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1 BASE MODEL CONSTRUCTION

1 Base model construction

1.1 Platform for infectious disease dynamics simulation

We developed a deterministic compartmental model of COVID-19 transmission using the AuTuMN plat-

form, publicly available at https://github.com/monash-emu/AuTuMN/. This repository allows for the rapid

and robust creation and stratification of models of infectious disease epidemiology and includes plug-

gable modules to simulate heterogeneous population mixing, demographic processes, multiple circulating

pathogen strains, repeated stratification and other modelling features relevant to infectious disease transmis-

sion. The platform was created to simulate TB dynamics, being an infectious disease whose epidemiology

differs markedly by setting, such that considerable flexibility is desirable [1]. We have progressively de-

veloped the structures of our platform over recent years, and further adapted it to be sufficiently flexible to

permit simulation of other infectious diseases for the purpose of this project.

1.2 Base COVID-19 model

Using the base framework of an SEIR model (susceptible, exposed, infectious, removed), we split the

exposed and infectious compartments into two sequential compartments each (SEEIIR). The two sequential

exposed compartments represent the non-infectious and infectious phases of the incubation period, with the

latter compartment representing the “presymptomatic” phase such that infectiousness occurs during three

of the six sequential phases. For this reason, “active” is a more accurate term for the “I” compartments

and is preferred henceforward. The two infectious compartments represent early and late phases of active

disease and allow explicit representation of notification, case isolation, hospitalisation and admission to

ICU. The “active” compartment also includes some persons who remain asymptomatic throughout their

disease episode, such that this compartment does not map to either persons who are infectious or those who

are diseased/symptomatic (Figure 1).

The latently infected and infectious presymptomatic periods together comprise the incubation period,

with the incubation period and the proportion of this period for which patients are infectious defined by

input parameters described below. In general, two sequential compartments can be used to form a gamma-
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1 BASE MODEL CONSTRUCTION

distributed profile of transition to infectiousness following exposure if the progression rates for these two

compartments are equal, although in implementing this model the relative sojourn times in the two sequen-

tial compartments were not always identical. Nevertheless, this is broadly consistent with the empirically

observed log-normal distribution of individual incubation periods [2].

The transition from early active to late active represents the point at which patients are detected (for

those patients for whom detection does eventually occur) and isolation then occurs from this point forward

(i.e. applies during the late disease phase only, see Section 2). This transition point is also intended to

represent the point of admission to hospital or transition from hospital ward to intensive care for patients

for whom this occurs (see Section 1.4).

Figure 1 – Unstratified compartmental model structure. S = susceptible, E = exposed, I =

active disease, R = recovered/removed.

Depth of pink/red shading indicates the infectiousness of the compartment.

1.3 Age stratification

All compartments of this base compartmental structure were stratified by age into five-year bands from 0-4

years of age through to 70-74 years of age, with the final age group being those aged 75 years and older.

Heterogeneous baseline contact patterns by age were incorporated using age-specific contact rates estimated

by Prem et al. 2017 [3], who combined survey response data with information on national demographic

characteristics to produce age-structured mixing matrices with these age groupings. Our model age groups

were chosen to match these mixing matrices. The automatic demographic features of AuTuMN that can be

used to simulate births, ageing and deaths were not implemented, because the current questions at hand per-

tain to the short- to medium-term and the immediate implementation of non-pharmaceutical interventions,
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1 BASE MODEL CONSTRUCTION

for which population demographics are less relevant.

1.4 Clinical stratification

The age-stratified late exposed/incubation and both the early and late active disease compartments are fur-

ther stratified into five categories: 1) asymptomatic, 2) symptomatic ambulatory, never detected, 3) symp-

tomatic ambulatory, ever detected, 4) ever hospitalised, never critical and 5) ever critically unwell (Figure

2). The proportion of new infectious persons entering stratum 1 (asymptomatic) is age-dependent (as de-

scribed in Table 4). The proportion of symptomatic patients (strata 2 to 5) ever detected (strata 3 to 5) is

set through a parameter that represents the time-varying proportion of all symptomatic patients who are

ever detected (the case detection rate, see Section 2). Of those ever symptomatic (strata 2 to 5), a constant

but age-specific proportion is considered to be hospitalised (entering strata 4 or 5). Of those hospitalised

(entering strata 4 or 5), a fixed proportion was considered to be critically unwell (entering stratum 5, Figure

3).

1.5 Hospitalisation

For COVID-19 patients who are admitted to hospital, the sojourn time in the early and late active compart-

ments is modified, overwriting the sojourn times the default values for these compartments, as indicated

in Table 3. The point of admission to hospital is considered to be the transition from early to late active

disease, such that the sojourn time in late disease is the period of time admitted to hospital. For patients

admitted to ICU, admission to ICU occurs at this same transition point. For this group, the period of time

hospitalised outside of ICU is estimated as a proportion of the early active period, such that the early ac-

tive period represents both the period ambulatory in the community and the period in hospital prior to ICU

admission.
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1 BASE MODEL CONSTRUCTION

Figure 2 – Illustration of the implementation of the clinical stratification.

Depth of pink/red shading indicates the infectiousness of the compartment.
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1 BASE MODEL CONSTRUCTION

Figure 3 – Illustration of the rationale for the clinical stratification.
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1 BASE MODEL CONSTRUCTION

1.6 Infectiousness

The relative infectiousness of both early and late compartments within the asymptomatic stratum is modi-

fied to reflect lower infectiousness per unit time undiagnosed for asymptomatic persons. Presymptomatic

individuals are assumed to have the same level of infectiousness as symptomatic diseased individuals. A

proportion of COVID-19 patients who have been detected by the public health systems are assumed to

self-isolate from the point of entering the late disease compartment, reducing the infectiousness of this

group. Infectiousness declines at the point of transition from early to late disease for all patients admitted

to hospital (both ICU and non-ICU) to reflect hospital infection control.

1.7 Application of COVID-19-related death

Age-specific infection fatality rates (IFRs) were applied and distributed across strata 4 and 5, with no deaths

typically applied to the first three strata. A ceiling of 50% is set on the proportion of those admitted to ICU

(entering stratum 5) who can die. If the infection fatality rate is greater than this ceiling, the proportion

of critically unwell persons dying was set to one half, with the remainder of the infection fatality rate then

applied to the hospitalised proportion. Otherwise, if the infection fatality rate is less than half of the absolute

proportion of persons critically unwell, the infection fatality rate is applied entirely through stratum 5 (such

that the proportion of critically unwell persons dying in that age group becomes <50% and the proportion

of stratum 4 dying is set to zero). In the event that the infection fatality rate for an age group is greater than

the total proportion hospitalised (which is unusual, but could occur for the oldest age group under certain

parameter configurations), the remaining deaths are assigned to the asymptomatic stratum. This approach

was chosen because this stratum has a fixed value over time and the dynamics are equivalent to assigning

the deaths to any of the first three strata, because the sojourn times in the infected compartments are the

same for each of these groups. We used the age-specific IFRs previously estimated from age-specific death

data from 45 countries and results from national-level seroprevalence surveys [4]. We allowed IFRs to vary

around the previously published point estimates in order to incorporate uncertainty and to allow IFRs to

vary by country (see Calibration section).
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2 CASE DETECTION RATE

Clinical
stratum

Stratum name Pre-symptomatic Early Late

1 Asymptomatic 0.5 0.5 0.5

2 Symptomatic ambulatory never detected 1 1 1

3 Symptomatic ambulatory ever detected 1 1 0.2

4 Hospitalised never critical 1 1 0.2

5 Ever critically unwell 1 1 0.2

Table 1 – Illustration of the relative infectiousness of disease compartments by clinical stratification
and stage of infection.

2 Case detection rate

2.1 General approach

We calculate a time-varying case detection rate, being the proportion of all symptomatic cases (clinical

strata 2 to 5) that are detected (clinical strata 3 to 5). This proportion is informed by the number of tests

performed using the following formula:

CDR(time) = 1− e−shape×tests(time)

time is the time in days from the 31st December 2019 and tests(time) is the number of tests per capita

done on that date. To determine the value of the shape parameter, we solve this equation based on the

assumption that a certain daily testing rate tests(time) is associated with a certain CDR(time). Solving for

shape yields:

shape =
−log(1−CDR(time))

tests(time)

That is, if it is assumed that a certain daily per capita testing rate is associated with a certain proportion

of symptomatic cases detected, we can determine shape. As this relationship is not well understood and

unlikely to be consistent across all settings, we routinely vary the CDR that is associated with a certain

per capita testing rate during uncertainty/calibration. Given that the CDR value can be varied widely, the
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3 IMPLEMENTATION OF NON-PHARMACEUTICAL INTERVENTIONS

purpose of this is to incorporate changes in the case detection rate that reflect real historical profile in

changes in testing capacity over time.

3 Implementation of non-pharmaceutical interventions

A major part of the rationale for the development of this model was to capture the past impact of non-

pharmaceutical interventions (NPIs) and produce future scenarios projections with the implementation or

release of such interventions.

3.1 Isolation and quarantine

For persons who are identified with symptomatic disease and enter clinical stratum 3, self-isolation is as-

sumed to occur and their infectiousness is modified, as described above. The proportion of ambulatory

symptomatic persons effectively identified through the public health response by any means is determined

by the case detection rate as described above.

3.2 Community quarantine or “lockdown” measures

For all NPIs relating to reduction of human mobility or “lockdown” (i.e. all NPIs other than isolation and

quarantine mentioned above), these interventions are implemented through dynamic adjustments to the age-

assortative mixing matrix. The mixing matrices of Prem et al. [3] are synthetic and do not represent direct

observations or reports from surveys (in the case of the 144 countries to which they were extrapolated from

observations in the eight “POLYMOD” countries of Western Europe). In addition, the code and methodol-

ogy used to derive these matrices is not publicly available or presented in such a way to allow reproduction

of their methods. Nevertheless, the matrices are contextualised to local demographic information for each

country, including country-specific data that include household size, workforce participation and school

enrolment. Further, the matrices presented are easily machine-readable and appear to be plausible repre-

sentations of contact structures within these countries. New mixing matrices have recently been developed

by the same group and are available as a pre-print. These are likely to represent an improvement on the

previous matrices and will be incorporated into our framework at such time as they they reach publication.
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3 IMPLEMENTATION OF NON-PHARMACEUTICAL INTERVENTIONS

The matrices also have the major advantage of allowing for disaggregation of total contact rates by

location, i.e. home, work, school and other locations. This disaggregation allows for the simulation of

various NPIs in a local context by dynamically varying the contribution of each location to reflect the

historical implementation of the interventions.

The corresponding mixing matrix (denoted C0) is presented for each individual model application, using

the standard convention that a row represents the average numbers of age-specific contacts per day for a

contact recipient of a given age-group. In other words, the element C0i, j is the average number of contacts

per day that an individual of age-group i has with individuals of age-group j.

This matrix results from the summation of the four context-specific contact matrices provided by Prem

et al.: C0 =CH +CS +CW +CL, where CH , CS, CW and CL are the age-specific contact matrices associated

with households, schools, workplaces and other locations, respectively.

In our model, the contributions of the matrices CS, CW and CL vary with time such that the input contact

matrix can be written:

C(t) = h(t)×CH + s(t)×CS +w(t)×CW + l(t)×CL

3.3 School closures/re-openings

Complete school closures are represented by entirely removing the contribution of the school-based con-

tacts to the mixing matrix at the point of school closures and re-instating them when schools reopen (that

is applying a smoothed step function such that CS becomes zero). Note that this complete removal or

re-instatement of this contribution to the mixing matrix is a more dramatic change than is seen with the

simulation of policy changes in workplaces and other locations.

3.4 Workplace closures

Workplace closures are presented by proportionally reducing the contribution of workplace contacts to the

total mixing matrix over time. The profile of this reduction is set by fitting a spline function to Google

mobility data.
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3 IMPLEMENTATION OF NON-PHARMACEUTICAL INTERVENTIONS

3.5 Community-wide movement restriction

This is simulated by reducing the contribution of the “other locations” contacts to the overall mixing matrix.

The functional form of this reduction is set by fitting a function of time to the relative change in the values

of Google mobility data compared to baseline/pre-pandemic levels.

Prem “location” Approach Google mobility types

School Policy response Not applicable

Household Google mobility Residential

Workplace Google mobility Workplace

Other locations Google mobility Unweighted average of:

• Retail and recreation
• Grocery and pharmacy
• Parks
• Transit stations

Table 2 – Mapping of Google mobility data to contact locations (as defined by Prem et al.)

3.6 Microdistancing

For several applications of this model, it was found that the adaptations to the mixing matrices described

above were insufficient to capture the full extent of the improvements in epidemiology as NPIs were im-

plemented. We therefore implemented a “microdistancing” function to represent a reduction in the rate

of contact in locations outside of the household that is not captured through Google mobility data. The

microdistancing function reduces the values of all elements of the mixing matrices by a certain proportion

(although functionality exists for this to be applied to certain locations only).

To parameterise this process, a function of time was developed for each setting that represents the

historical policy changes implemented, which is typically set to a maximum value of one, such that the

values represent the proportion of the maximum effect achieved by each set of restrictions. This enables a

single parameter (the maximum effect of microdistancing) to be calibrated to reflect the maximum impact

of policy changes on microdistancing, while the relative effect of each change is fixed and estimated from
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4 PARAMETERS

available evidence.

4 Parameters

Parameter Value Rationale

Incubation period Calibration
parameter, truncated
normal distribution,
mean 5.5 days

Estimates of the incubation period have included
5.1 days, 5.2 days and 4.8 days [5] [6] [7] [8]. A
systematic review [2] found that data are best
fitted by a log-normal distribution (mean 5.8 days,
CI 5.0 to 6.7, median 5.1 days). Our systematic
review [9] found that estimates of the mean
incubation period have varied from 3.6 to 7.4
days.

Proportion of incubation
period infectious

50% Infectiousness is considered to be present
throughout a considerable proportion of the
incubation period, based on analyses of
confirmed source-secondary pairs [10] and early
findings that the incubation period was similar to
the serial interval [5]. The study of
source-secondary pairs was also the primary
reference cited by a review of the infectious period
that identified studies that quantified the
pre-symptomatic period, which concluded that the
median pre-symptomatic period could range from
less than one to four days [11].

Active period (regardless of
detection/isolation, for
clinical strata 1 to 3)

Calibration
parameter, truncated
normal distribution,
mean 8 days

This quantity is difficult to estimate, given that
identified cases are typically quarantined. Studies
in settings of high case ascertainment and an
effective public health response have suggested a
duration of greater than 5.5 days [8]. PCR
positivity, which may continue for up to two to
three weeks from the point of symptom onset [10]
[11], is difficult to interpret and does not
necessarily indicate infectiousness. Consistent
with these findings, the duration infectious for
asymptomatic persons has been estimated at 6.5
to 9.5 days [11] (although in our model, this would
include the pre-symptomatic infectious period).

Proportion of infectious
period before isolation or
hospitalisation can occur

0.33 Assumed
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4 PARAMETERS

Continuation of Table 3

Parameter Value Rationale

Disease duration prior to
admission for hospitalised
patients not critically unwell
(i.e. early active sojourn
time, stratum 4)

7.7 days Mean value from ISARIC cohort, as reported on
4th October 2020 in Table 6 [12], and similar to
the expected mean from earlier reports from
ISARIC [13]. This cohort represents high-income
countries better than low and middle-income
countries, with the United Kingdom contributing
data on the greatest number of patients, followed
by France. Earlier estimates of this quantity from
China included 4.4 days [5].

Duration of hospitalisation if
not critically unwell (late
active sojourn time, stratum
4)

12.8 days Mean value from the ISARIC cohort, as reported
on 4th October 2020 in Table 6 [12].

ICU duration (late active
sojourn time, stratum 5)

10.5 days Mean duration of stay in ICU/HDU from ISARIC
cohort for patients with complete data, as
reported on 10th October 2020 Table 6 [12]. Many
other studies reporting on the average duration of
ICU stay suffer from right-truncation issues, often
estimating 7-10 days length of stay.

Duration of time prior to ICU
for patients admitted to ICU

10.5 days Calculated as the sum of the time from symptom
onset to hospital admission (7.7 days above) plus
the duration from hospital admission to ICU
admission reported by October ISARIC report
(2.8 days) [12].

Relative infectiousness of
asymptomatic persons (per
unit time with active
disease)

0.5 Assumed

Relative infectiousness of
persons admitted to hospital
or ICU

0.2 Assumed

Relative infectiousness of
identified persons in
isolation

0.2 Assumed

Proportion of hospitalised
patients ever admitted to
ICU

0.17 Assumed

Table 3 – Universal (non-age-stratified) model parameters. Point estimates are used as model
parameters except where ranges are indicated in calibration parameter table below in calibration
table
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4 PARAMETERS

Age group
(years)

Clinical
fractiona

Relative
susceptibility to
infection

Infection fatality
rate

Proportion of
symptomatic
patients hospi-
talised

0 to 4 0.29 0.36 3 ×10-5 0.0777

5 to 9 0.29 0.36 1 ×10-5 0.0069

10 to 14 0.21 0.36 1 ×10-5 0.0034

15 to 19 0.21 1 3 ×10-5 0.0051

20 to 24 0.27 1 6 ×10-5 0.0068

25 to 29 0.27 1 1.3 ×10-4 0.0080

30 to 34 0.33 1 2.4 ×10-4 0.0124

35 to 39 0.33 1 4.0 ×10-4 0.0129

40 to 44 0.40 1 7.5 ×10-4 0.0190

45 to 49 0.40 1 1.21 ×10-3 0.0331

50 to 54 0.49 1 2.07 ×10-3 0.0383

55 to 59 0.49 1 3.23 ×10-3 0.0579

60 to 64 0.63 1 4.56 ×10-3 0.0617

65 to 69 0.63 1.41 1.075 ×10-2 0.1030

70 to 74 0.69 1.41 1.674 ×10-2 1.072

75 and above 0.69 1.41 5.748 ×10-2, b 0.0703

Source/
rationale

Model fitting to
age-distribution
of early cases in
China, Italy,
Japan,
Singapore, South
Korea and
Canada taken
from upper-left
panel of Figure
2b of [14].

Conversion of odds
ratios presented in
Table S15 of Zhang
et al. 2020 to relative
risks using data
presented in Table
S14 of the same
study [15].c

Estimated from
pooled analysis of
data from 45
countries from Table
S3 of O’Driscoll et al
[4]. Values
consistent with
previous estimates
using serosurveys
performed in Spain
[16].

Estimates from
the Netherlands
as the first wave
of infections de-
clined from 4th
May to 21st July
[17].

Table 4 – Age-stratified parameter values. Age-stratified parameters not varied during calibra-
tion, or varied through a common multiplier.
a Proportion of incident cases developing symptoms.
b Weighted average of IFR estimates for 70 to 79 and 80 and above age groups.
c Note the relative magnitude of these values are similar to those estimated by the analysis we use to estimate the age-specific clinical
fraction.[14]
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5 CALCULATION OF OUTPUTS

5 Calculation of outputs

5.1 Incidence

Incidence is calculated as transitions from the late exposed compartment (“E”) to the early active compart-

ment (“I”). This only applies to locally-transmitted cases and so does not include importations.

5.2 Hospital occupancy

This is calculated as the sum of three quantities:

1. All persons in the late active compartment in clinical stratum 4, representing those admitted to hos-

pital but never critically unwell.

2. All persons in the late active compartment in clinical stratum 5, representing those currently admitted

to ICU.

3. A proportion of the early active compartment in clinical stratum 5, representing those who will be

admitted to ICU at a time in the future. This proportion is calculated as the quotient of 1) the differ-

ence between the pre-ICU period and the pre-hospital period for clinical stratum 4, divided by 2) the

total pre-ICU period. That is, a proportion of the pre-ICU period is considered to represent patients

in hospital who have not yet been admitted to ICU.

5.3 ICU occupancy

This is calculated as all persons in the late active compartment in clinical stratum 4.

5.4 Seropositive proportion

This is calculated as the proportion of the population in the recovered or “R” compartment.

5.5 COVID-19-related mortality

This is calculated as all transitions representing death, exiting the model. This is implemented as depletion

of the late active compartment.
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6 CALIBRATION

5.6 Notifications

Local case notifications are calculated as transitions from the early to the late active compartment for clinical

strata 3 to 5. Imported case notifications are calculated as the product of the time-variant importation rate

(which has been inflated for incomplete case detection) and the case detection rate.

6 Calibration

6.1 General approach

The model was calibrated using an adaptive Metropolis (AM) algorithm. In particular, we used the algo-

rithm based on adaptive Gaussian proposal functions proposed by Haario et al. to sample parameters from

their posterior distributions [18]. For each application, we run seven independent AM chains initialised

using Latin Hypercube Sampling across the uncertainty parameters being calibrated. The number of itera-

tions was limited by a maximum computational time, typically of one to two hours per chain. We discarded

the first 200 iterations of each chain as burn-in and combined the samples of the seven chains to project

epidemic trajectories over time. The definitions of the prior distributions and the likelihood are detailed

below.

6.2 Likelihood function

Likelihood functions are derived from comparing model outputs to target data at each time point nominated

for calibration. The standard deviations of this distribution are considered as calibration parameters and

varied during the calibration approach to improve calibration efficiency.

6.3 Variation of infection fatality rate and symptomatic proportions

Whether age-specific infection fatality rates (IFRs) are significantly different in low- and middle-income

settings from those in high-income settings remains highly uncertain. For this application to the Philippines,

we adjust the IFRs described above according to a factor that modifies the age-specific IFR for each age

group relative to the baseline values described in the previous section, allowing them to vary from those

reported up to two-fold those values. The age-specific IFRs used in the model are obtained from:
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6 CALIBRATION

IRF∗
i =

IFRi ×ω

IFRi(ω −1)+1
,

where IRF∗
i is the modelled IFR for age group i, IFRi is the point estimate reported by O’Driscoll et al.

for the IFR of age group i [4], and ω is the uncertainty adjuster varied during model calibration.

Similarly, we incorporated uncertainty around the age-specific proportions of symptomatic individuals

by applying an uncertainty adjuster:

s∗i =
si × γ

si(γ −1)+1
,

where s∗i is the modelled symptomatic proportion for age group i, si is the point estimate reported by

Davies et al. for the IFR of age group i [14], and γ is the associated uncertainty adjuster varied during

model calibration.

6.4 Calibration parameters

Parameter name Distribution type Distribution parameters

Incubation period Truncated normal Mean 5.5 days, standard

deviation 0.97 days,

truncation <1 day

Infectious period (for clinical

strata 1 to 3)

Truncated normal Mean 6.5 days, standard

deviation 0.77 days,

truncation <4 days

Risk of infection per contact Uniform 0.03 to 0.05

Infection fatality rate adjuster

(ω)

Uniform Range 1.8 to 2.28
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7 SUPPLEMENTAL FIGURES AND TABLES TO MAIN TEXT

Continuation of Table 5

Parameter name Distribution type Distribution parameters

Proportion of symptomatic

cases that would be detected

with a daily per capita testing

rate of one test per ten

thousand population

Uniform Range 0.02 to 0.15

Infectious seed Uniform Range 10 to 100

Maximal effect of Minimum

Health Standards

Uniform 0.1 to 0.6

Adjuster applied to

age-specific proportion of

infections leading to

symptoms (“Clinical fraction”)

Truncated normal Mean 1, standard deviation

0.2, truncation <0.5

Table 5 – Epidemiological calibration parameters.

6.5 Calibration targets

We calibrated each of the Philippines models to the daily notification rate (with seven-day moving average

smoothing) observed nationally or for the sub-region simulated over time.

For ICU occupancy, we only considered the most recent estimate of ICU occupancy and did not cali-

brate to multiple time points for this indicator. Similarly for cumulative infection-related deaths, we only

calibrated to the most recent data time point available.

7 Supplemental figures and tables to main text

19



7 SUPPLEMENTAL FIGURES AND TABLES TO MAIN TEXT

7.1 Supplemental Tables

Table 6 – Laboratory testing facilities by region.

Facility Name Region

Batangas Medical Center GeneXpert Laboratory Calabarzon

Daniel O. Mercado Medical Center Calabarzon

De La Salle Medical and Health Sciences Institute Calabarzon

Greencity Medical Center Calabarzon

Lucena United Doctors Hospital and Medical Center Calabarzon

Mary Mediatrix Medical Center Calabarzon

Ospital ng Imus Calabarzon

Qualimed Hospital Sta. Rosa Calabarzon

San Pablo College Medical Center Calabarzon

San Pablo District Hospital Calabarzon

UPLB Covid-19 Molecular Laboratory Calabarzon

Allegiant Regional Care Hospital Central Visayas

Cebu Doctors University Hospital Inc Central Visayas

CebuTBReferenceLaboratory-MolecularFacilityforCOVID-19Testing Central Visayas

Chong Hua Hospital Central Visayas
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Facility Name Region

Governor Celestino Gallares Memorial Medical Center Central Visayas

Prime Care Alpha Covid-19 Testing Laboratory Central Visayas

University of Cebu Medical Center Central Visayas

Vicente Sotto Memorial Medical Center (VSMMC) Central Visayas

Amang Rodriguez Memorial Center GeneXpert Laboratory National Capital Region

Asian Hospital and Medical Center National Capital Region

Chinese General Hospital National Capital Region

De Los Santos Medical Center National Capital Region

Dr. Jose N. Rodriguez Memorial Hospital and Sanitarium (TALA) GeneXpert

Laboratory

National Capital Region

Dr. Jose N. Rodriguez Memorial Hospital and Sanitarium (TALA) RT PCR National Capital Region

Fe del Mundo Medical center National Capital Region

Hi-Precision Diagnostics (QC) National Capital Region

Lung Center of the Philippines (LCP) National Capital Region

Lung Center of the Philippines GeneXpert Laboratory National Capital Region

Makati Medical Center (MMC) National Capital Region

Marikina Molecular Diagnostics Laboratory (MMDL) National Capital Region

National Kidney and Transplant Institute National Capital Region

National Kidney and Transplant Institute GeneXpert Laboratory National Capital Region
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Facility Name Region

Philippine Children’s Medical Center National Capital Region

Philippine Heart Center GeneXpert Laboratory National Capital Region

SafeguardDNADiagnosticsInc National Capital Region

San Miguel Foundation Testing Laboratory National Capital Region

Singapore Diagnostics National Capital Region

St. Luke’s Medical Center - BGC (HB) GeneXpert Laboratory National Capital Region

St. Luke’s Medical Center - BGC (SLMC-BGC) National Capital Region

St. Luke’s Medical Center - Quezon City (SLMC-QC) National Capital Region

Sta. Ana Hospital - Closed System Molecular Laboratory (GeneXpert) National Capital Region

The Medical City (TMC) National Capital Region

Tondo Medical Center GeneXpert Laboratory National Capital Region

Tropical Disease Foundation National Capital Region

University of Perpetual Help DALTA Medical Center Inc National Capital Region

UP-PGH Molecular Laboratory National Capital Region

UP National Institutes of Health (UP-NIH) National Capital Region

UP Philippine Genome Center National Capital Region

Veteran Memorial Medical Center National Capital Region

Victoriano Luna - AFRIMS National Capital Region

22



7 SUPPLEMENTAL FIGURES AND TABLES TO MAIN TEXT

7.2 Supplemental Figures
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Figure 4 – Population size and mobility included in the age-structured COVID-19 for three

regions of the Philippines. Starting population age distribution (top row) and community

quarantine driven mobility adjustments applied to the mixing matrices (bottom row) for

Calabarzon (left), Central Visayas (middle), and the National Capital Region (right). Other

locations in the mobility plots include retail and recreation, supermarket and pharmacy,

parks, and public transport.
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Figure 5 – Comparison of models that included and did not include Minimum Health Stan-

dards (MHS) with daily confirmed cases for Calabarzon. We calibrated the Calabarzon

model to daily confirmed cases (black dots; same in both plots with different y-axes), which

included MHS (left) and ran a counterfactual scenario that did not include MHS (right). Each

plot shows the median modeled detected cases (blue line) with shaded areas represent-

ing the 25th to 75th centile (dark blue) and 2·5th to 97·5th centile (light blue) of estimated

detected cases. The red curve represents the effect of MHS (i.e., reduced transmission

risk per contact) in the model through time. The MHS effect value is squared in the model

to account for the reduction in the probability of an infected person passing on the infec-

tion and the probability of a contact being infected, prior to adjustment of each cell of the

mixing matrix.

24



7 SUPPLEMENTAL FIGURES AND TABLES TO MAIN TEXT

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●

●●●
●●●
●●●●●●●

●●●●●●●●
●●●●●●●●●

●
●●

●●
●
●●●●
●●●●●●●●

●●

●
●
●
●●
●
●
●
●
●
●
●●●●

●
●

●●

●
●
●

●

●
●
●●
●●
●●●●
●●

●
●●●
●

●

●
●
●

●
●
●

●

●
●

●

●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●

0

500

1000

0.0

0.1

0.2

0.3

0.4

0.5

Apr 2020 Jul 2020 Oct 2020 Jan 2021 Apr 2021

C
as

es

M
H

S
 scaled function

MHS incorporated

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●
●
●●●
●●●●
●●●●●●●●

●●
●●
●
●●●●●●●●

●●●●
●●●●
●
●●
●
●●●●●●●●●●●●

●
●●●●

●
●●●
●●●

●

●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●0

1000

2000

3000

Apr 2020 Jul 2020 Oct 2020 Jan 2021 Apr 2021

C
as

es

MHS not incorporated

Figure 6 – Comparison of models that included and did not include Minimum Health Stan-

dards (MHS) with daily confirmed cases for Central Visayas. We calibrated the Central

Visayas model to daily confirmed cases (black dots; same in both plots with different y-

axes), which included MHS (left) and ran a counterfactual scenario that did not include MHS

(right). Each plot shows the median modeled detected cases (blue line) with shaded areas

representing the 25th to 75th centile (dark blue) and 2·5th to 97·5th centile (light blue) of

estimated detected cases. The red curve represents the effect of MHS (i.e., reduced trans-

mission risk per contact) in the model through time. The MHS effect value is squared in

the model to account for the reduction in the probability of an infected person passing on

the infection and the probability of a contact being infected, prior to adjustment of each

cell of the mixing matrix.
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Figure 7 – Comparison of models that included and did not include Minimum Health Stan-

dards (MHS) with daily confirmed cases for the National Capital Region. We calibrated the

National Capital Region model to daily confirmed cases (black dots; same in both plots

with different y-axes), which included MHS (left) and ran a counterfactual scenario that did

not include MHS (right). Each plot shows the median modeled detected cases (blue line)

with shaded areas representing the 25th to 75th centile (dark blue) and 2·5th to 97·5th cen-

tile (light blue) of estimated detected cases. The red curve represents the effect of MHS

(i.e., reduced transmission risk per contact) in the model through time. The MHS effect

value is squared in the model to account for the reduction in the probability of an infected

person passing on the infection and the probability of a contact being infected, prior to

adjustment of each cell of the mixing matrix.
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Figure 8 – Model estimated epidemic indices from the calibrated Calabarzon model. Mod-

eled median cumulative deaths, ICU occupancy, incidence, and percentage of the popula-

tion recovered from COVID-19 (blue line) with shaded areas for 25th to 75th centile (dark

blue) and 2·5th to 97·5th centile (light blue) and overlaid with reported cumulative deaths

and ICU occupancy (black dots).
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Figure 9 – Model estimated epidemic indices from the calibrated Central Visayas model.

Modeled median cumulative deaths, ICU occupancy, incidence, and percentage of the pop-

ulation recovered from COVID-19 (blue line) with shaded areas for 25th to 75th centile (dark

blue) and 2·5th to 97·5th centile (light blue) and overlaid with reported cumulative deaths

and ICU occupancy (black dots).
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Figure 10 – Model estimated epidemic indices from the calibrated National Capital Region

model. Modeled median cumulative deaths, ICU occupancy, incidence, and percentage of

the population recovered from COVID-19 (blue line) with shaded areas for 25th to 75th cen-

tile (dark blue) and 2·5th to 97·5th centile (light blue) and overlaid with reported cumulative

deaths and ICU occupancy (black dots).
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Figure 11 – Histograms of prior and posterior epidemiological parameter distributions for

the Philippines national model. MHS refers to Minimum Health Standards. All parameters

with the term “adjuster” allow for modification to the best estimates from the literature

(i.e., the priors). The parameter value of the posterior provides the odds ratio used in the

model to adjust the odds of an event. For example, “infection fatality rate” was adjusted

downwards in the majority of the posterior probability distribution, but adjusted upwards

as much as 1·5-1·75 fold in a small minority.
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Figure 12 – Model estimated case detection rates varied across regions and through time,

peaking at ¡50%. We derived values for the symptomatic cases detected through time from

the daily number of tests performed, the population size, and the calibrated parameter

representing the value of the case detection rate given a testing rate of one test per 10,000

persons per day. We provide a list of laboratory facilities that conducted tests in the three

regional models in Table S1.
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Figure 13 – Epidemic scenario projections for Calabarzon. Median estimates of daily con-

firmed cases expected under different policy changes (left). Median estimates of daily con-

firmed cases (lines) with 25th to 75th centiles (dark shading) and 2·5th to 97·5th centiles

(light shading) for the baseline scenario (where current conditions are carried forward) and

for the scenario where MHS policy ends. Note the different y-axes on each plot.
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Figure 14 – Epidemic scenario projections for Central Visayas. Median estimates of daily

confirmed cases expected under different policy changes (left). Median estimates of daily

confirmed cases (lines) with 25th to 75th centiles (dark shading) and 2·5th to 97·5th centiles

(light shading) for the baseline scenario (where current conditions are carried forward) and

for the scenario where MHS policy ends. Note the different y-axes on each plot.
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Figure 15 – Epidemic scenario projections for the National Capital Region. Median es-

timates of daily confirmed cases expected under different policy changes (left). Median

estimates of daily confirmed cases (lines) with 25th to 75th centiles (dark shading) and

2·5th to 97·5th centiles (light shading) for the baseline scenario (where current conditions

are carried forward) and for the scenario where MHS policy ends. Note the different y-axes

on each plot.
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