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Methods 

Single country SIR model 

 

We start from the standard SIR model (see (16) for a history of this model). The equations of 

the SIR model are 

𝑑𝑆

𝑑𝑡
= −β𝐼𝑆 (1) 

𝑑𝐼

𝑑𝑡
= β𝐼𝑆 − ν𝐼 (2) 

𝑑𝑅

𝑑𝑡
= ν𝐼 (3) 

 

where S, I and R are respectively the fraction of susceptible, infected and recovered people. β 

and ν are respectively the infectiousness of and recovery rate from the disease. Note that β are 

ν depend on policy choices that are, for instance, mask wearing, social distancing, quarantine 

measures, health care expenditures. Note also that, if there is a vaccination that guarantees 

temporary immunization, also the level 𝑆0 of S that we start from is a policy choice: how many 

people to maintain vaccinated in steady state. 

We call 𝑅0 = 𝛽/𝜈. The system, in a situation in which I = 0 and R ≥ 0, is stable to 

perturbations if S(t=0) < 1/R0, which is to say that R > 1 − 1/R0. We assume R0 > 1, to consider 

the interesting case where computations are not trivial, and we call 𝑃𝑐 = 1 − 1/𝑅0 the threshold 

for herd immunity. 

Starting form a stable situation, with S = S0, we can compute the number of additional 

infection (leading eventually to recoveries) if there is an initial shock I(t=0). Starting by 

dividing (2) by (1), We have:   

𝑑𝐼

𝑑𝑆
= −1 +

1

𝑆𝑅0
 

𝑑𝐼 = (−1 +
1

𝑆𝑅0
) 𝑑𝑆 (4) 

∫ 𝑑𝐼
∞

0

= ∫ (−1 +
1

𝑆𝑅0
) 𝑑𝑆

∞

0

 

[𝐼]0
∞ = [−𝑆 +

log(𝑆)

𝑅0
]

0

∞

 

𝐼(𝑡 = 0) = ϕ(𝑆(𝑡 = 0)) − ϕ(𝑆∞) 

 



where we have called ϕ(𝑥) = 𝑥 −
log(𝑥)

𝑅0
. 

So, how many additional people will get infected can be obtained (in general, non–

analytically) from this 𝜙(𝑥) function. 

The infection can spread to a limited part of the population (and not many) only if φ is 

decreasing in s0 (which is just the previous condition S0 < 1/R0, which means starting from a 

stable situations). 

The multiplicative effect of a small shock, when starting from a stable steady, state can be 

computed as 1/𝜙′, which we define as δ =
𝑆(𝑡=0)𝑅0

1−𝑆(𝑡=0)𝑅0
. This number is greater when we are 

close to the minimal herd immunity (at the limit 𝑆(𝑡 = 0) → 1/R0 it is infinite), and goes to 0 

as 𝑆(𝑡 = 0)  → 0. This means that if the system is stable, but close to the minimal level of herd 

immunity, a very small shock can still propagate a lot. In this way, we relate the propagation 

of small shocks to the three policy variables that a country has: β, ν and 𝑆(𝑡 = 0). δ is increasing 

in β and R0, and it is decreasing in ν. 

Note that δ can be obtained directly from (4), without taking the integrals. This is because we 

are just approximating linearly the effects of small shocks. 

Network of countries 

Consider a situation where there are n connected countries. Each country j has its own 𝑅0,𝑗 =

β𝑗/ν𝑗  and its own 𝑃𝑐,𝑗. All these variables are heterogeneous across countries because they 

depend on the medical and social policies that are chosen 

Consider a network G where 𝑔𝑘,𝑗 is the number of people moving from country k visiting 

country j, divided by the population of country j. G is null in the diagonal. 

In the network, equation (2) becomes: 

𝑑𝐼𝑗

𝑑𝑡
= β𝑗 (𝐼𝑗 + ∑ 𝐼𝑘𝑔𝑘𝑗

𝑘

) 𝑆𝑗 − ν𝑗𝐼𝑗  

  

In this case we can include the network effect in equation (4), obtaining: 

𝑑𝐼𝑗 = (−1 +
1

𝑆𝑗𝑅0,𝑗
− ∑ 𝑔𝑘𝑗

𝐼𝑘

𝐼𝑗

𝑛
𝑘=1 ) 𝑑𝑆𝑗 (5) 

 

Let us call D the diagonal matrix where the diagonal element 𝑑𝑗𝑗 is 
1

𝑆𝑗𝑅0,𝑗
. I is the identity 

matrix. Then, under the assumptions that for small initial shocks we have 
𝐼𝑘

𝐼𝑗
≃ 1, we can write 

equation (5) in vectorial form as 

𝑑𝐼 = (−𝐼 + 𝐷 − 𝐺)𝑑𝑆 

 

This can be inverted, to find with a linear approximation how many new infected (eventually 

recovered) will result from an initial shock I(t=0). That is:1 

 
1 One way to interpret this expression is with a discrete time approach. The first–order effect of the contagion 

𝑑𝑖 is (𝑫 − 𝑮)𝒅�⃗�: the diagonal element djj accounts for recoveries, while 𝑮 has all the network effects – we have a 



𝑑𝑠 = (−𝑰 + 𝑫 − 𝑮)−1𝑑𝑖 

So, matrix (−I + D − G)−1 tells us how the level of infection is from each country to any other 

country. 

To have a clearer interpretation, let �⃗⃗⃗� be the inhabitants of each country and 𝐷𝑖𝑎𝑔(�⃗⃗⃗�) be the 

diagonal matrix in which the diagonal consists of vector �⃗⃗⃗�. 

With this notation in mind, the matrix 

𝐷𝑖𝑎𝑔(�⃗⃗⃗�)(−𝑰 + 𝑫 − 𝑮)−1𝐷𝑖𝑎𝑔(�⃗⃗⃗�)−1 (6) 

tells how many people in each column–country will be infected if one person is infected in 

row–country. 

Measures of risk 

We can start from the matrix expressed in (6) to identify some intuitive measures of risk for 

the countries. To begin, consider that if we set 𝑑𝑖 to a vector 1⃗⃗ of all 1’s, we obtain a vector 

𝑐 = (−𝑰 + 𝑫 − 𝑮)−11⃗⃗. A country j that has cj relatively higher with respect to other countries, 

will be more at risk of propagation of the infection among its population.2 So, this vector tell 

us which country is more susceptible to the propagation of the infection. 

 

This approach allows us to study how a country can reduce its own cj playing at one side 

with the medical parameters βj (lockdown measures, policies on masks...), νj (better cures, 

isolation of infected people...) and R(t=0),j (number of vaccinated people, once a vaccine is 

available) – all these factors affect matrix D; at the other side with G (possibly closing borders, 

or controlling people entering the country). Vector 𝑐 includes all these aspects and takes into 

account the externalities between countries. 

The problem with vector  𝑐  is that it has not an immediate intuitive interpretation. Now, to 

express more intuitive measures, we need a vector  �⃗�  assigning the probability that a first 

positive infect appears in each country. We do this by obtaining two vectors. 

First, we consider which country is more at risk. 

𝐷𝑖𝑎𝑔(�⃗⃗⃗�)(−𝑰 + 𝑫 − 𝑮)−1𝐷𝑖𝑎𝑔(�⃗⃗⃗�)−1�⃗� 

 

is a column vector that says how at risk each country is. Entry i of this vector says, in 

expectation, how many people will become infected in country i if a first person is infected in 

any of the countries. 

 

minus sign because this is the decrease in susceptible people. But there is a second order effect in the second step, 

which is (𝑫 − 𝑮)𝟐𝒅�⃗�; and then (𝑫 − 𝑮)𝟑𝒅𝒊, and so on...This amount exactly to 

∑(𝐷 − 𝐺)𝑡𝑑
∞

𝑡=1

𝑖 = (−𝑰 + 𝑫 − 𝑮)−1𝑑𝑖 

This formula is equivalent to the formula for Bonacich centrality [17, 18]. 

2 Note that, without network effects, this expression will give us 𝑐𝑗 = δ𝑗 =
𝑠0,𝑗ρ𝑗

1−𝑠0,𝑗ρ𝑗
, which was the result in 

isolation. 



A simple candidate for �⃗� is  �⃗⃗⃗�/(�⃗⃗⃗� ⋅ 1⃗⃗), where 1⃗⃗ is a vector of all 1’s and · is the vector 

multiplication. This assumes that the probability that an infection starts is a country is simply 

proportional to its population. Under this assumption, the previous vector is 

𝐷𝑖𝑎𝑔(�⃗�)(−𝑰 + 𝑫 − 𝑮)−1 (7) 

We call this the risk measure.  

Second, we consider which country is more dangerous. 

1⃗⃗′𝐷𝑖𝑎𝑔(�⃗⃗⃗�)(−𝑰 + 𝑫 − 𝑮)−1𝐷𝑖𝑎𝑔(�⃗⃗⃗�)−1 (8) 

 

is a row vector that says how dangerous each country is. Entry i in this vector tells us how 

many infections will be caused by a person getting infected in country i. We call this the danger 

measure.3 One could also change the formula in (8), so that the diagonal elements are removed 

from (−I + D − G)−1: in this case we would have a danger to others measure, because we 

should not compute those that eventually become infected in the country where the disease 

originated. 

These result are valid for small effects, that are obtained when all countries have herd 

immunity. To study the effects when a country is below herd immunity we must rely on 

simulations. 

Simulations 

The marginal effect of vaccinations 

We proceed by simulating the system described by equations (1), (2), and (3). The data on 

population were retrieved from The World Bank. We first simulate the model for the US, to 

study which fraction of the population would be eventually reached in case of an initial shock 

of 1000 people infected at time 0. We let the model run for 10 years and ignore the rest of the 

network. Figure S3 shows how the fraction of population eventually reached by the infection 

is a function of the initial share of susceptible. This analysis allows to study the reduction in 

the number of infections that can be obtained by reducing by 30 million the number of 

susceptible individuals in the country, this can be interpreted as the marginal effect of 60 

million doses of vaccine. This number is function of the initial share of susceptible individuals. 

When the initial share of susceptible individuals is low, the reduction in the number of 

infections is close to 0, as the initial shock would propagate little across the population. The 

number grows and reaches a peak that corresponds to the herd immunity threshold. In this point 

the extra doses of vaccine would have the largest impact as they would allow the system to 

reach herd immunity. Figure S4 shows the same quantities for 2 million doses.  

Simulations with data on flights 

We proceed by simulating the system described by equations (1), (5), and (3) using data on 

flights for the year 2019. Data were obtained from ICAO and contain information on the 

number of passengers in international flights. In the network we therefore use countries as 

nodes. Links represent the average daily number of passengers going from one country to 

another. A graphical representation of this network is in Figure S1. Figure S2 shows the same 

network, where nodes sizes are proportional to the risk measure defined above.  

 
3 Note that, even if matrix G is symmetric, risk measure from (7) and danger measure from (8) are different, 

because of the different population size of the countries. 



We follow (10, 19) in setting γ = 1/18 that corresponds to an average duration of illness of 

18 days. We simulate the model under various assumptions for the level of susceptible 

individuals in each country.4 When considering countries belonging to COVAX AMC, we 

aggregate so that they appear as a single unit. To do that, we take the total population summing 

across all countries. For the network, we perform a similar operation, considering all flights 

that connect any of the COVAX AMC countries with any other country in the network. 

 

COVAX AMC countries 
 

COVAX AMC Lower Income Countries: Afghanistan, Benin, Burkina Faso, Burundi, Central 

African Republic, Chad, Dem. Rep. of the Congo, Eritrea, Ethiopia, Gambia, Guinea, Guinea-

Bissau, Haiti, Liberia, Madagascar, Malawi, Mali, Mozambique, Nepal, Niger, Rwanda, Sierra 

Leone, Somalia, South Sudan, Syrian Arab Republic, Tajikistan, Togo, Uganda, United 

Republic of Tanzania, Yemen Rep. 

COVAX AMC Lower and Middle Income Countries: Afghanistan, Algeria, Angola, 

Bangladesh, Benin, Bhutan, Bolivia, Burkina Faso, Burundi, Cabo Verde, Cambodia, 

Cameroon, Central African Republic, Chad, Comoros, Congo, Cote d’Ivoire, Dem. Rep. of the 

Congo, Djibouti, Egypt, El Salvador, Eritrea, Eswatini, Ethiopia, Gambia, Ghana, Guinea, 

Guinea-Bissau, Haiti, Honduras, India, Indonesia, Kenya, Kiribati, Kyrgyzstan, Lao PDR, 

Lesotho, Liberia, Madagascar, Malawi, Mali, Mauritania, Micronesia Fed. Sts., Mongolia, 

Morocco, Mozambique, Myanmar, Nepal, Nicaragua, Niger, Nigeria, Pakistan, Papua New 

Guinea, Philippines, Rwanda, Sao Tome and Principe, Senegal, Sierra Leone, Solomon Islands, 

Somalia, South Sudan, Sri Lanka, Sudan, Syrian Arab Republic, Tajikistan, Timor-Leste, 

Togo, Tunisia, Uganda, Ukraine, United Republic of Tanzania, Uzbekistan, Vanuatu, Viet 

nam, West Bank and Gaza, Yemen, Rep., Zambia, Zimbabwe. 

 

Methods References 

1. J. A. P. Heesterbeek. A brief history of R0 and a recipe for its calculation. Acta 

biotheoretica. 50, 189–204 (2002). 

2. P. Bonacich. Power and centrality: A family of measures. American journal of 

sociology. 92 1170–1182 (1987). 

3. V. Dequiedt and Y. Zenou. Local and consistent centrality measures in parameterized 

networks. Mathematical Social Sciences. 88, 28–36 (2017). 

4. H. Wang, Z. Wang, Y. Dong, R. Chang,C. Xu, Y. 

Xu, X. Yu, S. Zhang, L.Tsamlag, M. Shang, J. Huang, Y. Wang, G. Xu, T. 

Shen, X. Zhang, Y. Cai Phase-adjusted estimation of the number of Coronavirus 

Disease 2019 cases in Wuhan, China. Cell Discov 6, 10 (2020).  

 

 

 

 

 

 

 

4 To solve the system of differential equations we use SciPy integrate.solve ivp solver, using Adams/BDF 

method. 



Extended data figure 

 

 

Fig S1. Network of Flights. Nodes are countries and the size depends on the total inflow of 

passengers reaching each country. A direct link denotes the existence of a direct commercial 

flight between the two countries. 

 



 
 

Fig S2. Network of Flights. Nodes are countries and the size are proportional to the risk 

measure, calculated assigning a share of susceptible equal to 35% to every country. A direct 

link denotes the existence of a direct commercial flight between the two countries. 
 



 

Fig S3. Marginal effects of additional vaccinations. (A) The figure shows the number of 

people eventually reached by the infection after 1000 individuals get infected at time 0. The 

number is expressed as a function of the initial share of susceptible individuals. (B) The 

figure shows the reduction in the number of infections that would be determined by 60 

million additional doses (30 million immune individuals) done before the start of the 

contagion at time 0. This number varies as it depends on the spread of the disease determined 

by the share of susceptible individuals. 

 

 



 
Fig S4. Marginal effects of additional vaccinations. (A) The figure shows the number of 

people eventually reached by the infection after 1000 individuals get infected at time 0. The 

number is expressed as a function of the initial share of susceptible individuals. (B) The 

figure shows the reduction in the number of infections that would be determined by 2 million 

additional doses (1 million immune individuals) done before the start of the contagion at time 

0. This number varies as it depends on the spread of the disease determined by the share of 

susceptible individuals. 
 



 

 

 

 

Fig S5. Share of individuals reached by the infection in the US, difference between 

uncooperative and cooperative scenarios. Difference between the share of infected in the US 

after 60mln extra doses are distributed in the US (uncooperative scenario) and the share of 

infected in the US after the same number of doses is distributed in COVAX AMC lower and 

middle income countries (cooperative scenario) for different values of R0 and susceptibility 

levels. Positive numbers (in blue) indicate a lower share of infected in the cooperative scenario. 

The shares of infected in the US are estimated using a SIR compartmental model and consider 

the whole evolution of contagions over the time span of 10 years. As initial condition, at time 

0 we set the number of infected individuals equal to 1000 in COVAX AMC lower and middle 

income countries and 0 everywhere else. (A) Difference in shares of infected, under the 

assumption that R0 = 1.8. (B) As (A), but assuming R0 = 2.5. Each point corresponds to a 

different combination of share of susceptible at time 0 in the US and in the COVAX AMC 

lower and middle income countries. (C) As (A), but assuming R0 = 3.2. 
 


