics of SARS-CoV-2. The model captures a

situation where a central planning agency (e.g. the federal government) must decide when and how much of the

scarce vaccines or drugs to allocate to two jurisdictions where disease burden is heterogeneous at the moment the

vaccine or drug is licensed. We assume that the objective of the central planner is to minimize costs across both

jurisdictions, including damages associated with the morbidity and deaths of infected individuals, the expenditures

related to the pharmaceutical intervention, and a penalty cost mimicking the increased workability costs incurred for

any deviation from the ad hoc allocation. The dynamics of SARS-CoV-2 are modeled using an SEIR epidemiological

model, which tracks the change over time of the susceptible (S), exposed (E), infected (I), and recovered (R)

populations for two separate jurisdictions.

2.1 Modelling Di↵erent Types of Intervention

There are three di↵erent types of interventions we consider: travel restrictions, drugs, and vaccines. We assume

that travel restrictions a↵ect both jurisdictions simultaneously (e.g. by an order from the central government), and

that the populations either comply perfectly or imperfectly to the travel restrictions (see, e.g., Acemoglu et al.,

2020; Alvarez et al., 2020, for examples of optimal lockdown policies). When compliance is perfect, individuals

in di↵erent jurisdictions do not interact with each other and thus susceptible individuals can only get infected by

being in contact with some infected individual in their own jurisdiction. When compliance is imperfect, susceptible

individuals from one jurisdiction can also travel to the other jurisdiction where they can be in contact with infected

individuals, or infected individuals from one jurisdiction can travel to the other jurisdiction and infect susceptible
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individuals there; this e↵ectively results in a discrete shift of the basic reproduction ratio, R0 (see Appendix A for

derivation).

We assume that at some given date either an antiviral drug or a vaccine is developed and licensed. We consider

di↵erent scenarios of capacity constraints to investigate how di↵erent levels of limited supply may a↵ect their optimal

allocation. Antiviral drugs and vaccines a↵ect di↵erent points in the disease pathology. The former shortens the

infectious period while the latter reduces the pool of susceptible individuals by providing them with immunity from

the disease. For simplicity, the amount of available vaccine or drug is assumed to be exogenous to the model and

fixed over time, which is likely given the short time frames we consider in the paper.

2.2 Model of Disease Transmission

We use a frequency-dependent (Begon et al., 2002) susceptible–exposed–infected–recovered (SEIR) model that de-

scribes the dynamics of COVID-19 in two separate jurisdictions i = 1, 2 (e.g. states/provinces or counties/administrative

regions); each jurisdiction contains a population of Ni individuals (see Figure 1). We also consider scenarios where

immunity is temporary (i.e. lasts 6 months, for more details see Edridge et al., 2020), thus also using an SEIR–

Susceptible (SEIRS) model (for COVID-19 applications see, e.g., Bertozzi et al., 2020; Bjørnstad et al., 2020a,b;

Hou et al., 2020; Pandey et al., 2020; Peng et al., 2020; Prem et al., 2020; Radulescu and Cavanagh, 2020; Roda

et al., 2020; Stutt et al., 2020; Yang et al., 2020). In such scenarios, the Ri recovered individuals are immune for a

mean period of 1
! months; in the case of permanent immunity ! is not defined.

In each jurisdiction i, the Si susceptible individuals are in contact with the Ii infected individuals of their own

jurisdiction at rate of �ii and are in contact with the Ij infected individuals of the other jurisdiction at a rate of �ij .

We assume �ij = 0 (i.e., no mixing between jurisdictions) when there is perfect compliance to travel restrictions,

and �ij > 0 if not. To abstract from other potential sources of heterogeneity across jurisdictions, we assume that

the contact rate is identical across jurisdictions, meaning that �11 = �22 = �ii and �12 = �21 = �ij . We are

assuming there is no permanent migration of individuals from one jurisdiction to another (see for instance Burton

et al., 2012, and see Chen et al., 2020 for an example applied to COVID-19), in the sense that individuals who do

not comply with travel restrictions do not permanently move to the other state, but instead travel to it temporarily.

An implication is that we are assuming that the two jurisdictions are close enough for such travel and mixing to be

economically feasible.

We model the control variables for drugs or vaccines as non-proportional controls, i.e. available in a constant

amount each month (Barrett and Hoel, 2007; Buckner et al., 2020; Goldman and Lightwood, 2002; Rowthorn et al.,

2009). The change in susceptible individuals is

Ṡi = !Ri � �iiSi
Ii
Ni

� �ijSi
Ij
Nj

� qV uVi (1)
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where uVi represents the number of individuals being treated via vaccine in a given time period (i.e. a month)

in Jurisdiction i, and qV represents the e↵ectiveness of the vaccine. We note that our model does not distinguish

between individuals whose vaccine has failed and those who have not been vaccinated at all. As such, individuals

with vaccine failure can be revaccinated in subsequent months.

After being infected, susceptible individuals transition into the exposed class Ei where the disease remains latent

for a mean period of time of 1
� , before the onset of infectiousness. The change in the number of exposed individuals

is

Ėi = �iiSi
Ii
Ni

+ �ijSi
Ij
Nj

� �Ei. (2)

Exposed individuals eventually become infectious for a mean period of time of 1
�+' and in turn can infect susceptible

individuals. Infected individuals either recover naturally from the disease at a rate of �, die from complications

related to infection at a disease induced mortality rate of ', or recover from the disease by being treated with

antiviral drugs. The growth of the infected individuals is

İi = �Ei � �Ii � 'Ii � qDuDi (3)

where uDi represents the number of individuals being treated via antiviral drugs in a given time period (i.e. a

month) in Jurisdiction i, and qD represents the e↵ectiveness of the drug.

The recovered population Ri includes individuals that recover naturally from the disease at a rate of �, the individ-

uals that are successfully vaccinated every month (qV uVi), and the individuals that are successfully treated via drug

every month (qDuDi); if immunity is temporary (! > 0), a fraction of the recovered will leave this compartment.

The number of recovered individuals in Jurisdiction i thus changes according to

Ṙi = �Ii + qV uVi + qDuDi � !Ri. (4)

Note that at any instant in time, we have that Ni = Si +Ei + Ii +Ri, which in turn implies that the growth of the

population over time is

Ṅi = �'Ii. (5)

We have omitted natural births and deaths due to the short time frame of our model. We also assume the population

is closed, or that there is no exogenous importation of infected individuals (see for example Sivaraman et al., 2020,

for an example applied to COVID-19) meant to mimic the fact that international travel has reduced dramatically
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since the start of the pandemic (World Tourism Organization, 2020). See Appendix A for more details about the

parameterization of the epidemiological model.

Figure 1: This schematic shows the model interventions and disease transmission pathways for our model of COVID-
19. The full lines represent the transition between, or out of, compartments while the dotted lines represent contact
between susceptible and infected individuals. Black lines represent situations that do not vary, while yellow lines
represent key factors that we vary in our model to see how they impact our results. The green lines represent the
pharmaceutical interventions and the red line represents mortality.

2.3 Modelling Ad Hoc Allocations

We model ad hoc allocation rules that favor “speed and workability.” For vaccines, we follow the NASEM approach

and impose that the allocation is based on relative population sizes. Specifically, the rule for Jurisdiction i is that

uVi 
✓

Ni

N1 +N2

◆
ūV (6)

where ūV is the limited amount of vaccine available for both jurisdictions. When the population sizes are the same,

the ad hoc rule will divide equally the limited doses to the two jurisdictions.

For drugs, the ad hoc rule is where the quantity of treatment allocated is proportional to the number of infected

individuals. Specifically, the rule for Jurisdiction i is that

uDi 
✓

Ii
I1 + I2

◆
ūD (7)
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where ūD is the limited amount of drug available for both jurisdictions. In general, as the level of infected individuals

in the populations approaches zero, this formulation could lead to numerical instability. Given that this outcome

is unlikely for COVID-19 and that we are considering very short time horizons in this analysis (months), we utilize

this formulation.

In the ad hoc scenarios, we model both rules as an inequality because towards the end of the horizon after periods

of vaccinations (or drug treatments), the level of susceptible (or infected) in the population may be such that the

limited supply of vaccines (or drugs) is not an issue. Other ad hoc rules are possible, such as, allocate all to the

largest or smallest population (Dangerfield et al., 2019), but we concentrate on the ones currently being advocated

for by NASEM.

2.4 Model of Economic Costs

The model of economic costs include damages related to morbidity and deaths, costs spent on the drugs or vaccines,

and the workability cost described above that is incurred for any deviation from the ad hoc allocation rule. Damages

represent consequences related to a temporary disability associated with severe or critical symptoms, and loss of

life in the worst cases. The damages are assumed to be linear and additively separable across jurisdictions, and

the marginal value of damages is assumed to be constant over time and given by the value of a statistical life that

the U.S. Environmental Protection Agency (EPA) uses (see Appendix A for more details on the parameterization).

Damages incurred from a temporary disability associated with severe or critical symptoms can be compared to

deaths via some disability weight w; given the World Health Organization (WHO) has not yet published disability

values associated with COVID-19, following the literature (see for instance Nurchis et al., 2020), we use the disability

value associated with lower respiratory tract infections. The damage function for Jurisdiction i is

ci(Ii) = (w + ')cIi (8)

where c is the damage parameter associated infectious individuals (i.e., the value of a statistical life; henceforth

VSL).

We model a scenario where the central planner is focused on the allocation where the costs for the development

of an e↵ective drug or vaccine have already been incurred. This implies that these costs are sunk and do not

a↵ect the decision of the central planning agency. We model the cost of the pharmaceutical intervention as linear,

where the cost parameter represents the cost of treating one individual. The cost function of the pharmaceutical

intervention is denoted cKi(·), with K = D,V and i = 1, 2, and where the arguments of the function depend on

whether a vaccine or a drug is developed and becomes available. We assume that the cost of the pharmaceutical

intervention is additively separable across jurisdictions such that we denote the cost of treating uKi individuals,
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with uKi = uVi , uDi , as

cKi(uKi) = cKuKi for K = D,V and for i = 1, 2, (9)

where cK represents the cost of treating one individual via drug (K = D) or vaccine (K = V ). Calibration of the

cost parameters are based on current expectations of the costs of drugs and vaccine prices (see Appendix A for

more details about the parameterization of the economic model).

We assume that the central planning agency incurs a workability cost representing the social (transaction) costs of

deviating from the ad hoc allocation rule (for another application of this concept, see Ryan et al., 2017). For drugs,

the workability cost function is:

cA(uD1 , uD2 , I1, I2) = cA

 ✓
I2

I1 + I2

◆
uD1 �

✓
I1

I1 + I2

◆
uD2

!2

(10)

while for vaccines, the workability cost function is:

cA(uV1 , uV2 , N1, N2) = cA

 ✓
N2

N1 +N2

◆
uV1 �

✓
N1

N1 +N2

◆
uV2

!2

(11)

where cA is the parameter associated with the workability cost. When the gains from deviating from the ad hoc

allocations (i.e. a reduction in damages in one jurisdiction) outweigh the costs (i.e. an increase in damages in

the other jurisdiction and the increased workability costs incurred), the central planning agency will prioritize this

allocation as it will lead to lower total costs. By imposing the ad hoc rules ex ante, the decision-maker is essentially

assuming that this workability cost is infinite. Everything else being equal, we expect that the presence of the

workability cost will push the optimal allocation towards the ad hoc rules (see Figure A13 for a sensitivity analysis

of our results to the workability cost parameter when the intervention is an antiviral drug and see Figure A25 for a

sensitivity analysis of our results to the workability cost parameter when the intervention is a vaccine). Therefore,

when we do find deviations, we need to consider that these include this workability cost and if these costs do not

exist, then the deviations and trade-o↵s would be greater.

2.5 Planner’s Objective

In optimal control theory, the best, or optimal, path of the control variables (here the allocation of the limited

supply of vaccines and drugs) is conditional on the objective of the central planning agency. We assume that the

objective is to minimize the economic damages and the costs of the pharmaceutical intervention across jurisdictions

over time, rather than a solely epidemiological objective (see for instance Rowthorn et al., 2009). The objective

function is the net present value of damages, expenditures related to the pharmaceutical intervention, and the
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workability cost over an exogenously determined planning horizon (4 months). Specifically, the planner’s objective

is:

min
uK1 ,uK2

Z T

0
e�rt

n
c1(I1) + c2(I2) + cK1(uK1) + cK2(uK2) + cA(·)

o
dt (12)

where K = D or K = V , and r is monthly discount rate. The planner solves Eq. (12) over a fixed time interval, T ,

subject to Eqs. (1), (2), (3), (4), (5), along with constraints on availability of the drug or vaccine (uD1 + uD2  ūD

or uV1 + uV2  ūV ), non-negativity conditions, physical constraints on controls, initial disease burdens in each

jurisdictions, and free endpoints. In the ad hoc scenarios, we also impose Eq. (6) for vaccines, and Eq. (7) for

drugs. We consider the pharmaceutical interventions separately, that is, we consider the allocation of a vaccine

where an antiviral drug does not exist and vice versa. In ongoing work, we consider the joint allocation question

when both pharmaceutical interventions exist simultaneously.

2.6 Initial and Terminal Conditions

The disease burden in each jurisdiction at the beginning of the time horizon (i.e. in t = 0 when the vaccine or drug is

licensed) is calibrated using the epidemiological model (Eqs.(1), (2), (3), (4), (5)). At the beginning of the outbreak,

we assume that, in each jurisdiction, there is one exposed individual in an otherwise entirely susceptible population

of 10 million individuals, and that populations of the di↵erent jurisdictions comply with the travel restrictions. The

only di↵erence between the two jurisdictions is that the outbreak started one week earlier in State 2. We simulate

the outbreak for approximately nine months to yield the initial conditions; see Appendix B for more details.

We impose no conditions on the number of susceptible, exposed, infected, and recovered individuals at the end of

the planning horizon; in technical terms, we say that the state variables are free (see Appendix B for more details).

Under our free endpoint conditions, there is a transversality condition for each state variable that requires the

product of the state variable and its corresponding costate variable (i.e. the shadow value, or cost, associated with

the state variable) is equal to zero. Hence, at the end of the time horizon, either the state variable equals zero, the

shadow value associated with the state variable equals zero, or both. In any case, allowing state variables to be free

guarantees that the terminal levels of the state variables are optimally determined. Another possible assumption

could be that over a fixed interval we find the optimal policy such that at the end of the horizon there is a given

percent reduction in infected or susceptible individuals. Our approach nests this more restricted scenario.

3 Results

To examine the optimal allocations of vaccine and antiviral drug over time, we numerically solve the optimal control

problem across five di↵erent scenarios: no controls, optimal drug allocation, ad hoc drug allocation, optimal vaccine

10
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allocation, and ad hoc vaccine allocation. We investigate how to allocate vaccines and drugs by mapping out the

di↵erent allocation rules for di↵erent immunity–travel restrictions–capacity scenarios. Any deviation from the ad

hoc allocation rule is optimal despite incurring the workability cost. As the workability cost parameter cA goes to

zero, the problem becomes linear in the controls where the optimal allocations in linear problems follow singular

solutions. We use pseudospectral collocation to solve for the optimal dynamics of vaccine or drug and infection

over time, which converts the continuous time optimal control problem into a constrained non-linear programming

problem solving for the coe�cients of the approximating polynomials at the collocation nodes (see Castonguay

et al., 2020; Kling et al., 2016, for other applications, and see Appendix B for more details on this technique).

We present the results for our preferred specification of the parameters (see details in Appendix A) and for the

case where immunity is permanent and the case where immunity is temporary. We detail the optimal deviation

based on whether the pharmaceutical intervention is a drug or a vaccine, whether the populations of the di↵erent

jurisdictions are compliant to travel restrictions or not, and for di↵erent levels of capacity constraints. The total

available quantity of vaccine or drug in a given time period (i.e. a month; ūD for drugs and ūV for vaccines) is

based on a certain percentage (5%, 10%, or 15%) of the maximum level of infections in an uncontrolled outbreak

(for drugs), and on a certain percentage (5%, 10%, or 15%) of the total population size (for vaccines). We focus our

analysis on the period of time when the scarcity of the vaccine or drug constraint is binding, as once the constraint

relaxes the allocation question becomes moot.

3.1 Allocation of Drugs

Regardless of whether the populations are compliant to travel restrictions, drugs should preferentially be directed

towards the region that has the lower level of infection, when immunity is permanent (see Figure 2 Panel A for

when there is compliance to travel restrictions). A similar counterintuitive result was found by Rowthorn et al.

(2009). When immunity is temporary, however, the allocation of drugs initially favors the more infected state

before switching back to the initially less infected state (see Figure 2 Panel B for when there is compliance to travel

restrictions). This result concurs with the findings of Mbah and Gilligan (2011) which states that treatment should

be allocated in a way that equalizes infection levels across jurisdictions as quickly as possible. When populations

are non-compliant with travel restrictions, the mixing of the population leads to the “Rowthorn et al. (2009)”

dominating the “Mbah and Gilligan (2011)” e↵ect at higher levels of drug scarcity. Specifically, we find that the

initially less infected state is favored by the optimal allocation (see Figure 3; the optimal allocation of drugs favors

State 2 in Panel A, but it favors State 1 in Panel B). Noncompliance to travel restrictions does not a↵ect qualitatively

the allocation when there is permanent immunity (see Figure A1; Panel A is qualitatively similar to Panel B).
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Figure 2: Permanent vs temporary immunity with compliance to travel restrictions. Change over time
in the optimal and ad hoc allocations (panels A and B) and the corresponding infection levels (panels C and D)
for State 1 (in blue, the initially lowest-burdened state) and State 2 (in red, the initially highest-burdened state)
depending on whether immunity is permanent (panels A and C) or lasts six months (panels B and D) for the
case where the pharmaceutical intervention is an antiviral drug, the drug capacity constraint is 10%, and there is
compliance to travel restrictions.

Our findings imply that policy-makers governing in jurisdictions that comply with travel restrictions should change

their allocation of drug treatment if immunity to COVID-19 turns out to be temporary (see Figure 2). When there

is noncompliance to travel restrictions, the mixing of the populations mitigates the impact of the system’s structural

heterogeneity in terms of initial disease burden, and the e↵ect of the temporary immunity has a small impact when

drug capacity is low (see for example Figure A6 for when drug capacity is 5%). At higher drug supplies, temporary

immunity does not qualitatively a↵ect the result (e.g. 10%, see Figure A7).
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Figure 3: Temporary immunity with and without compliance to travel restrictions. Change over time
in the optimal and ad hoc allocations (panels A and B) and the corresponding infection levels (panels C and D)
for State 1 (in blue, the initially lowest-burdened state) and State 2 (in red, the initially highest-burdened state)
depending on whether there is compliance to travel restrictions (panels A and C) or not (panels B and D) for the
case where the pharmaceutical intervention is an antiviral drug, the drug capacity constraint is 10%, and immunity
lasts six months.

Over the range we consider, an increase in the capacity constraint has a minimal impact on the drug allocation.

Only when there is compliance to travel restrictions and a su�ciently high capacity does the optimal allocation

move o↵ of extreme cases where all the allotment is given to one state for a period of time (see Figure A2 and Figure

A4, Panel C). In all of the other cases, there is a period of time where all the allotment of drugs goes optimally to

one jurisdiction.

In all scenarios we consider, one state will have lower cumulative damages and one state will have higher cumulative

damages as a result of the optimal allocation (see Figure 4 panels A, B, C, and D for the relative di↵erence and

panels E, F, G, and H for the absolute di↵erence; one full line is below its dotted line while one full line is above its

dotted line). Compared to the ad hoc allocation, the state with initially more infected individuals is worse o↵ as a

result of the optimal allocation in all cases except the one where immunity is temporary and populations comply

with travel restrictions (this is due to the e↵ect identified by Mbah and Gilligan, 2011; see Figure 4). Importantly,

whether the decision-maker chooses to employ the ad hoc rule or the optimal rule, the e↵ect of drugs on cumulative

disease burden is considerably smaller when populations are noncompliant with the travel restrictions put in place;
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this shows the importance of compliance to such nonpharmaceutical interventions (see Figure 4, and also figrues

A8 and A9 in the appendix).

Figure 4: Epidemiological outcomes under di↵erent scenarios with antiviral drug. Cumulative relative
di↵erence (panels A, B, C, and D) and cumulative absolute di↵erence per 1M people (panels E, F, G, and H)
between the number of infections in di↵erent allocations rules and the no-drug case for di↵erent immunity–travel
restrictions scenarios and for when drug capacity is 10%.

Two key parameters in our analysis are the scale of the workability cost (cA in Eq. 10) and level of drug e↵ectiveness.

While imposing the ad hoc rules ex ante implicitly means that the cost of deviating from the ad hoc allocation is

infinite, in practice it is likely finite but hard to quantify, as it depends on logistical, political, and cultural factors.

We investigate the sensitivity of our results by solving for optimal drug allocation over a range of values. We find

that the deviation from the ad hoc allocation is stable for a wide range of the workablity cost parameter (Figure

A13, panel A, B, C, and D), and that the optimal allocation will converge towards the ad hoc when the workability

cost is in the neighborhood of the VSL (c in Eq. 8 and Figure A13 black line represents the VSL).

The base case e↵ectiveness of the antiviral drugs is set based on a low “clinically meaningful” value (for more details

see Appendix A). To better understand the impact of this key parameter on our results, we investigate a range of

values. Overall, the deviation between the optimal and ad hoc is relatively stable, as evident by the scale of changes

(in blue; Figure A14 Panels A-D). When there is non-compliance to travel restrictions, we find that higher levels

of e↵ectiveness increase the variance in the deviation between the optimal and ad hoc (in blue; Figure A14 panels
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B and D). However, the relationship between optimal and ad hoc is more complicated when there is compliance,

which recall corresponds to a lower Ro. Here we find a non-linear response (in blue; Figure A14 Panels A and C).

In all cases, higher e↵ectiveness means a larger di↵erence in terms of cumulative cases between the optimal and ad

hoc (in red Figure A14 Panels A-D).

3.2 Allocation of Vaccines

Compliance to travel restrictions impacts the optimal allocation of vaccines, regardless of whether immunity is

temporary or permanent and regardless of the amount of vaccine available. Noncompliance to travel restrictions

reduces both the oscillation of the optimal allocation and the amplitude of the deviations from the ad hoc rule

(see Figure 5 for when immunity is permanent, and see Figure A15 for when immunity is temporary). Because

noncompliance to travel restrictions decreases the structural heterogeneity in the system, the optimal allocation

of vaccine converges towards the ad hoc allocation when populations mix with each other. This result clearly

demonstrates how the performance of the allocation rule is dependent on how citizens in the jurisdictions comply

with nonpharmaceutical interventions.

Figure 5: Vaccine allocation with and without compliance to travel restrictions. Change over time in the
optimal and ad hoc allocations (panels A and B) and the corresponding infection levels (panels C and D) for State
1 (in blue, the initially lowest-burdened state) and State 2 (in red, the initially highest-burdened state) depending
on whether there is compliance to travel restrictions (panels A and C) or not (panels B and D) for the case where
the pharmaceutical intervention is a vaccine, the vaccine capacity constraint is 10%, and immunity is permanent.
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Noncompliance to travel restrictions leads to the initially less infected state being favored by the optimal allocation

for low levels of vaccine capacity (e.g. 5% capacity; see Figure 6 Panel A for when immunity is permanent and

Figure A18 Panel A for when immunity is temporary). On the other hand, the more infected state will be prioritized

at the beginning of the time horizon for a very short period of time when vaccine capacity is larger (e.g. 10% or

15% capacity; see Figure 6 panels B and C for when immunity is permanent and Figure A18 panels B and C for

when immunity is temporary). More generally, regardless of whether or not populations are compliant with travel

restrictions, and regardless of whether immunity is temporary of permanent, a higher vaccine capacity implies that

relatively more of the supply will be given to the more infected state at the beginning of the time horizon (see

figures 6 and A16 for the case where immunity is permanent; see figures A17 and A18 for the case where immunity

is temporary).

Figure 6: Vaccine allocations under di↵erent levels of scarcity without compliance to travel restric-

tions. Change over time in the optimal and ad hoc allocations (panels A, B, and C) and the corresponding infection
levels (panels D, E, and F) for State 1 (in blue, the initially lowest-burdened state) and State 2 (in red, the initially
highest-burdened state) depending on whether capacity is 5% (panels A and D), 10% (panels B and E), or 15%
(panels C and F), for the case where the pharmaceutical intervention is a vaccine, immunity is permanent, and
there is no compliance to travel restrictions.

Interestingly, temporary immunity has a di↵erent e↵ect on the optimal vaccine allocation depending on whether or

not populations are compliant to travel restrictions. When populations comply with travel restrictions, temporary

immunity increases the oscillation of the optimal allocation because benefits from vaccination are only temporary,

16

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 19, 2021. ; https://doi.org/10.1101/2020.12.18.20248439doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.18.20248439
http://creativecommons.org/licenses/by/4.0/


and since the population gradually loses its immunity, it forces more back-and-forth movement of resources between

jurisdictions (see Figure A19). When populations do not comply with travel restrictions, temporary immunity

reduces the amplitude of the deviations from the ad hoc rule because it further dampens the structural heterogeneity

in the system, since the infection and recovery level of both jurisdictions will eventually reach the same positive

steady-state level (recall the only heterogeneity in the system is the initial disease burden in the base case).

While the optimal allocation of vaccine is unequal from a resource allocation perspective, the allocation equalizes

the current infection levels across jurisdictions (Figure 5 Panel A). As the vaccine capacity increases, however, the

ad hoc allocation rule performs better that in turn decreases the amplitude of the optimal deviation (see Figure A16

panels A, B and C, or Figure A17 panels A, B, and C). These optimal cost-minimizing deviations that lead to equal

current infection levels across jurisdictions towards the end of the time horizon imply that the optimal cumulative

number of cases is more unequal than in the ad hoc allocation (Figure 7). Hence, the optimal allocation makes

current infection level more equal, while ad hoc allocation makes cumulative infection more equal. In fact, in all

scenarios considered, the optimal allocation will lead to lower cumulative damages in the less infected jurisdiction

but higher cumulative damages in the most infected jurisdiction (see Figure 7 with vaccine capacity is 10%, and

see figures A21 and A22 with vaccine capacity is 5% and 15%, respectively).

Figure 7: Epidemiological outcomes under di↵erent scenarios with vaccines. Cumulative relative di↵erence
(panels A, B, C, and D) and cumulative absolute di↵erence per 1M people (panels E, F, G, and H) between the
number of infections in di↵erent allocations rules and the no-vaccine case for di↵erent immunity–travel restrictions
scenarios and for when vaccine capacity is 10%.

17

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 19, 2021. ; https://doi.org/10.1101/2020.12.18.20248439doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.18.20248439
http://creativecommons.org/licenses/by/4.0/


Similar to the drug case, we investigate the impact of the scale of the workability cost (cA in Eq. 11) and level

of vaccine e↵ectiveness (see Appendix C for more details). We find greater deviations o↵ of the ad hoc at lower

workability costs resulting in greater di↵erences in cumulative cases, and smaller deviations as the workability

cost parameter increases (Figure A25 panels A, B, C, and D). Specifically, we find that when the cost is in the

neighborhood of the VSL (c in Eq. 8 and Figure A25 black line represents the VSL), that the planner no longer

deviates from the ad hoc.

The base case parameter for vaccine e↵ectiveness we utilized in the paper is based on estimates of the influenza

vaccine (Ohmit et al., 2014, see Appendix A for more details). Recent evidence from the COVID-19 vaccines suggest

that e↵ectiveness could be considerably higher. We find that the more e↵ective a vaccine is, the more a central

planner would want to deviate from the ad hoc allocation (in blue; Figure A26 panels A, B, C, and D). As a result

of this greater deviation, we see a larger di↵erence in terms of the reduction in cumulative cases (in red; Figure A26

panels A, B, C, and D).

3.3 Robustness of Spatial Allocations

Given significant uncertainty associated with the duration of immunity (i.e. if it is permanent or temporary), or to

what extent populations comply with travel restrictions, we compare the robustness of the optimal spatial allocation

to the ad hoc. By definition, the optimal allocation minimizes the net present value of the economic damages and

expenditures related to both the intervention and deviations from the ad hoc allocation, and thus cannot do worse

on these dimensions than the ad hoc allocation. We measure robustness by first inserting the optimal solution under

one set of assumptions into the disease dynamics under another set and compute the changes in total expenditures

(i.e. the pharmaceutical intervention and the workability cost) and public health outcomes (cumulative cases) over

time. We then calculate the distance of these changes in percentage terms to the optimal solution derived under the

“correct” assumptions (represented by the point (0, 0) in Figure 8). For example, suppose immunity is permanent

and there is perfect compliance to a travel restriction. We derive the optimal policy under these assumptions

and use it to measure the robustness of the optimal policies that are derived under assumptions that immunity is

temporary and/or noncompliance. The ad hoc policies being based on observable factors are then compared to the

incorrectly applied optimal policies. We illustrate the case for 10% scarcity of vaccines and include the drug and

other scarcity cases in Appendix C.

For vaccine allocations, we find overall that immunity length has a lesser impact on both economic and epidemio-

logical outcomes than compliance to travel restrictions (compare the distance from the origin between the plusses

and the stars in Figure 8). There are more nuanced trade-o↵s, however (e.g. compare position of the stars across

the panels in Figure 8). Across the economic dimension (expenditures), for example, we find that assuming com-

pliance when in fact there is very little leads to greater expenditures. Recall by design, the ad hoc allocations have
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lower expenditures than the optimal policies because the central planner is not incurring the workability costs from

deviating o↵ of the allocation. At the same time, greater cumulative cases result when the opposite holds, that is,

assuming no compliance when in fact there is compliance. We also see that in some instances that the combined

e↵ect of incorrectly assuming the wrong immunity and compliance can o↵set some deviations (e.g. see Figure 8

Panel C) while in other cases the results are dominated by non-compliance. Finally, when there is compliance

to travel restrictions the ad hoc allocation performs worse than any of the optimal allocations, while the ad hoc

allocation performs relatively well when there is no compliance to travel restrictions. Varying the level of scarcity

does not change the qualitative nature of results (see figures A23 and A24 for when vaccine capacity is 5% and

15% respectively), except for one anomaly where the ad hoc does not always perform worse under assumptions on

compliance to travel restrictions (Figure A24).

Figure 8: Robustness of epidemiological and economic outcomes under di↵erent scenarios with vac-

cines. Percentage change in expenditures (y-axis) and percentage change in cumulative cases (x-axis) from the
optimal allocation for di↵erent immunity–travel restrictions scenarios and for when vaccine capacity is 10%. The
x-axis represent small percentage changes but when scaled up to population level e↵ects translate into significant
di↵erences in public health outcomes.

For drug allocations, the optimal allocations are generally not robust to incomplete information and perform worse

than the ad hoc allocations (see figures A10, A11, and A12 for when drug capacity is 5%, 10%, and 15% respectively).

Recall that the ad hoc in this case is based o↵ of level of infected individuals in each jurisdiction, which changes

over time, and captures the disease burden well. We find that when populations are compliant to travel restrictions
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and drug capacity increases, the optimal allocation converges towards the ad hoc allocation (see Figures A2 and

A4). This implies that the ad hoc performs better as drug capacity increases. But this result only holds when

populations comply to travel restrictions.

When populations do not comply to travel restrictions yet drugs are allocated as if there is compliance, the optimal

drug allocation gets less robust as supply increases (figures A10-A12 Panel C). When populations are noncompliant

to travel restrictions, the transmission of the disease is considerably higher, which increases the basic reproduction

ratio. In this case regardless of the allocation rule, the e↵ect that the drug treatment has on the infection rate is

relatively smaller (i.e., treating 1% of the population when 3% is infected does not have the same overall impact as

treating 1% of the population when 10% is infected). Hence, the gains of switching from the ad hoc to the optimal

allocation are relatively smaller when there is noncompliance to travel restrictions.

4 Conclusion

Recent studies have discussed how a future vaccine against the coronavirus disease (COVID-19) should be allocated

on a global scale (see for instance Emanuel et al., 2020b; Liu et al., 2020; World Health Organization and others,

2020; Yamey et al., 2020) and within a geographical area (see for instance Buckner et al., 2020; Emanuel et al., 2020a;

Roope et al., 2020). Building o↵ the spatial-dynamic literature in epidemiology, we contribute to this body of work

by addressing the question of distributing a scarce COVID-19 vaccine and antiviral drug across smaller geographic

areas, such as counties, regions, or states. The U.S. National Academies of Sciences, Engineering, and Medicine

(2020) recommends to allocate a future vaccine against COVID-19 based on the jurisdictions’ population size. In

this paper, we show the potential economic and public health benefits of deviating from an ad hoc allocation rule,

which in turn provides policymakers with information on the trade-o↵s involved with di↵erent allocations. There

are many factors that come into play in these allocation decisions and the methodology proposed here provides a

way to benchmark these rules to illustrate the trade-o↵s. Other methodologies that do not solve for the optimal

policies are left to benchmark one set of ad hoc rules against another, where the set of possible ad hoc rules is

infinite.

We considered several di↵erent scenarios where the length of immunity, the compliance to travel restrictions, and the

capacity constraint are varied. In most of these scenarios, we find that priority should be given to jurisdictions that

initially have lower disease burden. The intuition behind this result—already put forward by Rowthorn et al. (2009)

when investigating optimal control of epidemics in a scenario where no immunity to the disease is developed—is

that the priority should be to protect the greater population of susceptible individuals, and that focusing on a

subset of the population, rather than on the entire population, can make a significant di↵erence (Duijzer et al.,

2018). We find that temporary immunity can lead to the opposite allocation, which is consistent with the findings

in Mbah and Gilligan (2011).
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We also show the value of complying to a travel restriction, as compliance leads to lower cumulative damages across

both jurisdictions, regardless of whether the pharmaceutical intervention is a vaccine or a drug, and regardless

of whether immunity is permanent or temporary. The reduction in cumulative damages is particularly important

for the jurisdiction with fewer infected individuals. Considering nonlinear damages due to an overload of health

care systems (Verelst et al., 2020) and a corresponding varying death rate due to scarce intensive care unit beds

(Acemoglu et al., 2020), and other second-order problems such as consumption losses (Andersen et al., 2020;

Baker et al., 2020b; Coibion et al., 2020), excess mortality (Vestergaard et al., 2020), and psychological distress

(Pfe↵erbaum and North, 2020) could further highlight the benefits of complying to travel restrictions.

Despite having to pay a workability cost for deviating from the ad hoc allocation, we show that it is still in the

interest of the central planning agency (e.g. the federal government) to deviate from this rule of thumb; this result

holds in all scenarios we considered in our analysis. We considered ad hoc allocation rules that favor “speed and

workability” (National Academies of Sciences, Engineering, and Medicine, 2020). Other allocation rules are possible.

For instance, in our model we assumed identical contact rates across jurisdictions. In turn, this implied that the

movement within a given jurisdiction is assumed to be identical across jurisdictions. In practice, population mobility

likely di↵ers from one jurisdiction to another and an ad hoc allocation could be based on population mobility and

contact structure. The methodology employed in this paper can investigate the trade-o↵s of other ad hoc rules and

as a result, can o↵er potentially important information to policymakers that face the challenge of allocating scarce

COVID-19 resources to their jurisdictions.

Extrapolating our results to the entire U.S. suggests that allocating a vaccine based on the ad hoc allocation rules

in this paper can have serious public health consequences. How many additional cases depends on several factors

including epidemiological (i.e. length of immunity), behavioral (i.e. compliance to travel restrictions), and logistical

(i.e. vaccine capacity) factors. In the United States alone and with 10 percent capacity, the increase in the number

of cases due to an allocation of a scarce COVID-19 vaccine based on the relative population size of the states could

imply as little as 28,000 additional cases, but according to our model this number could be as high as 1.03 million

additional cases. Fortunately, additional vaccine capacity in the range considered in the paper improves the relative

performance of the ad hoc allocation when there is compliance to travel restrictions, but at the same time, the

performance of the ad hoc allocation when there is noncompliance to travel restrictions is worsened. For instance,

when vaccine capacity is 5%, the range goes from 21,000 to 1.05 million additional cases, and when vaccine capacity

is 15%, the range goes from 34,000 to 950,000 additional cases. For antiviral drugs, a similar troubling result holds.

Allocating a low supply of a future antiviral drug based the relative number of infected individuals could imply as

few as 10, 000 additional cases but this number could increase to 2.4 million. Unfortunately, this problem does not

go away as drug supply increases, as a higher supply of antiviral drug would increase this range to between 37,000

and 2.9 million additional cases.
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There are however important factors that have received significant attention in the literature that we should fully

incorporate in future research. For example, the composition of our population is assumed to be homogeneous and

the populations across jurisdictions are assumed to have identical characteristics. In practice, however, the virus

disproportionately a↵ects elderly people (Verity et al., 2020) and people with pre-existing conditions (Ssentongo

et al., 2020). Also, the risk of infection is highly occupational dependent (Baker et al., 2020a). Further research

combining heterogeneity both across jurisdictions in the form of di↵erent disease burden and within jurisdictions

in the form of di↵erent risk of complications and risk of infection could add additional valuable insights into the

trade-o↵s inherent in these di↵erent allocations rules.
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A Parameterization

A.1 Epidemiological Model

According to Diekmann et al. (1990), the basic reproduction ratio R0 of any disease is given by the expected number
of secondary infection caused a by a typical infected individual over its entire infectious period, at a disease-free
equilibrium. In the most basic epidemiological model, the R0 is simply given by the contact rate multiplied by the
mean infectious period. When considering more complex models—as the two-state SEIR model in this paper—one
needs to use the next-generation matrix and find its dominant eigenvalue to find the R0 (Diekmann et al., 1990).
Denote two matrices by F and V , and let the ijth element in F represents the rate at which infected individuals
in population j produce new infections in population i, and the ijth element in V represents the transition rate
between (i 6= j), or out of (i = j), infectious compartments (Garchitorena et al., 2017); the next-generation matrix
is equal to �FV �1. In the model presented in this paper,

F =

0

BB@

0 �11 0 �12

0 0 0 0
0 �21 0 �22

0 0 0 0

1

CCA and V =

0

BB@

�� 0 0 0
� �(� + ') 0 0
0 0 �� 0
0 0 � �(� + ')

1

CCA

where the four rows of F and V refer to the E1, I1, E2 and I2 equations, respectively. Note that both matrices
F and V are derived under the assumption of introducing a single exposed individuals in an otherwise susceptible
population (for more details on how to construct the next-generation matrix in a SEIR model, see Diekmann et al.,
2010). Given we assume that �11 = �22 = �ii and �12 = �21 = �ij , the basic reproduction ratio of our model
simplifies to,

R0 =
�ii + �ij

� + '

for i = 1, 2, j = 1, 2, and i 6= j. We set the basic reproduction ratio R0 = 1.43, according to estimates of the R0

from Li et al. (2020) and using estimates of the e↵ect of nonpharmaceutical interventions on the R0 from Tian et al.
(2020). We assume a mean recovery period ( 1� ) of 5 days (Davies et al., 2020), and a case-fatality rate of 1.78%

(adjusted for misreporting, Abdollahi et al., 2020) to calibrate the rate of disease induced mortality, '. Parameters
�ii and �ij are then calibrated assuming what Tian et al. (2020) call a “medium e↵ect of the [nonpharmaceutical]
control” when there is compliance to travel restrictions, and a “lower e↵ect of the [nonpharmaceutical] control” when
there is no compliance to travel restrictions (for evidence of structural changes in mobility following the COVID-19
lockdown, see Schlosser et al., 2020); this yields R0 ⇡ 1.4 with compliance to travel restrictions, and R0 ⇡ 2.1 when
there is no compliance to travel restrictions. The mean latency period ( 1� ), which one needs to know to calculate
matrix V even though it does not appear in the basic reproduction ratio, is assumed to last 3 days (Davies et al.,
2020).

A.2 Economic Model

To quantify damages, we use the value of statistical life recommended by the Environmental Protection Agency.1

The disability weight2 associated with COVID-19 infection is assumed to be equivalent to a lower respiratory tract
infection, which is a disability weight of w = 0.133 on a scale from zero (perfect health) to one (death).3 This
disability weight thus allows for a comparison between the individuals that are infected with the disease but do not
die, and the individuals that die from its complications.

Expenditures related to the pharmaceutical intervention are based o↵ estimates of what a future drug or vaccine
could cost. For drugs our parameter value is based on the drug REGN-COV2—produced by the biotech company
Regeneron—that President Trump took after his positive diagnosis to COVID-19.4 For vaccines, numerous gov-
ernments around the world, including the U.S. federal government, have contracted biotech companies producing

1See “What value of statistical life does EPA use?” from the U.S. Environmental Protection Agency (2020).
2According to the World Health Organization: “A disability weight is a weight factor that reflects the severity of the disease

on a scale from 0 (perfect health) to 1 (equivalent to death).” See: https://www.who.int/healthinfo/global_burden_disease/daly_
disability_weight/en/.

3For more details on how COVID-19’s disability resembles lower respiratory tract infections, see Nurchis et al. (2020).
4The drug is expected to cost between $1,500 and $6,500 per patient; see: https://www.cbsnews.com/news/

what-is-regeneron-covid-antibody-cocktail-trump-covid-19/
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COVID-19 vaccines; governments pay money in exchange of a guaranteed number of doses of COVID-19 vaccines.
These estimates and the prices of current influenza vaccine turns out to be approximately 20 U.S. dollars per dose,
with two doses per individual; this is the value we chose in our analysis.5

The value of the workability cost6 is based on a certain proportion of the value of statistical life; in the base case,
we assume it to be 3 orders of magnitude smaller. All costs in the model are assumed to be discounted at a 1.5%
annual rate (see John et al., 2019, for a discussion about discounting health-related expenditures).

A.3 Parameter Levels

Table A1 below summarizes the main set of parameter values we used in the numerical simulation.

Parameters Level Definition

�ii 8.86 Transmission rate within a given state (month�1).7

�ij 4.36 Transmission rate across states (month�1).7

� 10.14 Rate at which infected individuals become infectious (month�1).8

� 6.08 Rate of recovery (month�1).8

! 0.17 Rate at which immunity is lost (month�1).9

' 0.11 Rate of disease induced mortality (month�1).10

w 0.13 Disability weight associated with the disease (unitless).11

qD 0.65 E�ciency of drugs (proportion).12

qV 0.65 E�ciency of vaccines (proportion).13

r 0.0013 Discount rate (month�1).14

cD 1,500 Cost of treating one individual via drugs (US Dollars).15

cV 40 Cost of treating one individual via vaccine (US Dollars).16

cA 10⇥ 103 Workability cost (US Dollars).17

c 10⇥ 106 Value of statistical life (US Dollars).18

Table A1: Parameter levels used in the numerical simulation.

5For COVID-19 vaccine prices, see: https://www.npr.org/sections/health-shots/2020/08/06/899869278/
prices-for-covid-19-vaccines-are-starting-to-come-into-focus. For a comparison with influenza vaccine prices, see
https://www.cdc.gov/vaccines/programs/vfc/awardees/vaccine-management/price-list/index.html.

6Inspired by the paper of Ryan et al. (2017) where the authors show the implications of policy adjustment costs for fisheries
management
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B Optimization

B.1 Boundary Conditions

To yield the initial conditions of the optimal control problem, we calibrated the model using the above parameter
values and simulated out a COVID-19 outbreak in two identical jurisdictions, where we assumed there was one
exposed individual in an otherwise entirely susceptible population of 10 million individuals. We assumed that both
jurisdictions undertook nonpharmaceutical interventions that had a “medium e↵ect” on the basic reproduction ratio
(Tian et al., 2020) (i.e. that there was perfect compliance to travel restrictions). After simulating out the disease
dynamics for a period of eight months and two weeks, and eight months and three weeks for Jurisdiction 1 and
Jurisdiction 2 respectively, the initial conditions yield were:

Jurisdiction Ni Si Ei Ii Ri

Jurisdiction 1 1 0.9074 0.0103 0.0143 0.0667
Jurisdiction 2 1 0.8662 0.0138 0.0196 0.0986

Table A2: Initial conditions of the numerical simulation.

We assume that the terminal conditions (i.e. the conditions on state variables in t = T , the final time period) are
free to be optimally determined. Formally, the initial and terminal conditions of the ten state variables are such
that:

Si(0), Ei(0), Ii(0), Ri(0), and Ni(0) are given for i = 1, 2; (A1a)

Si(T ), Ei(T ), Ii(T ), Ri(T ), and Ni(T ) are free for i = 1, 2. (A1b)
7Calibrated using a R0 estimate from Li et al. (2020) and estimates of e↵ects of nonpharmaceutical interventions from Tian et al.

(2020); this yields a R0 of approximately 1.4 when there is compliance to travel restrictions and to match a R0 of approximately
2.1 when there is no compliance to travel restrictions; these two values representing respectively a “medium” and “low” e↵ect of the
nonpharmaceutical intervention.

8Using estimates from Davies et al. (2020); this represents a 3-day latency period and a 5-day recovery period.
9Representing a 6-month immunity period in the scenarios where we assume immunity is not permanent; based on Edridge et al.

(2020).
10Calibrated by using a case-fatility rate of 1.78% (adjusted for mis- and under-reporting; see Abdollahi et al., 2020).
11Representing the disability associated with severe lower respiratory tract infections because, to our knowledge, there are no o�cial

disability estimates associated with COVID-19; see Nurchis et al. (2020).
12According to the U.S. Department of Health and Human Services, Food and Drug Administration (FDA), Center for Biologics

Evaluation and Research (CBER), and Center for Drug Evaluation and Research (CDER) (2019), there is no required e↵ectiveness
for a newly developed drug, however, what is necessary is that: “it is well established that the e↵ect shown in the adequate and
well-controlled clinical investigations, must be, in FDA’s judgment, clinically meaningful.” As a result, and to be consistent across both
types of pharmaceutical interventions, we assume in the base case the e↵ectiveness of the drug is 0.65.

13Following Buckner et al. (2020), we base this parameter value on the e�ciency of the influenza vaccine (see Ohmit et al., 2014). Note
that the U.S. Department of Health and Human Services, Food and Drug Administration (FDA), and Center for Biologics Evaluation
and Research (CBER) (2020) requires that a future COVID-19 vaccine must have an e↵ectiveness of at least 50%.

14Based on results from John et al. (2019) that suggest a yearly discount rate between 0.3% and 1.5% for health related expenditures;
we chose a 1.5% annual discount rate in the main set of results. This gives a monthly discount rate of r = 0.0013.

15Based on current expectations of the costs of REGN-COV2, the medicine produced by Regeneron that President Trump took
following his COVID-19 diagnosis. According to information from U.S. Food and Drug Administration (FDA), CBS News, and Re-
generon, the drug is expected to cost between $1,500 and $6,500 depending on the exact number of doses required by a patient; see:
https://www.cbsnews.com/news/what-is-regeneron-covid-antibody-cocktail-trump-covid-19/.

16Assuming an individual requires two doses; based on current agreements between the U.S. federal
government and biotech companies; see https://www.npr.org/sections/health-shots/2020/08/06/899869278/
prices-for-covid-19-vaccines-are-starting-to-come-into-focus. For a list of current vaccine prices, and particularly the price
of the influenza vaccine, see https://www.cdc.gov/vaccines/programs/vfc/awardees/vaccine-management/price-list/index.html.

17Value based on a certain proportion of the value of statistical life, c; in the base case we assume it is 2 orders of magnitude smaller.
18Represents a value of statistical life of 10M U.S. dollars. Based on the value of a statistical life that the U.S. Environmental

Protection Agency (2020) uses: approximately $7.4 million ($2006) which is equivalent to approximately $9.54 million ($2020).

31

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 19, 2021. ; https://doi.org/10.1101/2020.12.18.20248439doi: medRxiv preprint 

https://www.cbsnews.com/news/what-is-regeneron-covid-antibody-cocktail-trump-covid-19/
https://www.npr.org/sections/health-shots/2020/08/06/899869278/prices-for-covid-19-vaccines-are-starting-to-come-into-focus
https://www.npr.org/sections/health-shots/2020/08/06/899869278/prices-for-covid-19-vaccines-are-starting-to-come-into-focus
https://www.cdc.gov/vaccines/programs/vfc/awardees/vaccine-management/price-list/index.html
https://doi.org/10.1101/2020.12.18.20248439
http://creativecommons.org/licenses/by/4.0/


B.2 Nonnegativity and Upper-Bound Constraints

State variables Si, Ei, Ii, Ri, and Ni for i = 1, 2 are subject to nonnegativity and physical constraints. Formally:

0  Si  Ni  1 for i = 1, 2; (A2a)

0  Ei  Ni  1 for i = 1, 2; (A2b)

0  Ii  Ni  1 for i = 1, 2; (A2c)

0  Ri  Ni  1 for i = 1, 2; (A2d)

Si + Ei + Ii +Ri = Ni  1 for i = 1, 2. (A2e)

Control variables are modelled as direct controls (see examples in Barrett and Hoel, 2007; Goldman and Lightwood,
2002; Rowthorn et al., 2009) and can be interpreted as a reduction in the number of infected individuals (for drugs)
or susceptible individuals (for vaccines) in a given time period (i.e. a month). Formally, the constraints on the
control variables are given by:

0  uDi  Ii for i = 1, 2; (A3a)

0  uVi  Si for i = 1, 2. (A3b)

Because of a limited supply of drugs and vaccines (see details below), the physical upper-bound on constraints
(A3) will only be binding when capacity constraint is nonbinding. When this occurs, it means that there are fewer
infected individuals than there are available drugs, or fewer susceptible individuals than there are available vaccines.

B.3 Capacity Constraints of the Pharmaceutical Interventions

For completeness, we also include the capacity constraints already mentioned in the main paper. In addition to the
physical constraints on the control variables, the aim of our paper is to study how to allocate limited supplies of a
newly licensed vaccine or drug, before the supply has had a chance to ramp up. Hence, the control variables are
also subject to

uD1 + uD2  ūD; (A4a)

uV1 + uV2  ūV ; (A4b)

when the central planning agency decides to potentially deviate from the ad hoc allocation of vaccine or drug.
Conversely, the ad hoc constraints are:

uDi 
✓

Ii
I1 + I2

◆
ūD for i = 1, 2; (A5a)

uVi 
✓

Ni

N1 +N2

◆
ūV for i = 1, 2. (A5b)

As mentioned in the main paper, the total available quantity of vaccine or drug (ūD for drugs and ūV for vaccines)
represents a certain percentage (5%, 10%, or 15%) of the maximum level of infections in an uncontrolled outbreak
(for drugs), and on a certain percentage (5%, 10%, or 15%) of the total population size (for vaccines).

B.4 Numerical Methods

Pseudospectral collocation approximates the continuous time optimal control model with a constrained nonlinear
programming problem (see Castonguay and Lasserre, 2019; Castonguay et al., 2020; Kling et al., 2016; Sanchirico
and Springborn, 2011, for other applications of this technique). The dynamic controls to our problem—i.e. the
drug and vaccine—are approximated by a polynomial of degree n (determined by the number of collocation points)
over a period from t = 0 (date at which the vaccine or drug is licensed) to t = T (assumed to be four months
after the vaccine or drug is licensed) (Garg et al., 2010). The residual error of the constraints is minimized by the
algorithm at the n collocation points, where n is chosen to have a reasonable speed of convergence to a solution and
a low numerical error. Here, we chose 60 collocations points. In this sort of problem, the main advantage of this
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approach over more usual methods to solve such two-point boundary problems, such as shooting methods, is that
nonnegativity constraints (e.g. on the number of infected individuals) and upper-bound constraints (mimicking e.g.
drug or vaccine capacity constraints) on state and control variables can be directly incorporated in the problem
(Judd, 1998). This method thus allows us to find optimal solutions that may lay on the boundary of the control
set for a certain period of time. For drugs and vaccines to fight COVID-19, this is likely due to the scarcity of
the supply of vaccine and drugs in the short-term. Another advantage of this method is the ability to deal with
large-scale dynamical systems, such as the one presented here with ten state variables and four control variables.
The solution was found using TOMLAB (v. 8.4) (Holmström, 2001; Holmström et al., 2008) and the accompanying
PROPT toolbox (Rutquist and Edvall, 2010). The approximate nonlinear programming problem is solved using
general-purpose nonlinear optimization packages (e.g., KNITRO, SNOPT and NPSOL).

C Figures

C.1 Drugs

C.1.1 Compliance and Noncompliance to Travel Restrictions

Figure A1: Permanent immunity with and without compliance to travel restrictions. Change over time
in the optimal and ad hoc allocations (panels A and B) and the corresponding infection levels (panels C and D)
for State 1 (in blue, the initially lowest-burdened state) and State 2 (in red, the initially highest-burdened state)
depending on whether there is compliance to travel restrictions (panels A and C) or not (panels B and D) for the
case where the pharmaceutical intervention is an antiviral drug, the drug capacity constraint is 10%, and immunity
is permanent.
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C.1.2 Drug Capacity Constraints when Immunity is Permanent

Figure A2: Permanent immunity and compliance to travel restrictions with 5%, 10%, and 15% drug

capacity. Change over time in the optimal and ad hoc allocations (panels A, B, and C) and the corresponding
infection levels (panels D, E, and F) for State 1 (in blue, the initially lowest-burdened state) and State 2 (in red,
the initially highest-burdened state) depending on whether capacity is 5% (panels A and D), 10% (panels B and
E), or 15% (panels C and F), for the case where the pharmaceutical intervention is a antiviral drug, immunity is
permanent, and there is compliance to travel restrictions.

Figure A3: Permanent immunity and noncompliance to travel restrictions with 5%, 10%, and 15%

drug capacity. Change over time in the optimal and ad hoc allocations (panels A, B, and C) and the corresponding
infection levels (panels D, E, and F) for State 1 (in blue, the initially lowest-burdened state) and State 2 (in red,
the initially highest-burdened state) depending on whether capacity is 5% (panels A and D), 10% (panels B and
E), or 15% (panels C and F), for the case where the pharmaceutical intervention is an antiviral drug, immunity is
permanent, and there is no compliance to travel restrictions.
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C.1.3 Drug Capacity Constraints when Immunity is Temporary

Figure A4: Temporary immunity and compliance to travel restrictions with 5%, 10%, and 15% drug

capacity. Change over time in the optimal and ad hoc allocations (panels A, B, and C) and the corresponding
infection levels (panels D, E, and F) for State 1 (in blue, the initially lowest-burdened state) and State 2 (in red,
the initially highest-burdened state) depending on whether capacity is 5% (panels A and D), 10% (panels B and
E), or 15% (panels C and F), for the case where the pharmaceutical intervention is an antiviral drug, immunity
lasts six months, and there is compliance to travel restrictions.

Figure A5: Temporary immunity and noncompliance to travel restrictions with 5%, 10%, and 15%

drug capacity. Change over time in the optimal and ad hoc allocations (panels A, B, and C) and the corresponding
infection levels (panels D, E, and F) for State 1 (in blue, the initially lowest-burdened state) and State 2 (in red,
the initially highest-burdened state) depending on whether capacity is 5% (panels A and D), 10% (panels B and
E), or 15% (panels C and F), for the case where the pharmaceutical intervention is an antiviral drug, immunity
lasts six months, and there is no compliance to travel restrictions.
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C.1.4 Permanent vs Temporary Immunity

Figure A6: Noncompliance to travel restrictions with permanent and temporary immunity. Change
over time in the optimal and ad hoc allocations (panels A and B) and the corresponding infection levels (panels C
and D) for State 1 (in blue, the initially lowest-burdened state) and State 2 (in red, the initially highest-burdened
state) depending on whether immunity is permanent (panels A and C) or lasts six months (panels B and D) for
the case where the pharmaceutical intervention is an antiviral drug, the drug capacity constraint is 5%, and there
is no compliance to travel restrictions.

Figure A7: Noncompliance to travel restrictions with permanent and temporary immunity. Change
over time in the optimal and ad hoc allocations (panels A and B) and the corresponding infection levels (panels C
and D) for State 1 (in blue, the initially lowest-burdened state) and State 2 (in red, the initially highest-burdened
state) depending on whether immunity is permanent (panels A and C) or lasts six months (panels B and D) for the
case where the pharmaceutical intervention is an antiviral drug, the drug capacity constraint is 10%, and there is
no compliance to travel restrictions.
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C.1.5 Cumulative Infection Levels

Figure A8: Epidemiological outcomes under di↵erent scenarios with a low drug supply. Cumulative
relative di↵erence (panels A, B, C, and D) and cumulative absolute di↵erence per 1M people (panels E, F, G, and
H) between the number of infections in di↵erent allocations rules and the no-drug case for di↵erent immunity–travel
restrictions scenarios and for when drug capacity is 5%.
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Figure A9: Epidemiological outcomes under di↵erent scenarios with a high drug supply. Cumulative
relative di↵erence (panels A, B, C, and D) and cumulative absolute di↵erence per 1M people (panels E, F, G, and
H) between the number of infections in di↵erent allocations rules and the no-drug case for di↵erent immunity–travel
restrictions scenarios and for when drug capacity is 15%.
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C.1.6 Robustness of Optimal Allocations

Figure A10: Impact of incorrect assumption on epidemiological and economic outcomes under di↵erent

scenarios with drugs. Percentage change in expenditures (y-axis) and percentage change in cumulative cases (x-
axis) from the optimal allocation for di↵erent immunity–travel restrictions scenarios and for when vaccine capacity
is 5%.

Figure A11: Impact of incorrect assumption on epidemiological and economic outcomes under di↵erent

scenarios with drugs. Percentage change in expenditures (y-axis) and percentage change in cumulative cases (x-
axis) from the optimal allocation for di↵erent immunity–travel restrictions scenarios and for when vaccine capacity
is 10%.
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Figure A12: Impact of incorrect assumption on epidemiological and economic outcomes under di↵erent

scenarios with drugs. Percentage change in expenditures (y-axis) and percentage change in cumulative cases (x-
axis) from the optimal allocation for di↵erent immunity–travel restrictions scenarios and for when vaccine capacity
is 15%.
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C.1.7 Sensitivity Analysis of Workability Cost

As mentioned above, imposing the ad hoc rules ex ante implicitly means that the central planning agency is
essentially assuming that the cost of deviating from the ad hoc allocation is infinite. In practice, the workability
cost is hard to quantify, because it depends on logistical, political, and cultural factors. It does however seem
reasonable to assume, as we did in the paper, that the cost is finite. We investigate the sensitivity of our results
by solving for the optimal vaccine or drug allocation over time with levels lower and higher than the base case
parameter in the paper. We summarize these results by plotting the variance19 of the optimal deviation in each
time period from the ad hoc drug allocation (in blue; Figure A13 panels A, B, C, and D), and the di↵erence in
cumulative cases between the optimal and ad hoc allocation (in red; Figure A13 panels A, B, C, and D) as we
vary the scale of the workability cost. Mathematically, as the workability cost approaches zero, the optimal control
problem becomes linear in the controls, which implies that there is no adjustment cost associated with changing
the allocation. Often times this can lead to extreme solutions (allocation goes to one state for a time period and
then the other state, and so on).

Given the behavior and nature of the problem, therefore, we would expect that at lower values of the workability
cost parameter we will find higher variance of the deviation. However, because the drug allocation gives rise to
extreme cases where all the allotment is given to one jurisdiction for one period of time, the variance of the optimal
deviation from the ad hoc cannot increase further. When the workability cost parameter reaches a magnitude in
the neighborhood of the VSL (Figure A13 black line represents the VSL), then there is a discrete reduction in the
variance and the optimal allocation converges to the ad hoc (in blue; Figure A13 panels A, B, C, and D) and any
di↵erences in cumulative cases disappear (in red; Figure A13 panels A, B, C, and D).

We also show how amount of funds allocated to the workability cost over time compare to expenditures on the total
vaccine cost (Figure A13 panels E, F, G, and H). If this ratio exceeds one, the planner is spending on aggregate
more to deviate from the ad hoc than on treatments. These panels show that at low levels of the workability cost
parameter, the total workability costs are small relative to the total vaccine costs. As the workability cost parameter
increases, however, the total workability costs become more and more important relative to the total vaccine cost.
Eventually, these costs begin to dominate the planners objective and the deviation between the ad hoc and optimal
goes to zero.

19The variance is calculated as Var(Optimal Drug�Ad Hoc Drug). Note that the variance of the optimal deviation from the ad hoc

is identical in absolute terms across jurisdictions.
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Figure A13: Sensitivity of optimal allocations and epidemiological and economic outcomes when vary-

ing the workability cost parameter. The variance of the optimal deviation in absolute terms (in blue; panels
A, B, C, and D) represents an aggregate measure of the optimal deviation from the ad hoc allocation. The di↵er-
ence in cumulative cases between the optimal and ad hoc allocations (in red; panels A, B, C, and D) represents
in percentage terms how well the optimal allocation outperforms the ad hoc allocation. The total workability cost
over the total vaccine cost (panels E, F, G, and H) represents how many times more the total workability costs are
relative to the total vaccine costs. The dotted vertical line represents the base case value of the workability cost
parameter (1e4), while the full vertical line represents the value of statistical life (1e7).
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C.1.8 Sensitivity Analysis of Drug E↵ectiveness

The base case parameter for drug e↵ectiveness we utilized in the paper is based on some low “clinically meaningfull”
value (see Appendix A for more details). We investigate a range of what could be considered “clinically meaningful”
and see how it impacts our results. When there is compliance to travel restrictions, we find that over a low range
of e↵ectiveness, the more a central planner would want to deviate from the ad hoc allocation. For a high range
of e↵ectiveness, however, the deviation starts decreasing because the drug becomes so e↵ective that the physical
constraints are slack (i.e. there are fewer infected individuals that there are available drugs) and the optimal drug
allocation converges towards the ad hoc (in blue; Figure A14 panels A and C). When there is noncompliance to
travel restrictions, we find that for the entire range of drug e↵ectiveness considered, the more e↵ective the drug is,
the more a central planner would want to deviate from the ad hoc allocation (in blue; Figure A14 panels B, and
D). Regardless of the situation, a higher drug e↵ectiveness implies a larger di↵erence in terms of the reduction in
cumulative cases (in red; Figure A14 panels A, B, C, and D). When there is compliance to travel restrictions, both
the total workability cost and total vaccine cost decrease at high values of drug e↵ectiveness; the total workablity
cost decreases relatively faster than the total vaccine costs which together implies a lower ratio with higher levels
of drug e↵ectiveness (Figure A14 panels E, F, G, and H).

Figure A14: Sensitivity of optimal allocations, and of epidemiological and economic outcomes when

varying the e↵ectiveness of the antiviral drug. The variance of the optimal deviation in absolute terms (in
blue; panels A, B, C, and D) represents an aggregate measure of the optimal deviation from the ad hoc allocation.
The di↵erence in cumulative cases between the optimal and ad hoc allocations (in red; panels A, B, C, and D)
represents in percentage terms how well the optimal allocation outperforms the ad hoc allocation. The total
workability cost over the total drug cost (panels E, F, G, and H) represents how many times more the total
workability costs are relative to the total vaccine costs. The dotted vertical line in the plots represents the base
case value of the vaccine e↵ectiveness (0.65).
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C.2 Vaccines

C.2.1 Compliance and Noncompliance to the Travel Restrictions

Figure A15: Permanent immunity with and without compliance to travel restrictions. Change over time
in the optimal and ad hoc allocations (panels A and B) and the corresponding infection levels (panels C and D)
for State 1 (in blue, the initially lowest-burdened state) and State 2 (in red, the initially highest-burdened state)
depending on whether there is compliance to travel restrictions (panels A and C) or not (panels B and D) for the case
where the pharmaceutical intervention is a vaccine, the vaccine capacity constraint is at 5% of the unconstrained
case, and immunity lasts six months.

44

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 19, 2021. ; https://doi.org/10.1101/2020.12.18.20248439doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.18.20248439
http://creativecommons.org/licenses/by/4.0/


C.2.2 Vaccine Capacity Constraints when Immunity is Permanent

Figure A16: Permanent immunity and compliance to travel restrictions with 5%, 10%, and 15% vaccine

capacity. Change over time in the optimal and ad hoc allocations (panels A, B, and C) and the corresponding
infection levels (panels D, E, and F) for State 1 (in blue, the initially lowest-burdened state) and State 2 (in red,
the initially highest-burdened state) depending on whether capacity is 5% (panels A and D), 10% (panels B and E),
or 15% (panels C and F), for the case where the pharmaceutical intervention is a vaccine, immunity is permanent,
and there is compliance to travel restrictions.
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C.2.3 Vaccine Capacity Constraints when Immunity is Temporary

Figure A17: Temporary immunity and compliance to travel restrictions with 5%, 10%, and 15% vaccine

capacity. Change over time in the optimal and ad hoc allocations (panels A, B, and C) and the corresponding
infection levels (panels D, E, and F) for State 1 (in blue, the initially lowest-burdened state) and State 2 (in red,
the initially highest-burdened state) depending on whether capacity is 5% (panels A and D), 10% (panels B and
E), or 15% (panels C and F), for the case where the pharmaceutical intervention is an antiviral drug, immunity
lasts six months, and there is compliance to travel restrictions.

Figure A18: Temporary immunity and noncompliance to travel restrictions with 5%, 10%, and 15%

vaccine capacity. Change over time in the optimal and ad hoc allocations (panels A, B, and C) and the corre-
sponding infection levels (panels D, E, and F) for State 1 (in blue, the initially lowest-burdened state) and State 2
(in red, the initially highest-burdened state) depending on whether capacity is 5% (panels A and D), 10% (panels
B and E), 15% (panels C and F), for the case where the pharmaceutical intervention is an antiviral drug, immunity
lasts six months, and there is no compliance to travel restrictions.
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C.2.4 Permanent vs Temporary Immunity

Figure A19: Compliance to travel restrictions with permanent and temporary immunity. Change over
time in the optimal and ad hoc allocations (panels A and B) and the corresponding infection levels (panels C and
D) for State 1 (in blue, the initially lowest-burdened state) and State 2 (in red, the initially highest-burdened state)
depending on whether immunity is permanent (panels A and C) or lasts six months (panels B and D) for the case
where the pharmaceutical intervention is a vaccine, the vaccine capacity constraint is 10%, and there is compliance
to travel restrictions.

Figure A20: Noncompliance to travel restrictions with permanent and temporary immunity. Change
over time in the optimal and ad hoc allocations (panels A and B) and the corresponding infection levels (panels C
and D) for State 1 (in blue, the initially lowest-burdened state) and State 2 (in red, the initially highest-burdened
state) depending on whether immunity is permanent (panels A and C) or lasts six months (panels B and D) for
the case where the pharmaceutical intervention is a vaccine, the vaccine capacity constraint is 10%, and there is no
compliance to travel restrictions.
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C.2.5 Cumulative Infection Levels

Figure A21: Epidemiological outcomes under di↵erent scenarios with a low vaccine supply. Cumulative
relative di↵erence (panels A, B, C, and D) and cumulative absolute di↵erence per 1M people (panels E, F, G, and H)
between the number of infections in di↵erent allocations rules and the no-vaccine case for di↵erent immunity–travel
restrictions scenarios and for when vaccine capacity is 5%.
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Figure A22: Epidemiological outcomes under di↵erent scenarios with a high vaccine supply. Cumulative
relative di↵erence (panels A, B, C, and D) and cumulative absolute di↵erence per 1M people (panels E, F, G, and H)
between the number of infections in di↵erent allocations rules and the no-vaccine case for di↵erent immunity–travel
restrictions scenarios and for when vaccine capacity is 15%.
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C.2.6 Robustness of Optimal Allocations

Figure A23: Impact of incorrect assumption on epidemiological and economic outcomes under di↵erent

scenarios with vaccines. Percentage change in expenditures (y-axis) and percentage change in cumulative cases
(x-axis) from the optimal allocation for di↵erent immunity–travel restrictions scenarios and for when vaccine capacity
is 5%.

Figure A24: Impact of incorrect assumption on epidemiological and economic outcomes under di↵erent

scenarios with vaccines. Percentage change in expenditures (y-axis) and percentage change in cumulative cases
(x-axis) from the optimal allocation for di↵erent immunity–travel restrictions scenarios and for when vaccine capacity
is 15%.
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C.2.7 Sensitivity Analysis of Workability Cost

As mentioned above, imposing the ad hoc rules ex ante implicitly means that the central planning agency is
essentially assuming that the cost of deviating from the ad hoc allocation is infinite. In practice, the workability
cost is hard to quantify, because it depends on logistical, political, and cultural factors. It does however seem
reasonable to assume, as we did in the paper, that the cost is finite. We investigate the sensitivity of our results
by solving for the optimal vaccine or drug allocation over time with levels lower and higher than the base case
parameter in the paper. We summarize these results by plotting the variance20 of the optimal deviation in each
time period from the ad hoc vaccine allocation (in blue; Figure A25 panels A, B, C, and D), and the di↵erence
in cumulative cases between the optimal and ad hoc allocation (in red; Figure A25 panels A, B, C, and D) as we
vary the scale of the workability cost. Mathematically, as the workability cost approaches zero, the optimal control
problem becomes linear in the controls, which implies that there is no adjustment cost associated with changing
the allocation. Often times this can lead to extreme solutions (allocation goes to one state for a time period and
then the other state, and so on).

Given the behavior and nature of the problem, therefore, we expect that at lower values of the workability cost
parameter we will find higher variance of the deviation. This, in turn results in a higher performance of the optimal
allocation relative to the ad hoc in terms of reduction in cumulative cases. When we increase the workability
cost parameter, the cost parameter will eventually be on the same magnitude as the VSL (Figure A25 black line
represents the VSL). When we reach levels this high, the optimal allocation converges towards the ad hoc and any
di↵erences in cumulative cases disappear.

We also show how amount of funds allocated to the workability cost over time compare to expenditures on the total
vaccine cost (Figure A25 panels E, F, G, and H). If this ratio exceeds one, the planner is spending on aggregate
more to deviate from the ad hoc than on treatments. These panels show that at low levels of the workability cost
parameter, the total workability costs are small relative to the total vaccine costs. As the workability cost parameter
increases, however, the total workability costs become more and more important relative to the total vaccine cost.
Eventually, these costs begin to dominate the planners objective and the deviation between the ad hoc and optimal
goes to zero.

20The variance is calculated as Var
⇣

Optimal Vaccine�Ad Hoc Vaccine

Ad Hoc Vaccine

⌘
. Note that the variance of the optimal deviation from the ad

hoc is identical in absolute and relative terms across jurisdictions.
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Figure A25: Sensitivity of optimal allocations and epidemiological and economic outcomes when vary-

ing the workability cost parameter. The variance of the optimal deviation in percentage (in blue; panels A,
B, C, and D) represents an aggregate measure of the optimal deviation from the ad hoc allocation. The di↵erence
in cumulative cases between the optimal and ad hoc allocations (in red; panels A, B, C, and D) represents in
percentage terms how well the optimal allocation outperforms the ad hoc allocation. The total workability cost
over the total vaccine cost (panels E, F, G, and H) represents how many times more the total workability costs are
relative to the total vaccine costs. The dotted vertical line represents the base case value of the workability cost
parameter (1e4), while the full vertical line represents the value of statistical life (1e7).
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C.2.8 Sensitivity Analysis of Vaccine E↵ectiveness

The base case parameter for vaccine e↵ectiveness we utilized in the paper is based on estimates of the influenza
vaccine (Ohmit et al., 2014, see Appendix A for more details). Recent evidence from the COVID-19 vaccines suggest
that e↵ectiveness could be considerably higher. As a result, we investigate how a more e↵ective vaccine would a↵ect
the nature of our results. We find that the more e↵ective a vaccine is, the more a central planner would want to
deviate from the ad hoc allocation (in blue; Figure A26 panels A, B, C, and D). As a result of this greater deviation,
we see a larger di↵erence in terms of the reduction in cumulative cases (in red; Figure A26 panels A, B, C, and D).
Because a higher e↵ectiveness results in a greater deviation, then, everything else equal, the total workability costs
are increased relative to the total vaccine costs (Figure A26 panels E, F, G, and H). The di↵erences are more stark
in a world where there is compliance to travel restrictions, as noncompliance blurs the spatial heterogeneity across
the jurisdictions leading in general to allocations similar to the ad hoc.

Figure A26: Sensitivity of optimal allocations, and of epidemiological and economic outcomes when

varying the e↵ectiveness of the vaccine. The variance of the optimal deviation in percentage (in blue; panels A,
B, C, and D) represents an aggregate measure of the optimal deviation from the ad hoc allocation. The di↵erence
in cumulative cases between the optimal and ad hoc allocations (in red; panels A, B, C, and D) represents in
percentage terms how well the optimal allocation outperforms the ad hoc allocation. The total workability cost
over the total vaccine cost (panels E, F, G, and H) represents how many times more the total workability costs are
relative to the total vaccine costs. The dotted vertical line in the plots represents the base case value of the vaccine
e↵ectiveness (0.65).
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John, J., Koerber, F., and Schad, M. (2019). Di↵erential discounting in the economic evaluation of healthcare
programs. Cost E↵ectiveness and Resource Allocation, 17(1):29.

Judd, K. L. (1998). Numerical methods in economics. MIT press. Cambridge, Massachusetts.

Kling, D. M., Sanchirico, J. N., and Wilen, J. E. (2016). Bioeconomics of managed relocation. Journal of the
Association of Environmental and Resource Economists, 3(4):1023–1059.

Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., Ren, R., Leung, K. S., Lau, E. H., Wong, J. Y., et al.
(2020). Early transmission dynamics in wuhan, china, of novel coronavirus–infected pneumonia. New England
Journal of Medicine.

54

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 19, 2021. ; https://doi.org/10.1101/2020.12.18.20248439doi: medRxiv preprint 

https://www.epa.gov/environmental-economics/mortality-risk-valuation#whatvalue
https://www.epa.gov/environmental-economics/mortality-risk-valuation#whatvalue
https://doi.org/10.1101/2020.12.18.20248439
http://creativecommons.org/licenses/by/4.0/


Nurchis, M. C., Pascucci, D., Sapienza, M., Villani, L., D’Ambrosio, F., Castrini, F., Specchia, M. L., Laurenti,
P., and Damiani, G. (2020). Impact of the burden of COVID-19 in italy: Results of disability-adjusted life years
(dalys) and productivity loss. International Journal of Environmental Research and Public Health, 17(12):4233.

Ohmit, S. E., Thompson, M. G., Petrie, J. G., Thaker, S. N., Jackson, M. L., Belongia, E. A., Zimmerman, R. K.,
Gaglani, M., Lamerato, L., Spencer, S. M., et al. (2014). Influenza vaccine e↵ectiveness in the 2011–2012 season:
protection against each circulating virus and the e↵ect of prior vaccination on estimates. Clinical infectious
diseases, 58(3):319–327.

Rowthorn, R. E., Laxminarayan, R., and Gilligan, C. A. (2009). Optimal control of epidemics in metapopulations.
Journal of the Royal Society Interface, 6(41):1135–1144.

Rutquist, P. E. and Edvall, M. M. (2010). Propt-Matlab optimal control software. Tomlab Optimization Inc, 260(1).

Ryan, D., Toews, C., Sanchirico, J. N., and Armsworth, P. R. (2017). Implications of policy adjustment costs for
fisheries management. Natural Resource Modeling, 30(1):74–90.

Sanchirico, J. N. and Springborn, M. (2011). How to get there from here: ecological and economic dynamics of
ecosystem service provision. Environmental and Resource Economics, 48(2):243–267.

Schlosser, F., Maier, B. F., Jack, O., Hinrichs, D., Zachariae, A., and Brockmann, D. (2020). Covid-19 lockdown
induces disease-mitigating structural changes in mobility networks. Proceedings of the National Academy of
Sciences.

Tian, H., Liu, Y., Li, Y., Wu, C.-H., Chen, B., Kraemer, M. U., Li, B., Cai, J., Xu, B., Yang, Q., et al. (2020).
An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in china.
Science, 368(6491):638–642.

U.S. Department of Health and Human Services, Food and Drug Administration (FDA), and Center for Biologics
Evaluation and Research (CBER) (2020). Development and licensure of vaccines to prevent COVID-19: guidance
for industry. june, 2020. Technical report, Food and Drug Administration, 5630 Fishers Lane, Rm. 1061, Rockville,
MD 20852.

U.S. Department of Health and Human Services, Food and Drug Administration (FDA), Center for Biologics
Evaluation and Research (CBER), and Center for Drug Evaluation and Research (CDER) (2019). Demonstrating
substantial evidence of e↵ectiveness for human drug and biological products: Guidance for industry. Technical
report, Food and Drug Administration, 5630 Fishers Lane, Rm. 1061, Rockville, MD 20852.

55

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 19, 2021. ; https://doi.org/10.1101/2020.12.18.20248439doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.18.20248439
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Material and Methods
	Modelling Different Types of Intervention
	Model of Disease Transmission
	Modelling Ad Hoc Allocations
	Model of Economic Costs
	Planner's Objective
	Initial and Terminal Conditions

	Results
	Allocation of Drugs
	Allocation of Vaccines
	Robustness of Spatial Allocations

	Conclusion
	Appendices
	Parameterization
	Epidemiological Model
	Economic Model
	Parameter Levels

	Optimization
	Boundary Conditions
	Nonnegativity and Upper-Bound Constraints
	Capacity Constraints of the Pharmaceutical Interventions
	Numerical Methods

	Figures
	Drugs
	Compliance and Noncompliance to Travel Restrictions
	Drug Capacity Constraints when Immunity is Permanent
	Drug Capacity Constraints when Immunity is Temporary
	Permanent vs Temporary Immunity
	Cumulative Infection Levels
	Robustness of Optimal Allocations
	Sensitivity Analysis of Workability Cost
	Sensitivity Analysis of Drug Effectiveness

	Vaccines
	Compliance and Noncompliance to the Travel Restrictions
	Vaccine Capacity Constraints when Immunity is Permanent
	Vaccine Capacity Constraints when Immunity is Temporary
	Permanent vs Temporary Immunity
	Cumulative Infection Levels
	Robustness of Optimal Allocations
	Sensitivity Analysis of Workability Cost
	Sensitivity Analysis of Vaccine Effectiveness



