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Abstract 
A new variant of SARS-CoV-2 has emerged which is increasing in frequency, primarily in the 
South East of England (lineage B.1.1.7 ​(​1​)​; VUI-202012/01). One potential hypothesis is that 
infection with the new variant results in higher viral loads, which in turn may make the virus 
more transmissible. We found higher (sequence derived) viral loads in samples from 
individuals infected with the new variant with median inferred viral loads were three-fold 
higher in individuals with the new variant. Most of the new variants were sampled in Kent 
and Greater London. We observed higher viral loads in Kent compared to Greater London 
for both the new variant and other circulating lineages. Outside Greater London, the variant 
has higher viral loads, whereas within Greater London, the new variant does not have 
significantly higher viral loads compared to other circulating lineages. Higher variant viral 
loads outside Greater London could be due to demographic effects, such as a faster variant 
growth rate compared to other lineages or concentration in particular age-groups. However, 
our analysis does not exclude a causal link between infection with the new variant and 
higher viral loads. This is a preliminary analysis and further work is needed to investigate 
any potential causal link between infection with this new variant and higher viral loads, and 
whether this results in higher transmissibility, severity of infection, or affects relative rates of 
symptomatic and asymptomatic infection 
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Document Description and Purpose: 
This is an updated report submitted to NERVTAG in December 2020 as part of urgent 
investigations into the new variant of SARS-COV-2 (VUI-202012/01). It makes full use of 
(and is restricted to) all sequence data and associated metadata available to us at the time 
this original report was submitted and remains provisional. Under normal circumstances 
more genomes and metadata would be obtained and included before making this report 
public. We will update this preprint when more genomes and metadata are available and 
before submitting for peer review.  
 
Background 
On 14 December 2020 a new variant of SARS-CoV-2 circulating in the UK was reported ​(​2​, 
3​)​, characterised by the N501Y mutation in the receptor binding domain (RBD) of Spike, the 
ΔH69/V70 deletion, and numerous other mutations ​(​1​)​. The rise in frequency of this variant 
is associated with a sharp increase in reported cases in the South East of England, raising 
concerns that the variant could be more transmissible. We performed a rapid analysis to 
investigate whether the new variant is associated with higher viral loads, since higher viral 
loads may indicate increased transmissibility.  
 
Methods 
As members of the COG-UK consortium (​https://www.cogconsortium.uk/​), we sequenced 
RT-QPCR SARS-CoV-2 positive samples originating from four UK Lighthouse laboratories, 
which provide Pillar 2 COVID-19 testing services. The samples were sequenced using 
veSEQ, our quantitative sequencing approach for which the number of unique mapped 
reads is correlated with, and thus can be used as a proxy for, viral load. For a full description 
of the sequencing protocol see ​(​4​, ​5 ​)​.  
 
We used log ​10​ (mapped reads) as a proxy for viral load (see fig S1 in ​(​5​)​). Comparisons 
between distributions of log ​10​ (mapped reads) were made using Welsh t-test (two-tailed), 
with p-values combined using Stouffer’s method where appropriate. We also performed a 
multivariate logistic regression analysis. 
 
Number of unique mapped reads is negatively correlated with Ct value 
Given the known negative correlation between viral load and cycle threshold (Ct) values ​(​6​) 
obtained during PCR testing ​(​7​)​, we first confirmed a strong negative correlation between 
log ​10​(unique mapped reads) and Ct values for samples that we sequenced from Lighthouse 
laboratories (linear regression, r​2​=0.43, ​p​<<0.001, Fig. 1).  
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Figure 1. A strong negative correlation between Ct value and log ​10​(number of mapped reads). 
Number of uniquely mapped reads per sample can be used as a proxy for viral load. The Ct value 
shown is the maximum Ct value obtained from Majora (the COG database) from retrospective data for 
all Lighthouse laboratories that supply Ct data; log ​10 ​ of uniquely mapped (deduplicated) reads 
obtained with veSEQ platform correlates well with Ct. This does not include samples in this report 
since Ct values were not yet available.  
 
 
The new variant is associated with higher viral loads 
The N501Y mutation is strongly linked with other mutations characterising the new variant 
(VUI-202012/01) in our dataset, including the ΔH69/V70 deletion, and therefore we used 
Y501 as a marker of the new variant. The ΔH69/V70 deletion alone is not a specific marker 
of VUI-202012/01 in our data, while lineage B.1.1.70, which is currently present in Wales 
and in some cases carries Y501 but never the deletion, was not present in our data. 
 
We identified 88 samples that produced consensus sequences with the Y501 variant. All 
variant samples were taken between 31 Oct 2020 and 13 Nov 2020, and therefore we only 
considered samples (Y501 and N501) taken during this period, since Ct values have been 
shown to vary by calendar time ​(​7​)​.  
 
When comparing the number of unique mapped reads in the Y501 variant samples (median 
log ​10​(reads)=4.64, ​N​=88) with that in the to N501 samples (median log ​10​(reads)=4.16, 
N​=1299), we found higher counts in the former (Welch ​t​-Test ​p ​=0.014; Fig. 1). This is 
equivalent to around 3-fold higher median viral loads in the Y501 variant samples compared 
to N501 samples.  
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Figure 1: Higher numbers of mapped reads in samples with the Y501 variant. ​Box and scatter 
plots of unique mapped reads, stratified according to variant. Points within each batch are jittered to 
aid visualisation. Horizontal lines in boxplots represent the median and the interquartile range. The 
Y501 variant has a higher number of mapped reads, whereas the ΔH69/V70 deletion only has a 
higher number of mapped reads in the presence of the N501Y mutation. 
 
 
This result remained significant when we controlled for batch (Fig. 3a, ​p​=0.011, combined 
p​-value via Stouffer’s method), but not Lighthouse laboratory (Fig. 3b, ​p​=0.052). The 
correlation between the new variant and viral load is also associated with a relative paucity 
of samples with lower (<10 ​3​) mapped reads among Y501 samples (Fig. 1, ​p=​0.0053, 
chi-squared test; 10 ​3​ logged mapped reads is equivalent to a viral load of ~10 ​4​ copies 
per reaction, max Ct~28 ​). When comparing samples with just the ΔH69/V70 deletion 
(without the Y501 variant) to samples without the deletion, we did not find a significant 
difference in log ​10​(reads) (​p​=0.86; controlling for batch ​p​=0.56, and for Lighthouse lab 
p​=0.54) (Fig. 1). 
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Figure 3. Higher numbers of mapped reads in samples exhibiting the Y501 variant 
Box and scatter plots of unique mapped reads, stratified by (a) batch date and (b) anonymised 
Lighthouse lab. There is no significant difference among batches or Lighthouse labs for N501 samples 
(p>0.1 for all pairwise comparisons).  Points within each batch are jittered to aid visualisation. 
Horizontal lines in boxplots represent the median and the interquartile range. 
 
 
Viral loads differ by sampling location 
To test whether the difference in viral loads for samples with the new variant could in part be 
explained by geographic effects, we considered the sampling location (adm2 district) where 
this information was available. Of the 88 Y501 variants sampled, 24 were in Greater London, 
46 in Kent, and in lower numbers (​N​=1-5) in other areas (Bristol, Essex, Hampshire, 
Leicestershire, Norfolk, Surrey and West Sussex). Regardless of variant presence, all 
samples from Greater London had significantly lower viral loads than those from other 
locations (​p​=0.0016, Welch’s ​t​-test), and the association between Y501 and higher viral load 
was not significant in this region (p=0.91; Fig. 4). Outside Greater London, viral loads for 
Y501 were significantly higher than for N501 (​p​=0.0068). Within Kent, the location with the 
greatest number of Y501 samples, Y501 viral loads were not significantly higher than N501 
viral loads (​p​=0.089). These results indicate a correlation between infection with the new 
variant (VUI-202012/01) and (inferred) viral load outside Greater London, although we are 
currently underpowered to draw firm conclusions. The lack of association within Greater 
London could be due to lack of power, or to demographic or epidemiological differences in 
London compared with the other locations.  
 
 

 

a) b) 
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Figure 4. Number of mapped reads varies by sampling location 
Box and scatter plots of unique mapped reads, stratified by sampling location. Points within each 
batch are jittered to aid visualisation. Horizontal lines in boxplots represent the median and the 
interquartile range. Only sampling locations with at least one Y501 sample were included. 
 
 
In a multivariate logistic regression analysis for variables associated with higher viral load 
(Table 1), the Y501 variant was associated with a fivefold increase in odds of >=10 ​3 ​mapped 
reads (​p​=0.036). The fitted model with interaction terms suggest a much smaller effect of the 
variant outside Kent, with the total odds increase reduced to 1.75 for Greater London and 
1.24 for other regions, but the interaction term coefficients were not statistically significant 
(​p​=0.27 and ​p​=0.16, respectively). Thus, if the association of the variant with a paucity of low 
viral load samples is stronger in Kent compared to other areas (e.g. due to epidemiological, 
demographic, or sampling differences), we lack the necessary power to demonstrate it. No 
other variables showed evidence of an association.  

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 15, 2021. ; https://doi.org/10.1101/2021.01.12.20249080doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.12.20249080
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1. ​Logistic regression analysis, identifying variables associated with >=10 ​3 ​mapped 
reads.  

 
Odds ratios for each variable and 95% confidence intervals for those ratios are presented. Lighthouse 
labs are anonymised as in Fig. 2. 
 
Caveats and Limitations 
This is a preliminary analysis, and other factors could explain the (inferred) higher viral loads 
in samples with the new variant (VUI-202012/01), in addition to a working hypothesis that 
there is a causal effect of the new variant on within-host virus abundance. Whether the 
correlation is causative (infections with the new variant have higher viral loads) or correlative 
(e.g. due to epidemiological dynamics, demographics of individuals infected with the new 
variant, and/or sampling) warrants further study. 
 
Individuals contributing samples in this analysis were tested as part of the test and trace 
program, which is primarily aimed towards individuals seeking a test following the onset of 
symptoms. We observed a broad spectrum of viral loads among the samples we sequenced. 
Given known associations between lower viral loads and later infection ​(​8​)​, and higher viral 
loads at the onset of symptoms, this suggests our full dataset consists of individuals in both 
early and late stages of symptomatic infection. Whilst we do not ​a priori ​expect there to be a 
systematic difference in the timing of sampling relative to infection, in an exponentially 
growing population the expectation is to sample relatively more people early in infection ​(​9​)​. 
Whether or not early sampling-bias supports an effect on inferred viral loads will depend on 
the relative epidemiological dynamics of the new and other variants. If, for example, 
VUI-202012/01 is growing faster, this could result in a bias for it to be sampled earlier. This 
is consistent with the relative paucity of VUI-202012/01 samples with low viral load.  
 
In addition, VUI-202012/01 might be circulating within particular demographics (e.g. age 
groups) that tend to have higher viral loads when sampled. This may explain the apparently 
different patterns in Greater London and elsewhere. Focussed transmission within a 
particular demographic group is also more likely during the early stages of epidemic growth 
of a given lineage, before it disperses into the wider population. We were unable to test 
these hypotheses as we did not have demographic data relating to the sampled individuals 
with the new variant. We also cannot rule out other additional confounding effects and 
recommend that such effects are investigated further. 
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Future prospects 
A number of processess could have caused the rapid growth of the new variant 
(VUI-202012/01), including founder effects, or biological mechanisms that increase its 
transmissibility. Higher viral loads are one such potential mechanism: Transmissibility of 
viruses is understood to be higher in individuals who exhibit higher viral loads ​(​10​)​ and in 
HIV viral load is partly determined by virus genotype ​(​11​)​. Our observation of higher inferred 
viral loads in individuals infected with the new variant suggests that increased transmissibility 
of the new variant is plausible, but important caveats remain. 
 
We recommend further investigations to evaluate this hypothesis. We note that we have 
used Y501 as a marker for the new variant; a large number of other mutations also 
characterise this new variant lineage ​(​1​)​, and therefore Y501 ​per se ​might not be causing the 
effect (if there is one). We also note that higher viral loads can be associated with higher 
levels of viral virulence, and therefore links between the new variant and the severity of 
infection should be monitored carefully ​(​12​)​. 
 
Whether or not observed higher viral loads associated with this variant are a direct cause of 
infection with the variant, a consequence of faster epidemic growth, or linked to particular 
demographics, our data are consistent with rapid growth of this specific lineage.  
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