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Abstract 

Background: Comorbidities greatly increase global health burdens, but the landscapes of their 

genetic factors have not been systematically investigated.  

Methods: We used the hospital inpatient data of 385,335 patients in UK Biobank to investigate the 

comorbid relations among 439 common diseases. Post-GWAS analyses were performed to identify 

comorbidity shared genetic risks at the genomic loci, network, as well as overall genetic 

architecture levels. We conducted network decomposition for interpretable comorbidity networks to 

detect the hub diseases and the involved molecules in comorbidity modules. 

Results: 11,285 comorbidities among 439 common diseases were identified, and 46% of them were 

genetically interpretable at the loci, network, or overall genetic architecture level. The comorbidities 

affecting the same and different physiological systems showed different patterns at the shared 

genetic components, with the former more likely to share loci-level genetic components while the 
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latter more likely to share network-level genetic components. Moreover, both the loci- and 

network-level genetic components shared by comorbidities mainly converged on cell immunity, 

protein metabolism, and gene silencing. Furthermore, we found that the genetically interpretable 

comorbidities tend to form network modules, mediated by hub diseases and featuring physiological 

categories. Finally, we showcased how hub diseases mediating the comorbidity modules could help 

provide useful insights into the genetic contributors for comorbiditities.  

Conclusions: Our results provide a systematic resource for understanding the genetic 

predispositions of comorbidity, and indicate that hub diseases and converged molecules and 

functions may be the key for treating comorbidity. We have created an online database to facilitate 

researchers and physicians to browse, search or download these comorbidities 

(https://comorbidity.comp-sysbio.org). 

Keywords: Comorbidity, Comorbidity pattern, Genetic factors, Genetic association pattern, 

Converged biological function, Hub diseases, Comorbidity module 

Background 

Comorbidity, the coexistence of more than one disease in a patient not by chance, presents great 

challenges for disease diagnosis and treatment [1, 2]. Compared with single diseases, comorbidities 

are usually associated with more adverse health outcomes, such as lower quality of life and higher 

mortality rate, and with higher economic burden [3-5]. Understanding the mechanisms of 

comorbidities may be helpful for their early diagnosis, treatment and management, thereby helping 

reduce the global disease burden associated with comorbidity.  

During the last decade, large-scale genome-wide association studies (GWASs) have found 

overlapped genetic risks for a few frequently comorbid diseases at the genomic loci level, i.e. 

single-nucleotide polymorphisms (SNPs) or genes, suggesting that there might be a molecular basis 

of comorbid relations. For example, GWASs have uncovered 38 SNPs associated with both asthma 
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and allergic diseases [6], and 244 genome loci associated with ankylosing spondylitis, Crohn's 

disease, psoriasis, primary sclerosing cholangitis and ulcerative colitis [7]. Additionally, 

Sánchez-Valle et al. found that disease interactions inferred from similarities between patients’ 

gene expression profiles have significant overlaps with epidemiologically documented comorbid 

relations [8], further supporting the genetic basis of comorbidity. Moreover, several studies also 

point out that diseases with high probability of concurrency tend to share more genes [9, 10]. These 

findings have added useful information to inform the biological etiology of comorbidity [10, 11]. 

The malfunctions caused by disease risk loci can spread via cellular networks owing to molecular 

interactions among genes. To this end, some studies capture the genetic overlaps between 

comorbidities by network level evidence, including protein-protein interactions (PPIs) and 

molecular pathways [9, 12, 13]. For example, Park et al. found a significantly positive correlation 

between the number of shared PPIs and the extent of disease concurrency by combining 

information on cellular interactions, disease–gene associations, and Medicare data [9]. Moreover, a 

significantly increased number of shared pathways between cancers and comorbid Mendelian 

diseases have also been observed [10]. These results indicate that dysfunctional entanglement in 

molecular networks might contribute to the coexistence of comorbid diseases in a patient. 

Additionally, some comorbidities have also been reported to be similar in overall genetic 

architectures measured by genetic correlations, such as the widespread genetic correlations among 

comorbid psychiatric disorders [14-17].  

Due to the limited access to the matched epidemiological and genomic data of the same 

population group, existing studies either used matched data for a limited number of diseases, or 

collected large-scale genomic data and epidemiology data from different sources. However, the 

separation of genetic and epidemiological data makes it tricky to decide whether the shared genetic 

risks identified from one group can actually explain comorbidity identified in another group. In the 
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past few years, the UK Biobank (UKB) has collected hospital inpatient data and genetic data for 

about four hundred thousand individuals, providing a unique opportunity to investigate the genetics 

underlying comorbid relationships between hundreds of common diseases [18].  

In this study, we take advantage of the large scale, matched epidemiological and genetic data 

hosted in UKB to systematically investigate the comorbid relationships among 439 common 

diseases as well as their shared genetic factors. We have identified the comorbidity shared genetic 

components at loci and network levels, and performed the functional analyses on them to uncover 

converged biological functions. Furthermore, the shared genetic patterns of the comorbidities 

affecting the same and different physiological systems have been explored. Finally, we construct 

and decompose two comorbidity networks to find the hub diseases that mediate lots of comorbid 

relationships in comorbidity modules and to highlight the corresponding molecular mechanisms. 

Our results provide a systematic resource of comorbidities among common diseases, as well as their 

shared genetic risks (online database at https://comorbidity.comp-sysbio.org). The converged 

biological molecules and functions identified in this study are responsible for many comorbidities, 

which may serve as the key factors for management and treatment of comorbidity. 

Methods 

Population data: Population data used in this study is collected from the UKB [18]. More than 

500,000 individuals aged 40-69 living in the UK were recruited to the assessment centers and 

signed an electronic consent to allow a broad range of access to their anonymized data for 

health-related research. 

Disease selection and classification: In UKB, field-41270 is the summary diagnoses for 410,293 

patients across all their hospital inpatient records, which are coded according to the International 

Classification of Disease version 10 (ICD10). A total number of 11,727 ICD10 codes are recorded 

with affected patients. We define common diseases as the level 2 ICD10 codes of chapter I ~ XIV 
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with prevalence > 0.1%, since most of the publically available GWAS summary statistics of the 

UKB diagnoses are based on level 2 codes [19, 20]. Patients diagnosed with codes at or under level 

2 are considered as suffering from the corresponding level 2 diseases. Due to the too-detailed 

phenotype description of ICD10 codes, such as F20 Schizophrenia and F25 Schizoaffective 

disorders, we further aggregated the highly similar ICD10 codes into one disease according to the 

phecodes [21]. Phecode is a collection of manually curated phenotypes by experts with the 

advantage of better aligning with diseases mentioned in clinical and genomic research. Finally, the 

diseases are manually classified, mostly according to their affected physiological system while also 

considering their origins [22]. 

Results 

Comorbidities among common diseases in UKB 

439 common diseases (prevalence > 0.1%) are selected for comorbidity analysis from UKB hospital 

inpatient data (see Methods for details, Additional file 2: Table S1), covering 385,335 patients. The 

average age of the patients for their first hospital diagnosis is 54, with more female patients than 

male patients (55% VS. 45%).  

In all, 11,285 comorbidities are identified, involving 438 out of the 439 diseases, with D21 

(“other benign neoplasms of connective and other soft tissue”) being the only exception (RR >1, 

P-value < 4.1e-6 with Bonferroni correction for all disease-pairs with RR > 1, Fig. 1a, Addiitonal 

file 2: Table S2; see Methods for details). Most diseases have less than 100 comorbid partners 

(average of 51, Fig. 1b). We observe that diseases with high prevalences tend to have more 

comorbid partners (Pearson’s correlation, r = 0.69, P-value = 3.3e-64; Additional file 1: Fig. S3). 

For example, the top three diseases with the most comorbid partners--Hypertension (I10), 

Hyperlipidemia (E78), and Type 2 diabetes (E11), have a prevalence of 27.5%, 13.1%, and 7.1%, 

respectively. 
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To validate the credibility of the comorbid relationships found through our analysis, we firstly 

compare them to the comorbid relationships identified in a recent study by Blair et al [24]. Blair et 

al. studied the comorbid relationships between Mendelian diseases (14 out of the 439 diseases used 

in our study) and complex diseases (62 out of the 439 diseases). Among the comorbid relationships 

they identified, 184 reach the prevalence criteria set for our analysis (for each comorbid relationship, 

patients with both diseases have to exceed 1% of patients for at least one of the two diseases). In 

comparison, the number of comorbid relationships we find between the 14 Mendelian diseases and 

62 complex diseases is 175, 152 (86.9%) of which are among the comorbid relationships found by 

Blair et al. (Fig. 1c). We examine the 32 comorbid relationships identified by Blair et al. but missed 

by us, and find that 23 of them fulfill RR>1 and are significant in single test (P-value < 0.05), but 

fail to pass the multi-test correction. This is possibly due to that in our analysis, we test more than 

12000 pairs of diseases (RR > 1) at once, which incurs a strict multi-test correction with a trade-off 

between type I error (false positives) and type II error (false negatives). In other words, our analysis 

may err on the more conservative side. On the other hand, among the 23 comorbid relationships 

identified by us but not by Blair et al., 22 of them have literature evidence supporting their 

existence, indicating their potential validity (Additional file 2: Table S3). Additionally, we also 

compare the comorbidities identified by us to those identified by Jensen et al [25] (Additional file 3: 

Supplementary Text). The comparison results show that the comorbidities identified by us and 

Jensen et al. have a significant overlap (OR=6.8, P=0, Fisher exact test). Taken together, we 

consider that our results can be confirmed by previous results, and are of high reliability. 
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Importantly, benefiting from the long follow-up time (25 years) and the extensive coverage of 

diseases provided by UKB hospital inpatient data, the collection of comorbidities reported here is 

the largest one of common disease comorbidity by far, and thus provide an atlas of comorbidities 

useful for further analysis.  

Prevalent comorbidity intra- and inter-physiological systems 

In the classic Human Disease Network (HDN), diseases are connected if they share at least one 

disease-associated gene [22]. We have observed several clusters in HDN formed by diseases 

affecting the same physiological systems, such as cardiovascular diseases and nutritional diseases. 

This inspires us to explore whether diseases affecting the same physiological system also tend to be 

comorbidity. We divide the 439 diseases into 24 categories, mostly according to their affected 

physiological systems while also considering their origins (e.g. “Neoplasm”) (Additional file 2: 

Table S1), and calculate the disease comorbidity tendency among the 24 categories (see Methods). 

As expected, we find significantly prevalent comorbidity within 19 out of 24 categories (Fig. 1d). 

For example, 89% (32/36) of all possible disease-pairs within the “Spine” category are 

comorbidities (adjusted P= 5e-5), and all the 4 nutritional diseases are comorbid with one another 

(adjusted P = 8.9e-3). To get a visual and more confident observation, we construct a 

high-confidence comorbidity network comprised of comorbidities with RR>15 (Fig. 1e), and are 

able to observe small and large clusters of comorbidities affecting the same physiological system, 

many of which are supported by previous studies � for examples, comorbidity clusters affecting the 

“Cardiovascular” [39], the “Ophthalmological” [40], the “Ear, Nose, Throat” [41], and the 

“Psychiatric” [42] categories. These findings suggest shared mechanisms for diseases affecting the 

same physiological systems. 
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Interesting, apart from the intra-category comorbidity, we also find significantly more comorbid 

relationships between 41 pairs of different categories (Fig. 1d). Diseases affecting the “Respiratory” 

system are significantly more likely to be comorbid with diseases from 11 other categories, 

followed by diseases affecting the “Metabolic” system with diseases from 10 other categories, both 

suggesting shared etiologies beyond the boundaries of physiological systems. Moreover, metabolic 

diseases have overall the highest comorbid rate with diseases of other categories, which is 

consistent with many reports on the involvement of altered metabolism in a wide range of diseases 

[43, 44]. It is noteworthy that sometimes the significant cross-category comorbidity patterns are 

mediated by a small number of diseases that have a large number of comorbid partners. For 

example, in the high-confidence comorbid network (Fig. 1e), psychiatric disorders comorbid with 

neurological disorders predominantly through F05 (“Delirium, not induced by alcohol and other 

psychoactive substances”) and F06 (“Other mental disorders due to brain damage and dysfunction 

and to physical disease”). In fact, for 33 out of the 41 significant comorbid category-pairs, more 

than 50% of the inter-category comorbid relationships are mediated through no more than 3 “hub” 

diseases. Take one of the most centered hubs as an example, E66 (“Obesity”) mediates more than 

half of the comorbid relationships between the “Nutritional” category and three other categories � 

“Psychiatric”, “Spine”, and “Joint”. This is consistent with previous findings that obesity is usually 

associated with mental, joint, and spinal diseases, such as depressive disorders, anxiety disorders, 

gout, and spondylosis [45-47]. As a result, understanding the mechanisms underlying comorbidities, 

especially those mediated by the “hub” diseases, may provide a way forward to understand how 

they happen, and seek to manage or treat them simultaneously. 

46% of the comorbidities are genetically interpretable 

Previous studies have shown that diseases with more genes or PPIs shared are more likely to be 

comorbidities [9, 10]. However, it still remains unclear that how many comorbidities share genetic 
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components (deemed as genetically interpretable), and whether there are any specific patterns in 

shared genetic components for different types of comorbidities. To explore these two questions, we 

capture the genetic associations of comorbidities at 3 levels, i.e. loci level (SNP and genes), 

network level (PPI and pathways) and overall genetic architecture level (genetic correlation) (see 

Methods). 

All available GWAS summary statistics based on UKB subjects are collected from geneAtlas 

[19], covering 332 out of 439 diseases used in this study and comprising 8,212 comorbidies. We 

find 46% (3,766) of comorbidities have shared genetic components: 147, 1,463, 1,803, and 1,959 

comorbidities share SNPs, genes, PPIs, and pathways, respectively; and 1,970 comorbidities have 

significant genetic correlations (Fig. 2a, Additional file 2: Table S4, S5, S6, S7, S8, see Methods). 

Comorbidities are significantly more likely to share genetic components, compared with 

non-comorbidities across all genetic levels as well as their aggregation (Fig. 2a, see Methods). 

Additionally, we also find that 98%, 70% and 100% of the genetically interpretable comorbidities 

share significantly more SNPs, genes and pathways than expected, respectively (see Methods). 

Only 5% of comorbidities share significantly more PPIs than expected, possibly due to the 

universality of PPIs. Moreover, the genetically interpretable comorbidities have a significant 

overlap with disease-pairs reported by Park et al., which have shared genes, PPIs or co-expressed 

genes (P= 2.4e-6, Fisher exact test), further confirming the genetic associations of comorbidities 

identified in this study [9]. As the genetic information and the epidemiological information come 

from the same subjects, we consider our results relatively robust against the usual confounding 

factors for genetic analysis of comorbidity, such as differences in genetic background. Thus, our 

results strongly support the existence of genetic predispositions for almost half of the identified 

comorbid relationships. We have created a queryable online database to facilitate researchers and 

physicians to explore the comorbidities of interest (https://comorbidity.comp-sysbio.org). 
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We then explore whether there are any specific patterns in shared genetic components for 

different types of comorbidities, i.e. exploring differences in the types of genetic components 

mediating intra- and inter-category comorbidity. Overall, we find that comorbidities of 9 (37.5%) 

intra-categories and 52 (18.8%) inter-categories significantly share genetic components, suggesting 

a high probability of genetic involvement for comorbidities affecting the same physiological 

systems (Fig. 2b). Interestingly, as in Figs. 2b and 2c, intra-category comorbidities are slightly more 

likely to share loci-level genetic components (P=4.6e-4 for SNPs; difference not significant for 

genes after Bonferroni correction; Fisher exact test) compared to inter-category comorbidities, 

while the latter are more likely to share network-level genetic components (P-values =4.6e-17 and 

8.3e-17 for PPIs and pathways, respectively). There is no significant difference in how likely 

comorbidities of intra- and inter-category have genetic correlations. These results suggest that 

comorbidities affecting the same and different physiological systems may have different biological 

origins � with the former tend to directly originate from pleiotropic loci and the latter tend to 

indirectly originate from converged functions. 

The above statistical observation is best illustrated by the diseases affecting male genital organs 

(Fig. 2b). The comorbidities within “Male genital organs”category tend to share genes (adjusted 

P-value = 4.1e-2, FDR corrected). In fact, 50% (8/16) of the comorbidities within this category 

share disease-associated genes. 20 genes are involved in these intra-category comorbid relationships, 

and are mainly related to the human leukocyte antigen (HLA) complex (such as HLA-DQA1 and 

HLA-DRB1), histone clusters (such as HIST1H1B and HIST1H2AJ), and tumors (such as TERT and 

NOTCH4 for prostate cancer) [48, 49]. In contrast, comorbid relationships of inter-category 

involving the “Male genital organs” category tend to share pathways (72/142, 51%). The KEGG 

pathway “cell adhesion molecules cams” is shared by half (36/72) of these cross-category comorbid 
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relationships, followed by “antigen processing and presentation”, which is shared by 32 of these 

comorbidities. 

To summarize, based on matched genetic and epidemiological data, we find that almost half 

(46%) of comorbidities identified in this study are genetically interpretable, indicating a strong 

genetic role in the origin of comorbidity. Among these genetically interpretable comorbidities, the 

intra-category and inter-category ones tend to share genetic components in different levels (loci VS. 

network), suggesting their different biology origins.  

Genetically interpretable comorbidities converge on cell immunity, protein metabolism, and 

gene silencing 

To enhance the understanding about the biological mechanisms of comorbidities, we conduct 

functional analyses of the loci level and network level genetic components. The overall genetic 

architecture is not analyzed here, as it reflects statistical correlations but not detailed functions (see 

Discussion). 

We firstly examine the genome-wide distribution and the deleteriousness of the 

comorbidity-SNPs (see Methods). We find that comorbidity-SNPs tend to be located in noncoding 

RNA (P-values = 1.2e-44 and 4.1e-147) and intergenic regions (P-values = 1.7e-54 and 2.9e-48) 

(Fig. 3a), but with slightly higher CADD scores (P-values = 9.8e-129 and 0) than other-disease 

SNPs (SNPs that are disease-associated but not shared by comorbidities) and non-disease SNPs (Fig. 

3b). These results suggest that comorbidity-SNPs are slightly more deleterious, possibly through 

playing important roles in gene transcriptional regulation [50]. We have also examined the effects 

of comorbidity-SNPs on splicing by dbscSNC splicing score [35], but found no difference among 

the comorbidity-SNPs, other disease-SNPs and non-disease SNPs (Additional file 1: Fig. S4). 

Additionally, we find that 73% of the comorbidity-SNPs locate in a small region of the genome � 

the HLA region (chr6:29,691,116–33,054,976), and 51% of the comorbidities which are 
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interpretable through SNPs share at least one HLA-region SNP. The HLA region is well known for 

its high degree, long-ranged LD blocks, which may help explain the pleiotropy of these SNPs in 

comorbidities [51]. SNPs in this region have been previously predicted to be relevant for multiple 

autoimmune diseases through disrupting the regulation of immune-related genes [50]. Consistent 

with this, most of the top comorbidities with the largest number of shared HLA-region SNPs 

contain autoimmune diseases or contain a significant autoimmune-related origin. For example, E03 

“Other hypothyroidism”, J45 “Asthma”, K90 “Intestinal malabsorption”, E10 “Insulin-dependent 

diabetes mellitus”, and G35 “Multiple sclerosis”. Finally, we test whether the genomic location and 

CADD score distributions of comorbidity-SNPs are mainly determined by the HLA-region variants. 

After removing the HLA-region SNPs, comorbidity-SNPs are still overrepresented in noncoding 

RNA regions (P-values=3.5e-47 and 1.2e-61), and still have significantly higher CADD scores 

(P-values=0.02 and 1.5e-15) than other-disease SNPs and non-disease SNPs, but are no longer 

overrepresented in intergenic regions (Additional file 1: Figs. S5A, S5B). We conclude that 

comorbidity-SNPs, no matter whether in the HLA region or not, are slightly more deleteriousness 

and more likely to locate in noncoding RNA region than other SNPs. 

Goh et al. reported that most (78%) disease-genes (i.e. genes associated with at least one disease 

recorded in Online Mendelian Inheritance in Man) are not essential genes critical for survival, and 

that disease-genes are less likely to be housekeeping genes that express in all tissues [22]. We then 

test whether our comorbidity-genes behave similarly or differently. Here, we obtain 2,852 essential 

genes, which are human orthologs of mouse genes whose disruptions are embryonically or 

postnatally lethal (see Methods). We find that only 17% of the disease-genes (identified by us) and 

17% of the comorbidity-genes are essential (Fig. 3c), although disease-genes and 

comorbidity-genes are more enriched in essential genes than non-disease genes (P-values = 2.9e-38 

and 8.8e-15, respectively). Essential genes are reported to have a tendency to encode hub proteins 
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in human interactome, and play an important role in maintaining normal developmental and/or 

physiological function [22]. These results indicate that most comorbidity-genes are functionally 

peripheral in human interactome, and their mutations are compatible with survival into reproductive 

years so that these comorbidity phenotypes are conveyed in a population. Although most 

comorbidity-genes are not essential, we find a higher probability of loss of function intolerance (pLI) 

for comorbidity-genes, compared to other disease-genes as well as non-disease genes (P-values = 

0.01 and 3.6e-11, respectively, t test; Fig. 3d). Removing the essential genes, this trend remains 

unchanged, suggesting the higher pLI distribution of comorbidity-genes is not just due to the 

essential genes (Additional file 1: Fig. S6). To examine whether comorbidity-genes tend to be 

housekeeping genes, we summarize the number of tissues each gene is expressed in based on the 

gene expression data for 53 tissues in GTEx [37]. We find that comorbidity-genes are more likely to 

be expressed in the majority of tissues, compared to other disease-genes and non-disease genes (P = 

4.7e-4 and 8.1e-44, respectively, two-sided Mann–Whitney U-test; Fig. 3e). Considering the high 

pleiotropy of HLA regions, we recalculate the properties of the comorbidity-genes after removing 

HLA variants. In this case, we find that most comorbidity-genes are still nonessential and 

comorbidity-genes still tend to have higher pLI (P-values=0.04 and 2.9e-10) and express in more 

tissues(P-values=4.4e-3 and 1.2e-32) compared with other-disease genes and non-disease genes 

(Additional file 1: Figs. S5C, S5D, S5E). As a result, we consider that most comorbidity-genes are 

very important for normal biological mechanisms, though most of them are not essential for 

survival, and disrupted comorbidity-genes may have clinical consequences affecting slightly more 

tissues than other disease-genes. 

For the network level genetic components, the genes involved in the top 10 PPIs shared by the 

most numbers of comorbidities are significantly enriched in GO terms related to biological 

processes of gene silencing and protein metabolism including localization, acetylation, 
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ubiquitination, catabolism (see Methods). These 10 PPIs account for 18% of the PPI interpretable 

comorbidities. Moreover, as shown in Fig. 3f, the top 10 pathways shared by the most numbers of 

comorbidities are predominantly immune-related processes, and correspond to 56% of all the 

pathway interpretable comorbidities. Most of the top pathway involved diseases are autoimmune or 

inflammatory diseases, such as J45 “Asthma”, K20 “Oesophagitis”, M06 “Other rheumatoid 

arthritis”, L40 “Psoriasis”, and E10 “Insulin-dependent diabetes mellitus”. The findings based on 

network level genetic components suggest a phenomenon that a significant portion of genetically 

interpretable comorbidities may converge on a handful of biological mechanisms, with the most 

common mechanisms related to cell immunity, gene silencing and protein metabolism. This 

phenomenon is further supported by the loci level genetic components: the top 10 genes can 

interpret as much as 41% of the gene interpretable comorbidities, and are enriched in 

immune-related GOs, such as “interferon gamma mediated signaling pathway”, “antigen processing 

and presentation of peptide antigen”, and “regulation of T cell mediated cytotoxicity”. Moreover, 

after removing HLA-region SNPs, we still find a few genetic components interpreting many 

comorbidities (the top 10 SNPs, genes, PPIs and pathways can interpret 23%, 30%, 15%, 34% of 

comorbidities interpretable through SNP, gene, PPI, pathway, respectively.). The top enriched GO 

terms are “protein localization to chromosome telomeric region” and “beta-catenin-tcf complex 

assembly”, and the top enriched pathways are “rna pol i rna pol iii and mitochondrial transcription” 

and “meiosis” (Additional file 1: Figs. S5F). 

“Hub” disease-mediated genetically interpretable comorbidity modules 

The fact that a small number of genetic components can interpret a large portion of the genetically 

interpretable comorbidities, inspires us to examine whether the “small world” phenomenon exist in 

the shared genetic architectures of those comorbidities. Therefore, we construct two comorbidity 

networks by connecting comorbid diseases that share loci level genetic components (denote as the 
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LG-network) and network level genetic components (denote as the NG-network), respectively. As 

expected, for the LG- and NG-networks, their degrees follow the power-law distribution 

(Additional file 1: Fig. S7), and they have the attributes of small worldness based on their average 

clustering coefficient and average shortest path length (sigma=1.15 and 1.03, respectively; see 

Methods). In previous sections, we have shown that many of the inter-category comorbidities are 

mediated through hub diseases. Given the “small world” properties of the LG- and NG-networks, 

we hypothesize that there are comorbidity modules in the two networks, possibly featured by hub 

diseases and specific genetic components. In order to test this hypothesis, we perform network 

decomposition to detect comorbidity modules by the Louvain algorithm [38]. 

We first arbitrarily define nodes (diseases) connected with more than 25% of all nodes in each 

network as “universal hub diseases”. It is not appropriate to assign the “universal hub diseases” into 

any single comorbidity module, as each module usually contains far fewer than 25% of all nodes. 

Seven and thirteen “universal hub diseases” are found for the LG-network and the NG-network, 

respectively (Fig. 4, Additional file 2: Table S9). The “universal hub diseases” are usually known to 

co-occur with many diseases. For example, Hypertension (I10) connect to 235 (80%) diseases in the 

NG-network, and is well-known for having heavy comorbidity burdens [52]. 

Next, based on the remained nodes that are not “universal hub diseases”, we have detected 11 

comorbidity modules for the LG-network and 10 comorbidity modules for the NG-network 

(Modularity Q = 0.40 and 0.32 , respectively) (Figs. 4a and 4b, Additional file 2: Table S10, S11). 

Overall, the module sizes (number of nodes in a module) range from 2 to 49, and the LG- and 

NG-networks have 8 and 9 comorbidity modules whose sizes are larger than 5, respectively. Each 

comorbidity module is assigned with “featured categories”, which are the categories that the 

diseases in this module are significantly overrepresent (Fisher exact test, adjusted P-value <= 0.05, 

FDR corrected). Within each module (size > 5), if diseases with top 3 largest number of 
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within-module comorbidities mediate more than half of the within-module edges, we define them as 

“local hub diseases” of the module. As shown in Table 1, we have identified “featured categories” 

for all comorbidity modules in the LG- and NG-networks, and “local hub diseases” for 7 and 7 

comorbidity modules in the LG- and NG-network, respectively. We find that most local hub 

diseases belong to the featured categories of their modules, highlighting the prevalence of 

genetically interpretable comorbidities within the same physiological system. Nonetheless, most 

modules have more than one featured category, demonstrating that genetically interpretable 

comorbidities are not limited by physiological boundaries.  

We will describe several cases to illustrate how the network and module structures can help us 

understand the genetics underlying large numbers of comorbid relationships. Firstly, some 

categories are consistently grouped together. In both networks, we identify modules that feature 

Male genital organs-Urinary, Dermatological-Neoplasm, and Neurological-Spine categories, 

supporting the existence of genetic associations between the involved comorbidities from multiple 

genetic levels (Table 1). Secondly, modules can help distinguish different comorbidity tendencies 

and the corresponding genetic mechanisms among diseases of the same categories. In the 

LG-network, Neoplasm diseases are featured in two modules � LG-module2 (Male genital 

organs-Neoplasm-Urinary) and LG-module8 (Dermatological-Neoplasm). Neoplasm diseases in 

LG-module2 are mainly prostate (C61), bladder (C67), urinary organs (D41) and intestinal 

(C18,C19;C20) cancers, while Neoplasm diseases in LG-module8 are all skin cancers (C43, C44, 

D04) (Fig. 5a, Additional file 2: Table S10). Except for TERT and CLPTM1L, genes shared by 

Neoplasm diseases and other diseases in the two modules are different, reflecting diverse 

mechanisms among Neoplasms related to different tissues. Thirdly, hub diseases may provide a new 

perspective for understanding comorbidity with different categories of diseases. For example, as 

shown in Fig. 5b, the Psychiatric disorder F17 “Mental and behavioral disorders due to use of 
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tobacco” is a hub diseases of LG-module5 (Cardiovascular-Respiratory), and is comorbid with 5 

respiratory diseases (emphysema (J43), pyothorax (J86;J93), respiratory failure (J96), chronic 

obstructive pulmonary disease (COPD, J42;J44), pneumonia (J18)), 3 cardiovascular diseases 

(atherosclerosis (I70), aortic aneurysm and dissection (I71), peripheral vascular diseases (I73)), and 

lung cancer (C34). The most often genes shared by these comorbidities are IREB2 and CHRNA3, 

located in 15q25, a well-known region for association with COPD, lung cancer, and smoking [53]. 

The IREB2 gene encodes an iron-responsive element-binding protein (IRP) that regulates the iron 

metabolism [53]. CHRNA3 encodes the neuronal nicotinic acetylcholine receptor, and its mutation 

is associated with lung function and COPD severity in ever-smokers [54]. Though there are many 

other possible pathways individually associated with the above diseases, our analysis indicates that 

iron metabolism and the neuronal nicotinic acetylcholine receptor pathway may be the top 

candidates to examine when study the comorbidity of these diseases with F17. Lastly, “universal 

hub diseases” connect to multiple modules, sometimes through different genetic components. In the 

NG-network, the universal hub disease Obesity (E66) have multiple connections to NG-module1 

(Bone-Joint-Muscular-Neurological-Spine) and NG-module6 (Hepatobiliary pancreas) (Fig. 4b). 

Pathways shared by Obesity and Hepatobiliary pancreas diseases are mostly related to lipoprotein 

metabolism, such as “lipid digestion mobilization and transport”, “fatty acid triacylglycerol ketone 

body metabolism”, “cytosolic sulfonation of small molecules”， “mitochondrial protein import”, 

while also related to biological oxidations, myogenesis etc (Fig. 5c, Additional file 2: Table S11). In 

comparison, pathways shared by Obesity and Bone, Joint, Muscular, Neurological, Spine diseases 

from NG-module1 are mostly related to immunity, cell adhesion and transcription. In summary, the 

genetically interpretable network and modules can provide insights through hub diseases to the 

understanding of the molecular mechanisms underlying comorbidity, and may help prioritize target 

genes and pathways for designing new treatment. 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 15, 2021. ; https://doi.org/10.1101/2021.01.15.21249242doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.15.21249242
http://creativecommons.org/licenses/by-nd/4.0/


 18

Discussion 

In this study, we have profiled the comorbid relationships among the common diseases in UKB, 

and systematically investigated the genetic risks shared by comorbidities. We report an atlas of 

11,285 comorbid disease-pairs among 438 common diseases, which is by now the largest in scale. 

We find that 46% of the comorbidities with available genetic information share genetic components 

in at least one of the three levels � loci, network, or overall genetic architecture, and show that 

comorbidities affecting the same and different physiological systems tend to share different levels 

of genetic components. Functional analyses show that the loci level genetic components shared by 

comorbidities tend to be more deleterious (for SNPs) and affect more tissues (for genes), and both 

loci and network level genetic components mainly converge on cell immunity, protein metabolism, 

and gene silencing related functions. We also construct two comorbidity networks by genetically 

interpretable comorbidities, and show that hub diseases mediating most connections among 

comorbidity modules can provide useful insights into the genetic contributors for comorbidities 

affecting different physiological systems. Therefore, our results provided a detailed comorbid and 

genetic landscapes of many common diseases, which may be valuable for guiding the early 

diagnosis, management, and treatment of comorbidity. 

Our results highlight shared genetic predispositions or mechanisms underlying comorbidity, 

which may provide useful information for drug discovery. Theoretically, it is plausible to repurpose 

existing drugs that target shared genetic components of a pair of comorbid diseases, to treat the 

comorbidity of the two diseases. In an exploratory test, we are able to identify 8,458 

drug-comorbidity relationships with the drug known to target the comorbidity-genes (Additional 

file 2: Table S12). Interestingly, some of these drugs are indeed used in the population with the 

corresponding comorbidity. For example, the gene EDNRA, a known target of aspirin, is shared by 

I20 “Angina pectoris” and I25 “Chronic ischaemic heart disease”, and we find that 65% of the 
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people suffering from both diseases report usage of aspirin in UKB. Moreover, the indication of 

aspirin for I20 “Angina pectoris” and I25 “Chronic ischaemic heart disease” have been reported by 

the Comparative Toxicogenomics Database (CTD, http://ctdbase.org/; Supplementary Data 12) [55]. 

Besides this encouraging case, we also found a surprising case concerning Lansoprazole, which 

targets MAPT, a gene shared by E66 “Obesity” and J84 “Other interstitial pulmonary diseases”. 

16.7% of the people suffering from both diseases ever used lansoprazole according to the UKB. We 

find the indications of lansoprazole only include E66 “Obesity” in CTD, but lansoprazole was 

reported to be able to induce interstitial lung disease [56], suggesting that some of the comorbidity 

of E66 “Obesity” and J84 “Other interstitial pulmonary diseases” may be due to the use of 

lansoprazole. Though very preliminary, these initial results shed light on the possibility that our 

resource of comorbidities and their shared genetic components may help with drug discovery as 

well as avoid severe side-effects for treating comorbidity in the future. 

Notably, as much as 24% of the 8,218 comorbidities have significant genetic correlations, 

supporting the polygenic architecture of complex diseases, while nearly half of them can not be 

readily interpretable at either the loci or the network level (Additional file 1: Fig. S8). This indicates 

unidentified genetic information within the genetic architecture that may require further 

investigation, such as the copy number variants (CNVs). CNVs are the structural chromosomal 

variants greater than 1 kb in size, and usually have dosage effects for genes. Several common 

diseases have been reported to be associated with rare CNVs, such as Autism, schizophrenia [57, 

58]. In addition, we find that genetic correlation is positively and significantly correlated with RR (r 

= 0.39, P-value = 1.9e-72, Additional file 1: Fig. S9A), and with phenotype similarity of comorbid 

diseases (r = 0.22, P-value = 0.03, Additional file 1: Fig. S9B, phenotype similarity pre-calculated 

by van Driel et al [59].). Moreover, phenotype similarity and RR have a positive and significant 
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correlation (r = 0.27, P-value = 1.5e-8, Additional file 1: Fig. S9C). These results suggest that 

genetic architecture might interpret comorbidity by contributing to symptom similarities. 

One possible limitation with our study is the sample size. Though the overall sample size is not 

small, we do not have that many cases for each disease or each comorbid disease-pair. As such, we 

may fail to identify some comorbid disease-pairs that are disproportionally represented in our 

dataset. Also, the GWAS analyses might miss variants with very small effects. Nevertheless, our 

study is the first and largest study that combines the epidemiological and genetic information of the 

same subjects to explore the genetic components underlying comorbidity. The matched phenotype 

and genotype data makes our results less affected by population-related confounding factors. Based 

on our current findings, one interesting future direction is to integrate more samples from other 

studies, and incorporate more types of data, such as imaging data and quantitative traits, in order to 

analyze the endophenotypes that bridge diseases and deepen our understanding of the mechanisms 

of comorbidity. 

Conclusions 

In summary, we have performed, for the first time, a systematic analysis of comorbid relations 

among common diseases as well as their genetic associations based on the matched epidemiological 

and genetic data of the same subjects. Our results illustrate the comorbidity tendency and the 

genetic association patterns of comorbidities of intra- and inter-physiological systems, and indicate 

that the hub diseases and converged biological molecules and functions may be the key for treating 

comorbidity. An online database of UKB-Comorbidity is created to facilitate researchers and 

physicians to search the comorbidities of interest. 
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Figures 

Fig. 1 Comorbidities identified in UKB. a Schematic illustration of how RR is calculated for each pair of 

diseases. b The distribution of the number of comorbidities for UKB diseases. c Comparison of the comorbid 

relationships identified by us (“UKB”) and by Blair et al. d Disease comorbidity tendency intra- and 

inter-physiological categories. Color and size of the circles represent the proportions of comorbidities in all 

disease-pairs within a category or between two categories. The deeper the color and the larger the size of a circle, 

the higher the proportion is. Star represents adjusted P-value < 0.05 (FDR corrected). e The high confidence 

comorbidity network constructed by only including comorbidities with RR > 15. Each node represents a disease, 

and each edge represents a comorbid relationship between two diseases. The color code of a node represents the 

category of the disease. The size of each node is proportional to the number of its comorbidties (not restricted to 

RR > 15). 

Fig. 2 Five types of genetic components shared by comorbidities. a Ratios of comorbidities interpretable 

through SNP, gene, PPI, pathway, and genetic correlation, compared with non-comorbidities. b Intra- and 

inter-category comorbidity that can be significantly interpreted through the five types of genetic components. 

Each circle is divided into five parts, representing the five types of genetic components. Color-filled parts of each 

circle represent the types of genetic components that can significantly inteprete the corresponding intra- or 

inter-category comorbidity. No circle is drawn where none of the five types of genetic components is significant. c 

Ratios of comorbidities of intra- and inter-categories interpretable through SNP, gene, PPI, pathway, and genetic 

correlation. 

Fig. 3 Characteristics of the genetic components shared by comorbidities. a The ratios of SNPs located in 

genic region, intergenic region, and noncoding RNA region for comorbidity-SNPs, other disease-SNPs, and 

non-disease SNPs. b CADD score distributions for comorbidity-SNPs, other disease-SNPs, and non-disease SNPs. 

c Overlaps between comorbidity-genes and essential genes, and between disease-genes and essential genes. d The 

pLI distributions of comorbidity-genes, other disease-genes, and non-disease genes. e The ratios of genes 

expressed in few or many types of tissues, for comorbidity-genes, other disease-genes, and non-disease genes. f 

Top ten pathways that are shared by the largest numbers of comorbidities. 
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Fig. 4 Loci-level (a) and Network-level (b) genetically interpretable comorbidity networks. a, b Each circle 

represents a disease. Colors of the circles (diseases) correspond to the categories of the diseases. “Universal hub 

diseases” are located at the center of each network, and diseases that belong to the same comorbidity module are 

grouped close to each other. For each module, the featured categories are annotated. The black border of the nodes 

indicates that they are the local hub diseases of the comorbidity modules. Diseases that belong to neither universal 

hub diseases nor a comorbidity module are not included in this figure. 

Fig. 5 Case studies for genetically interpretable comorbidity networks. a-c Circles, triangles, and squares 

represent diseases, genes, and pathways, respectively. Colors of the circles (diseases) correspond to the categories 

of the diseases, following the same color code as in Fig. 1. a Neoplasm diseases, their comorbid diseases, and 

shared genes in LG-module2 and LG-module8. b Comorbidities of the hub disease F17 (Mental and behavioural 

disorders due to use of tobacco) in LG-module5, and their shared genes. c Pathways shared by the universal hub 

disease E66 (Obesity) and its comorbidities in NG-module1 and NG-module6. Only the top 5 pathways shared by 

the largest numbers of comorbidities are shown. 

 

Supplementary information 

Additional file 1: Supplementary Figures and Tables. Number of comorbidities for diagnosis time windows of 

no, same day, <half year, < 1 year, < 2 years, <3 years, <4 years, <5 years (Fig. S1). Size distribution of the 

Reactome pathways, KEGG pathways, BioCarta pathways and PID pathways (top). Disease and comorbidity 

pathway size distribution of Reactome and non-Reactome when only using pathways with size <= 200 (bottom) 

(Fig. S2). Correlation between prevalences and number of comorbidities (Fig. S3). Splicing score of 

comorbidity-SNPs, other disease-SNPs and non-disease SNPs (Fig. S4). Characteristics of the genetic 

components shared by comorbidities when removing HLA-region variants (Fig. S5). pLIs of comorbidity-genes, 

other disease-genes and non-disease genes when removing essential genes (Fig. S6). Degree distributions of 

diseases in comorbidity networks that share loci and network level genetic components (Fig. S7). Comorbidity 

overlap interpreted by SNPs, genes, PPIs, pathways and genetic correlations (Fig. S8). Correlations among 

genetic correlation (rg), relative risk (RR), and phenotype similarity (PheSim) of comorbidities. (Fig. S9).  
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Additional file 2: Supplementary Tables. Common disease summary information (Table S1). Comorbidity 

among common diseases in UK Biobank (Table S2). UK Biobank comorbidity supported by other studies but not 

Blair’s results (Table S3). Comorbidities interpreted by SNPs (Table S4). Comorbidities interpreted by genes 

(Table S5). Comorbidities interpreted by PPIs (Table S6). Comorbidities interpreted by pathways (Table S7). 

Comorbidities interpreted by genetic correlations (Table S8). Summary of universal hub diseases in LG- and 

NG-networks (Table S9). Comorbidity modules in LG-network (Table S10). Comorbidity modules in 

NG-network (Table S11). Comorbidity-drug-prescription relations derived from comorbidity genes, drug targets 

and UK Biobank self-report medications (Table S12). 

Additional file 3: Supplementary Text. 
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Table 1 Genetically interpretable comorbidity modules and their hub diseases. 

Disease module Module size Enriched categories Hub diseases 

LG-module1 33 Neurological-Spine Obesity (E66) | Dorsalgia (M54) 

LG-module2 33 Male genital organs-Neoplasm-Urinary 
Hyperplasia of prostate (N40) | Other disorders of urinary system 

(N39) | Other disorders of bladder (N32) 

LG-module3 31 Gastrointestinal-Immunological / 

LG-module4 29 Endocrine-Hematological-Ophthalmological 
Angina pectoris (I20) | Chronic renal failure (N18) | Pulmonary 

embolism (H26) 

LG-module5 20 Cardiovascular-Respiratory 

Mental and behavioural disorders due to use of tobacco (F17) | 

Other chronic obstructive pulmonary disease (J42;J44) | 

Pneumonia, organism unspecified (J18) 

LG-module6 16 Hepatobiliary pancreas 
Cholelithiasis (K80) | Fibrosis and cirrhosis of liver (K74) | Other 

diseases of liver (K76) 

LG-module7 14 Joint 

Phlebitis and thrombophlebitis (I80) | Other arthrosis (M19) | 

Gonarthrosis [arthrosis of knee] (M17) | Other soft tissue disorders, 

not elsewhere classified (M79) | Pulmonary embolism (I26) 

LG-module8 10 Dermatological-Neoplasm Other malignant neoplasms of skin (C44) 

NG-module1 49 Bone-Joint-Muscular-Neurological-Spine / 

NG-module2 41 Hematological-Infectious / 

NG-module3 39 Male genital organs-Urinary 
Hyperplasia of prostate (N40) | Other disorders of urinary system 

(N39) 

NG-module4 33 Cardiovascular-Ophthalmological 

Mental and behavioural disorders due to use of tobacco (F17) | 

Insulin-dependent diabetes mellitus (E10) | Acute myocardial 

infarction (I21;I22) | Other systemic involvement of connective 

tissue (M35) 

NG-module5 27 Gastrointestinal 

Diaphragmatic hernia (K44) | Gastritis and duodenitis (K29) | Other 

diseases of digestive system (K92) | Other diseases of anus and 

rectum (K62) 

NG-module6 12 Hepatobiliary pancreas Cholelithiasis (K80) 

NG-module7 10 Female genital organs 
Carcinoma in situ of cervix uteri (D06;N87) | Excessive, frequent 

and irregular menstruation (N92) | Female genital prolapse (N81) 

NG-module8 9 Dermatological-Neoplasm Other malignant neoplasms of skin (C44) 

NG-module9 6 Ear, Nose, Throat Nasal polyp (J33) 
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