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Abstract 

Background: Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain 

stimulation tool potentially modulating pathological brain activity. Its clinical effectiveness is 

hampered by varying results and characterized by inter-individual variability in treatment 

responses. RTMS individualization might constitute a useful strategy to overcome this variability. 

A precondition for this approach would be that repeatedly applied protocols result in reliable 

effects. The condition tinnitus provides the advantage of immediate behavioral consequences 

(tinnitus loudness changes) after interventions and thus offers an excellent model to exemplify 

TMS personalization. Objective: The aim was to investigate the test-retest reliability of short rTMS 

stimulations in modifying tinnitus loudness and oscillatory brain activity as well as to examine the 

feasibility of rTMS individualization in tinnitus. Methods: Three short verum (1Hz, 10Hz, 20Hz; 

200 pulses) and one sham (0.1Hz; 20 pulses) rTMS protocol were administered on two different 

days in 22 tinnitus patients. Before and after each protocol, oscillatory brain activity was recorded 

with electroencephalography (EEG) together with behavioral tinnitus loudness ratings. Stimulation 

responders were identified via consistent and sham-superior behavioral or electrophysiological 

responses according to the prevalent neurophysiological models for tinnitus. Results: It was 

feasible to identify individualized rTMS protocols featuring reliable tinnitus loudness changes 

(55% responder), alpha increases (91% responder) and gamma decreases (100% responder) 

respectively. Contrary, test-retest correlation analyses per protocol on a group-level were not 

significant neither for behavioral nor for electrophysiological effects. No associations between 

behavioral and EEG responses were given. Conclusion: RTMS individualization via behavioral 

and electrophysiological data in tinnitus can be considered as a feasible approach to overcome low 

reliability on group-level. The present results open the discussion favoring personalization utilizing 

neurophysiological markers rather than behavioral responses. These insights are not only useful for 

the rTMS treatment of tinnitus but also for neuromodulation interventions in other pathologies as 

our results suggest that the individualization of stimulation protocols is feasible despite absent 

group-level reliability. 
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1. Introduction 

With a prevalence of about 10% of the population tinnitus is a rather common condition, 

characterized by the permanent perception of ringing or hissing in the absence of a corresponding 

external stimulus. The majority of tinnitus cases are caused by cochlear damages respectively 

hearing loss (Baguley et al., 2013; Berthold Langguth et al., 2013; McCormack et al., 2016), 

whereby the absence of auditory input from the periphery provokes maladaptive neural changes 

which ultimately manifest in hyperactivity of auditory and non-auditory cortical regions. These 

pathological alterations of the central nervous system are assumed to underly the perception of 

tinnitus (Eggermont, 2007; Eggermont & Roberts, 2012; Eggermont & Tass, 2015; Henry et al., 

2014; Roberts et al., 2010). 

Recent neuromodulation techniques attempt to reverse or modulate these pathological alterations 

(for a recent overview see Langguth, 2020). One of these is repetitive transcranial magnetic 

stimulation (rTMS), a non-invasive brain stimulation tool with the capability to evoke neuroplastic 

changes by a rhythmic administration of brief electromagnetic pulses (Hallett, 2007; Hoogendam 

et al., 2010; Hartwig Roman Siebner & Rothwell, 2003). By means of low frequency rTMS it is 

possible to inhibit cortical excitability whereas high frequency protocols are assumed to increase 

cortical excitability These statements should be seen as a rule of thumb as several findings show 

high inter- and intra-individual variability of rTMS with a lot of subjects not behaving accordingly 

(P. Fitzgerald, 2002; P. B. Fitzgerald et al., 2006; Klomjai et al., 2015; Rossini et al., 2015). 

On this account, temporal 1Hz rTMS was applied in order to inhibit tinnitus-associated 

hyperactivity of the auditory cortex and consequently suppress the tinnitus percept (Eichhammer 

et al., 2003; Berthold Langguth et al., 2003).  

For many years various treatment trials deployed left temporal low frequency rTMS showing 

greatly varying findings and high inter-individual variability in responses (for an overview see 
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Schoisswohl et al., 2019). Given this backdrop, additional studies also examined the consequences 

of other rTMS approaches such as multi-site stimulation protocols (Lehner et al., 2013, 2016), 

prefrontal cortex stimulation (De Ridder et al., 2013; Noh et al., 2017; Vanneste & De Ridder, 

2013) or high frequency rTMS (Forogh et al., 2014; Khedr et al., 2008, 2010) as well as continuous 

theta-burst stimulations (Forogh et al., 2014; C. Plewnia et al., 2012; Schecklmann et al., 2016) as 

a treatment option for tinnitus. Nevertheless, its clinical effectiveness is still not obvious. Recent 

reviews and meta-analyses conclude that there is no clear indication for an effect (Dong et al., 

2020; Berthold Langguth, 2020; Zenner et al., 2017), while others report potential effectiveness for 

its clinical administration (Lefaucheur et al., 2014; Londero et al., 2018), especially over the 

auditory cortex (Lefebvre-Demers et al., 2020). This lack of evidence may be explained by the fact 

that there is still a certain ambiguity concerning the correct rTMS parameters (e.g., frequency or 

position) for the application in tinnitus. Admittedly, the effects of non-invasive brain stimulation 

methods in general are subject to rigorous intra- and inter-individual variability, conceivably 

caused by a complex interplay of technical and physiological parameters (Guerra et al., 2017; 

López-Alonso et al., 2014; Polanía et al., 2018; Terranova et al., 2019). 

A personalization of stimulation protocols might provide remedy and further enhance efficacy. 

Individualization of magnetic stimulation might be capable of resolving the issue of effect 

variability within the same type of pathology. Its implementation in neuropsychiatric research is 

highly dependent on phenotypes as well as the identification of appropriate and valid clinical or 

physiological outcome measures (Cocchi & Zalesky, 2018; Garnaat et al., 2019). However, tinnitus 

provides the tremendous benefit of direct reactions from the patients’ side by virtue of changes in 

tinnitus perception and can therefore function as a kind of role model in rTMS personalization. 

Test sessions (i.e., short stimulations with recording of immediate responses) and an administration 

of different protocols offer the opportunity to examine the ability of the different protocols to 
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suppress tinnitus loudness in an individual. In several studies it has been demonstrated that tinnitus 

loudness can be suppressed by means of single rTMS sessions for some minutes (Folmer et al., 

2006; Fregni et al., 2006; Lorenz et al., 2010; Meeus et al., 2009; Christian Plewnia et al., 2003), 

and that suppression patterns vary among patients (Müller et al., 2013). The concept of rTMS 

personalization in the clinical context of tinnitus was first introduced by Kreuzer et al. (2017). By 

dint of rTMS test sessions with different types of frequencies and positions, individualized 

protocols for brief tinnitus suppression were identified and further used in the course of a daily 

treatment. These findings emphasize the feasibility of rTMS individualization and imply 

superiority over a standard treatment protocol by means of a higher number of treatment 

responders, even if no statistical differences between the standard and the individualized treatment 

were detected in this relatively small pilot study. In another preliminary work from our group using 

an e-field guided system we were able to demonstrate reliable tinnitus loudness decreases for 

certain stimulation parameters as well as the possibility to individualize rTMS characterized by a 

consistent and sham-controlled tinnitus loudness suppression in five out of five individuals 

(Schoisswohl et al., 2020). Nonetheless, behavioral responses are governed by certain limitations 

such as their highly subjective matter and the difficulty to accurately evaluate minor changes in the 

tinnitus percept in many cases, which might constitute an additional reason for variability in 

responses. 

It is widely established, that tinnitus is accompanied by pathologically altered oscillatory brain 

activity patterns. According to the “Thalamo-cortical Dysrhythmia Model” (TCD), the assumed 

mechanism behind these changes are peripheral deafferentation causing thalamic low frequency 

activity which in turn provokes a boost in neural synchrony and increased gamma activity in 

auditory regions of the cortex (De Ridder, Vanneste, et al., 2015; R. Llinás et al., 2005; R. R. Llinás 

et al., 1999). An expansion of the TCD model termed “Synchronization-by-Loss-of-Inhibition-
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Model” (SLIM), presumes that an ancillary suppression of neurons relevant for inhibition 

additionally causes diminished activity in the alpha frequency range. Moreover pathological 

gamma in tinnitus is prompted by this alpha decrease and the concomitant loss of inhibition (Weisz, 

Dohrmann, et al., 2007). 

Several neurophysiological investigations using electro- or magnetoencephalographic 

measurements revealed decreased activity in the alpha band and increased activity in the delta and 

gamma frequency ranges (Adjamian et al., 2012; Balkenhol et al., 2013; Moazami-Goudarzi et al., 

2010; Schlee et al., 2014; Weisz et al., 2005; Weisz, Müller, et al., 2007). In particular, gamma is 

suggested to be closely related to the actual tinnitus perception (De Ridder, Congedo, et al., 2015; 

van der Loo et al., 2009; Weisz, Müller, et al., 2007). These altered spontaneous brain activities 

might provide a potential indicator to examine the effect of rTMS in tinnitus.  

TMS-EEG investigations have already demonstrated, that rTMS successfully modulates evoked 

and ongoing brain activity with effects exceeding the stimulation offset (neuroplastic 

consequences) (Noda, 2020; Qiu et al., 2019; Thut & Pascual-Leone, 2010). In the clinical context, 

TMS-EEG approaches are already used for several neuropsychiatric conditions such as 

schizophrenia, depression or Alzheimer’s disease in order to identify and investigate the  relevance 

of neurophysiological markers as well as to provide a more profound insight into the neuroplastic 

consequences of rTMS (Hui et al., 2019; Tremblay et al., 2019). In case of tinnitus, a combination 

of rTMS and EEG might not only help to improve our understanding of the pathophysiology and 

altered ongoing brain activity patterns behind tinnitus but also shed light on neurophysiological 

markers for tinnitus suppression. As of yet, only a handful of studies investigated the consequences 

of single rTMS sessions on spontaneous brain activity in tinnitus. Müller et al. (2013) applied 

different stimulation types (1 Hz, continuous theta burst, intermittent theta burst and individual 

alpha frequency rTMS) over the temporal cortex and aimed to detect the most efficient protocol 
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for transient tinnitus suppression per subject. By using magnetencephalography (MEG) they could 

detect a significant increase of alpha power (8 – 12 Hz) in the auditory cortex associated with 

tinnitus suppression. Due to the absence of clear effects on a whole-group level, the authors 

emphasize the relevance of analysis on an individual subject level to unveil the key mechanisms 

behind tinnitus suppression. In this context, especially modulations in the alpha frequency band 

might provide a potential marker for future attempts in individualizing rTMS. Schecklmann et al. 

(2015) compared the neuroplastic consequences of rTMS in tinnitus patients with healthy controls 

and observed rTMS-specific modulations almost entirely for the group of tinnitus patients. A left 

temporal 1 Hz stimulation with 200 pulses decreased power spectra in the delta (2 – 3.5 Hz) and 

theta (4 – 7.5 Hz) frequency ranges as well as increased beta2 (18.5 – 21 Hz) frequency band power 

over frontal areas in tinnitus patients. Right prefrontal cortex 1 Hz stimulation reduced beta3 (21.5 

– 30 Hz) and gamma (30.5 – 44 Hz) band activity in tinnitus patients in temporal areas. In contrast 

the control group exhibited enhanced beta3 and gamma power. Results emphasize the ability to 

modulate tinnitus-related ongoing brain activity or rather to induce neuroplastic changes in tinnitus 

by rTMS in accordance with the TCD model. However, on a behavioral level reliable sham-

controlled decreases in tinnitus loudness were solely present in two out of 20 tinnitus patients (one 

after right prefrontal, one after left temporal rTMS). 

Considering past findings, in particular the ability of certain rTMS protocols to transiently decrease 

tinnitus loudness plus modulate tinnitus-associated oscillatory brain activity, up to now there is no 

convincing data on test-retest reliability of the effects of single session rTMS. A test-retest design 

has the potential to yield essential details about effect-consistency, more specifically if rTMS 

produces reliable and valid modulations. Findings may promote decisions in choosing appropriate 

rTMS protocols for daily treatments. Due to the overall high variability of non-invasive brain 

stimulation effects, it is of utmost importance to identify reliable brain stimulation techniques to 
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cope for this variability. Hence, one of the objectives of the current experiment was to scrutinize 

the test-retest reliability of different rTMS protocols in short-term tinnitus suppression and 

modifying resting state EEG activity. For this purpose the study design used in Schoisswohl et al. 

(2020) with pre-post rTMS tinnitus loudness ratings was expanded by electrophysiological 

measures before and after each rTMS. Furthermore, it was reduced by the factor stimulation 

position since the majority of patients (three out of five) responded to a stimulation over temporo-

parietal regions. A e-field guided stimulation over the left and right temporo-parietal junction 

allows for a more precise investigation of the parameter frequency, since past studies show 

inconsistent results in this regard. 

Beyond that, we wanted to undertake further research on the personalization of rTMS by means of 

the model tinnitus. The aim was to assess the feasibility of identifying an rTMS protocol for 

consistent and sham-superior brief tinnitus suppression per patient (behavioral response). In light 

of previous work from Müller et al. (2013) together with the current prevalent neurophysiological 

models in tinnitus, we wanted to go one step beyond and strive for a rTMS personalization based 

on electrophysiological responses. The specific objective was to ascertain a protocol per patient, 

which is able to produce consistent and sham-superior increases in alpha or decreases in the gamma 

frequency band (EEG response) respectively. Additionally, we were interested if an EEG response 

in the alpha or gamma band is related to a behavioral response and vice versa.  

 

2. Material and Methods 

2.1 Participants 

N = 22 patients (5 female) with chronic subjective tinnitus, recruited from the Interdisciplinary 

Tinnitus Centre in Regensburg, Germany, participated in this experiment. Participants had to 

comply to the following inclusion criteria: age between 18 and 75 years; German-speaking; no or 
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stable treatment with psychoactive drugs; absence of severe somatic, neurological or psychiatric 

conditions (e.g., acute psychosis, severe depression, alcohol and/ or substance abuse or known 

brain tumor); no simultaneous participation in other tinnitus-related experiments or treatments. 

Further, participants had to exhibit no contraindications with respect to TMS (e.g., epilepsy or state 

after traumatic brain injuries; cf. Langguth et al., 2014; Schecklmann et al., 2014) as well as 

magnetic resonance imaging (MRI) (e.g., heart pacemaker, vascular clamp, implanted insulin pump 

or severe claustrophobia). Each participant received detailed clarification about study aim, 

procedure and applied methods as well as potential adverse effects related to TMS and gave written 

informed consent before study start. The study was approved by the ethics committee of the 

University of Regensburg, Germany (ethical approval number: 17-820-101). 

 

2.2 Test session procedure 

Ahead of the rTMS tests sessions, participants’ hearing thresholds for the frequency range of 125 

Hz to 8 kHz were determined by the use of a clinical audiometer (Madsen Midimate, 622D; GN 

Otometrics, Denmark). In addition, structural MRI brain scans (T1) were undertaken with a 

MAGNETOM 1.5 Tesla scanner (Siemens, Germany) for neuronavigated rTMS and participants 

were requested to complete German versions of the Tinnitus Handicap Inventory (THI; Kleinjung 

et al., 2007; Newman et al., 1996) the Tinnitus Sample Case History Questionnaire (TSCHQ; 

Langguth et al., 2007) and the European School for Interdisciplinary Tinnitus Research Screening 

Questionnaire (ESIT-SQ; Genitsaridi et al., 2019). 

The actual rTMS test sessions lasted approximately three hours and took place on two different 

days with a maximum inter-session interval of two days, whereby daytime was always the same (± 

1 hour). Both test session days followed the same procedure. On each day, subjects were stimulated 
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with four different rTMS protocols over the left temporo-parietal junction (TPJ) and with the same 

four protocols over the right TPJ (see section repetitive transcranial magnetic stimulation). Thus, a 

total number of 8 different rTMS protocols was applied on each test session day. Magnetic 

stimulation protocols were administered in a randomized sequence on each day, with the exception 

that the order of hemisphere was inverted (if the stimulation sequence on the first day started over 

the left hemisphere, it began with a stimulation over the right hemisphere on the second day). 

During three minutes before and after each stimulation, patients were requested to focus on their 

tinnitus and verbally rate the current loudness of their tinnitus perception on a numeric rating scale 

ranging from 0% to 110% at seven different points in time with an inter-rating interval of 30 

seconds (T0, T30, T60, T90, T120, T150 and T180). The numeric rating scale was anchored at 0% 

(absence of tinnitus) and at 100% (usually perceived tinnitus loudness level). Concurrent to these 

ratings, resting state oscillatory brain activity was recorded for three minutes each by means of 

EEG. For this purpose, participants were instructed to sit calmly, focus on a certain point in the 

room and avoid unnecessarily eye blinks or muscle movements. Subsequent to each post 

stimulation loudness rating/ EEG recording, participants had to evaluate the level of discomfort 

caused by the applied rTMS protocol on a numeric rating scale from 0 to 10, whereas 10 

corresponds to utmost discomfort or rather intolerability. Figure 1 provides an illustration of the 

entire test session proceeding.  

 

2.3. Repetitive transcranial magnetic stimulation (rTMS) 

An e-field guided rTMS system (NBT System 2; Nexstim Plc., Finland) together with individual 

structural MRI scans (T1) was utilized for the test sessions. Prior to the first session, participants’ 

resting motor threshold (RMT) was determined according to the same procedure as already 

described in Schoisswohl et al. (2020). Thereby, various positions over the left primary motor 
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cortex were stimulated until several motor evoked potentials (MEP) derived from the thenar 

muscles of the right hand with a peak-to-peak amplitude of > 50 μV were visible. The stimulation 

position with the highest MEP amplitude was repeated via the neuronavigation system and single 

pulses with intensity shifts were applied. The lowest stimulation intensity which produced MEPs 

with an amplitude of at least 50 μV in half of the administered pulses was defined as subjects’ 

RMT. Additionally, the RMT determination was repeated with a mounted EEG cap using the same 

motor hotspot. Magnetic stimulation consisted of 1 Hz, 10 Hz and 20 Hz protocols with 200 pulses 

each at 110% RMT, whereas a series of 20 pulses at 0.1 Hz was deployed as an active control 

condition (sham) with no assumed neuroplastic consequences (Chen et al., 1997; Kumru et al., 

2017). Each protocol was administered over the left and right TPJ, resulting in a total number of 

eight different rTMS protocols. An uncooled coil was used for the test sessions, as the cooled coil 

produces additional noise and we aimed at minimizing the stimulation noise, as it could confound 

both behavioral and neurophysiological effects. Stimulation positions were localized according to 

the electrode positions CP5 and CP6 (10-20 System). By virtue of the application of an e-field 

guided neuronavigation system and the opportunity for online visualization of strength and 

direction of the TMS-induced e-field on subjects’ anatomical scans, each stimulation was 

administered with the induced e-field perpendicular to the sulcus of the brain area of interest. In 

order to ensure that the stimulation positions respectively the induced e-field remained the same 

over the two test sessions, both electrode positions were tagged with a digitization pen and marked 

on the individual anatomical images. Next, the coil was placed accordingly, a single pulse with an 

intensity of 10% RMT was given and the corresponding position of the coil was saved in the 

neuronavigation system. With the aid of a system-intern aiming tool, the exact position of the coil 

could be repeated with respect to centering, rotation and tilting. After each protocol the position 
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was verified and adjusted if necessary. For safety reasons all participants were wearing in-ear plugs 

during the whole stimulation procedure.  

 

2.4.Electroencephalography 

2.4.1. Data acquisition and preprocessing 

Participants’ electrophysiological resting state brain activity was recorded for three minutes before 

and after each of the eight rTMS protocols by means of EEG with a BrainAmp DC system (Brain 

Products GmbH, Germany) in combination with an Easycap elastic electrode cap (Easycap GmbH, 

Germany) consisting of 64 electrodes placed according to the 10-20 System (GND: AFz) and the 

software Brain Vision Recorder 1.20 (Brain Products GmbH, Germany). EEG measurements were 

online referenced to FCz and recorded at a sampling rate of 500 Hz. Impedances were kept lower 

than 10 kΩ during the whole recording. 

Preprocessing of raw EEG data was conducted with a custom-built pipeline in Matlab (Matlab 

R2018b; Mathworks, USA) by employing functions implemented in the EEGLAB toolbox 

(Delorme & Makeig, 2004). In a first step, EEG data was filtered between 1 Hz and 45 Hz and 

segmented into 2 second epochs. Afterwards the data was visually inspected and single epochs 

featuring artifacts or verbal tinnitus loudness ratings were removed from the signal. For each 

dataset, the first and last two epochs were rejected as well, and noisy or deviant sensors were 

identified for subsequent interpolation. In order to identify and reject vertical and horizontal eye 

movements, an independent component analysis (ICA; fastICA toolbox 

http://research.ics.aalto.fi/ica/fastica/) was executed. In a next step, datasets were re-referenced 

using an average reference and the online reference electrode FCz was reconstructed and added as 

a data channel. Previously identified channels with high signal-to-noise ratio were interpolated 
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using the spherical spline method (Perrin et al., 1989). As a last step, preprocessed datasets 

underwent a final visual inspection. 

 

2.4.2. Power spectra 

Power spectra analysis was performed with the Fieldtrip toolbox (Oostenveld et al., 2011) in 

Matlab. Fast Fourier Transformation (FFT, “mtmfft”) and a hanning window with 1 Hz spectral 

smoothing was used for the calculation of pre and post stimulation power spectra for each channel 

per rTMS protocol. Obtained power spectra underwent a normalization through a division of the 

spectral power of every single frequency by the average spectral power of the whole frequency 

spectrum. Grand averages were calculated for every pre and post stimulation dataset per channel 

and the following frequency bands: delta (2 – 3.5 Hz), theta (4 – 7.5 Hz), alpha (8 – 12.5 Hz), beta 

(13 – 32.5 Hz) and gamma (33 – 44 Hz) (Schecklmann et al., 2015; Vanneste et al., 2011). RTMS 

protocol specific pre-to-post power changes in the respective frequency bands were obtained by 

subtracting the pre stimulation from the post stimulation power for each channel (Δ power = post 

– pre). Channels Iz, TP9 and TP10 which usually contain noisy signal were excluded, resulting in 

60 channels for further statistical analysis. 

 

2.5.Statistical analysis 

All subsequent statistical analyses were performed with the statistics software R (R version 4.0.3; 

R Foundation for Statistical Analysis, Austria) using the packages “psych” and “ggstatsplot”.  

Assumptions for parametric testing were examined with Shapiro-Wilk-Tests (normal distribution) 

and F-Tests (sphericity) and if violated non-parametric tests were performed. Significance levels 

were set to ≤ .05 for all analysis, whereby < .10 was considered as a statistical trend. Differences 

between left and right hearing level, RMT as well as induced e-field strength with and without 
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mounted EEG cap were analyzed with paired sample t-tests and Wilcoxon signed-rank tests 

respectively.  

 

2.5.1. Reliability analysis of TMS-induced tinnitus loudness changes and discomfort  

Pre stimulation ratings were averaged (T0 – T180) to receive a stable tinnitus loudness baseline for 

each protocol per subject. TMS-induced tinnitus loudness changes were calculated via a subtraction 

of the mean baseline loudness level from the mean post stimulation loudness level (Δ loudness = 

post – baseline). Test-retest reliability of TMS-induced mean tinnitus suppression as well as 

discomfort evaluation over both test session days was analyzed by means of Spearman correlations 

for each protocol. P-values were adjusted for multiple comparisons using the Holm-Bonferroni 

method (Holm, 1979).  

 

2.5.2. Reliability analysis of TMS-induced changes in oscillatory brain activity 

Test-retest reliability of protocol-specific pre-post power spectra changes were analyzed with 

Spearman correlations. Therefore, the obtained changes were correlated between the first and 

second test session on a single sensor level per rTMS protocol and frequency band. Thus, 300 

correlations were calculated per rTMS protocol (5 frequency bands x 60 sensors). Obtained p-

values of sensor correlations were adjusted according to the number of sensors separated per 

frequency band and protocol using the Holm-Bonferroni method (Holm, 1979). In case of 

significant results, p-values were further corrected for the number of applied protocols akin to an 

adjustment for multiple comparisons of behavioral results. We were exclusively interested in 

positive correlation outcomes, representing reliability of TMS effects. Significant positive 

correlations of channel pairs were identified via correlation matrices and projected on a 60-channel 

topographical scalp map applying a color-coding for received correlation coefficients (rs). A 
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minimum number of two neighboring electrodes featuring significant positive correlations 

(electrode cluster) was considered as a reliable TMS-induced change in power spectra. 

Triangulation of 2d sensors was utilized for neighboring sensor identification. 

 

2.5.3. rTMS individualization via responder identification using behavioral and 

electrophysiological data 

Additional to test-retest reliability analysis, rTMS individualization was examined based on single 

subject responses concerning loudness evaluation and electrophysiological consequences. 

Behavioral response to one of the verum interventions was defined as a mean tinnitus loudness 

suppression (compare section Reliability analysis of TMS-induced tinnitus loudness changes and 

discomfort evaluation) superior to sham stimulation (Δ loudness verum > Δ loudness sham) on 

both test session days for the same rTMS protocol and stimulated hemisphere. EEG responders 

were defined for the alpha (8 – 12.5 Hz) and gamma (33 – 44 Hz) frequency bands separately. In 

particular we were interested in alpha power increases and gamma power decreases from pre to 

post stimulation. As indicated in the introduction, alpha increases and gamma decreases are the 

most valid biomarkers for tinnitus reductions as indicated by literature review and expert 

knowledge. For each subject and protocol, the top 20% of channels exhibiting alpha increases/ 

gamma decreases were detected and scrutinized with regards to sham-superiority per day.  

If a sham-superior alpha increase respectively gamma decrease was observed in the same sensor 

on both days plus the corresponding pattern occurred in a minimum number of two adjacent 

channels, the subject was designated as either alpha or gamma responder. Associations of a 

behavioral response to any of the eight protocols with an electrophysiological response in the alpha 

or gamma frequency band and vice versa were examined with Fisher´s exact tests due to cell 

frequencies less than five. 
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3. Results 

3.1.Sample characteristics 

Participants were aged from 43 to 69 years (M = 57.05, SD = 6.79) and had an average tinnitus 

duration of 131.64 months (SD = 116.76). The majority reported a bilateral tinnitus perception as 

well as loudness fluctuations. No difference in hearing loss between the left and the right ear was 

observed, t(13) = -1.36, p = .198. THI severity grades ranged from mild (grade 2) to catastrophic 

(grade 5) and manifested in average in severe severity (grade 4) for the whole sample (M = 58.49, 

SD = 19.55). As expected, the RMTs were significantly higher with a mounted EEG cap, p < .001. 

Unexpectedly, the corresponding strength of the induced e-field was similarly higher with an EEG-

cap, t(21) = -6.07, p < .001. Although the motor hotspot for RMT determination was identical as 

well as coil centering and rotation, differences in the e-field might derive from difficulties in the 

adjustment of coil tilting due to distances to the scalp as well as the concomitant stimulation at 

higher intensities. 

Information about participant characteristics can be seen from table 1. Besides anticipated side 

effects such as discomfort during rTMS (in particular by rapid muscle contraction caused by high 

frequency protocols) or temporary tinnitus loudness increases after stimulation, no additional side 

effects could be observed in the current sample. Spearman correlations showed significant positive 

correlations for discomfort evaluations of each applied rTMS protocol between the two test 

sessions (cf. figure S1 in the supplemental material).  

 

3.2. Test-retest reliability of TMS-induced changes in tinnitus loudness and oscillatory brain 

activity 

No significant correlations were observed for the two test session days with regards to mean 

tinnitus loudness changes for any of the protocols (cf. figure 2). It should be noted, that without 
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considering corrections for multiple comparisons, a significant test-retest reliability was found for 

left hemispheric stimulation with 10 Hz and right hemispheric stimulation with 20 Hz. 

On the basis of our predefined reliability criteria, reliable changes in oscillatory brain activity were 

solely present for 1 Hz stimulation of the right TPJ, exclusively for the gamma frequency band. As 

can be seen from figure 3, these reliable changes were primarily observed over parieto-occipital 

regions, whereby neighboring channels PO7 and O1 constitute a significant reliable cluster. If 

corrected for multiple comparisons, this effect disappears and is therefore only conditionally 

interpretable. 

 

3.3 rTMS individualization using behavioral and electrophysiological data 

In 12 out of 22 participants it was possible to identify an individualized rTMS protocol for short-

term tinnitus suppression characterized by sham-superiority on both test session days. From those 

12 patients 10 (83.33%) responded to more than one stimulation type. Detailed information about 

individual responses together with the induced mean tinnitus suppression (averaged over both test 

session days) can be found in table 2. As presented in table 3, the majority of subjects responded 

to a stimulation over the left TPJ with 20 Hz (n = 7) and 10 Hz (n = 6), and over the right TPJ with 

20 Hz (n = 5).  

EEG responders were defined by sham-superior alpha power increase or gamma power decrease 

in minimal two neighboring electrodes on both test sessions. Using this criterion 20 alpha responder 

were identified, showing alpha power increases for at least one of the six used verum protocols. 

Left TPJ stimulation with 10 Hz (n = 10) or 1 Hz (n = 9) and right TPJ stimulation with 10 Hz (n 

= 7) produced the most alpha responders (cf. table 3). Electrophysiological responses in the gamma 

band were present in each investigated subject for at least one protocol. Subjects responded mainly 

to left TPJ stimulation with 10 Hz (n = 13) or 1 Hz (n = 10) and right TPJ stimulation with 10 Hz 
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(n = 8) or 1 Hz (n = 8) (cf. table 2). Interestingly, 75% of alpha and gamma responders showed 

consistent power increases/decreases for more than one protocol. Table 3 presents an overview of 

alpha increases and gamma decreases per rTMS protocol on a single subject level. Fisher´s exact 

tests showed no significant association neither for behavioral responders with alpha or gamma 

responders nor the other way around. 

Electrodes featuring sham-superior alpha/gamma modifications on both days are presented in 

figure 4 and figure 5 by means of topographical maps displaying the quantity of electrodes within 

alpha and gamma responders per rTMS protocol. It is apparent from figure 4 that alpha responses 

primary appeared in parieto-occipital regions on both hemispheres, whereas responses in the 

gamma range were especially present over frontal regions bilaterally and to some extent over 

parieto-occipital parts as outlined in figure 5. Detailed electrode information per subject and rTMS 

protocol, can be found in the supplementary material for alpha (table S1) and gamma responder 

(table S2). 

 

4. Discussion 

The goals of this experiment were to ascertain, whether it is possible to identify treatment protocols, 

that provide reliable effects both on the behavioral and on the electrophysiological level, as this is 

a precondition for individualizing treatment. We performed two test sessions at which six active 

and two sham protocols were administered. We evaluated reliability by comparing tinnitus 

suppression effects and electrophysiological effects on an individual level by responder 

identification. Moreover, we performed whole-group analysis in which we correlated the 

behavioral and electrophysiological effects of all stimulation protocols between both test sessions. 

The main finding of our study was, that in 12 out of 22 patients we could identify a stimulation 

protocol that reduced tinnitus loudness transiently in both sessions reliably more than sham 
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stimulation. When we defined response by the effects on oscillatory brain activity, the number got 

even higher with 20 out of 22 patients in which a specific rTMS protocol increased alpha more 

than sham and with 22 out of 22 in which a specific rTMS protocol decreased gamma more than 

sham.  

Correlation analysis for the whole group revealed reliable changes in tinnitus loudness after left 

TPJ stimulation with 10 Hz and right TPJ stimulation with 20 Hz. With respect to modulatory 

effects of rTMS on oscillatory brain activity, reliable changes could be obtained after right TPJ 

stimulation with 1 Hz in the gamma frequency band over parieto-occipital regions. However, these 

findings do not withstand a correction for multiple comparison and should therefore not be 

overrated and interpreted only exploratively. Nevertheless, the observed effect of rTMS on gamma 

activity fits well with a previous TMS-EEG study where right frontal 1 Hz rTMS decreased gamma 

band activity over right temporal regions in tinnitus patients, whereas it increased gamma activity 

in healthy controls (Schecklmann et al., 2015). Gamma activity is supposed to be strongly 

connected with tinnitus perception (De Ridder, Congedo, et al., 2015; van der Loo et al., 2009; 

Weisz, Müller, et al., 2007). However, as mentioned above, the effects of the first and the second 

session were not significantly correlated when statistical corrections for multiple comparisons were 

performed.  

Taking our findings together we can conclude that it is possible to identify responders for specific 

rTMS protocols, who demonstrate a reliable behavioral or electrophysiologic response on a specific 

rTMS protocol. However, if we investigate the effects of a given protocol for the whole sample, 

the variability of the effect is relatively large from session to session.  

Presumably the effects depend on the brain state before or during rTMS (Siebner et al. 2004) and 

this brain state might vary from session to session. In the current study the study design with six 
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active and two sham protocols per session might have increased this variability, as after-effects 

from preceding protocols cannot be excluded as confounding factors.  

The limited test-retest reliability corroborates the claim, that effects of rTMS in general (Maeda et 

al., 2000; Nettekoven et al., 2015; Polanía et al., 2018; Sommer et al., 2002; Terranova et al., 2019) 

but also treatment effects in tinnitus (Berthold Langguth, 2020; Soleimani et al., 2016) are subject 

to high variability. Thus, it is most likely that single subject impacts simply do not transfer to 

statistical analysis on a group level, highlighting the need and importance of personalized rTMS 

approaches. 

On the other hand, it has been demonstrated that patients, who benefit once from rTMS have a high 

chance to benefit from repeated rTMS treatment (Lehner et al., 2015; Rachid, 2018).  

This clinical observation fits with our finding to identify treatment responders to specific rTMS 

protocols. 

Our results corroborate also findings from several previous studies in which the feasibility of a 

customization of rTMS for tinnitus via test sessions has been demonstrated (Kreuzer et al., 2017; 

Schoisswohl et al., 2020). The responder rate of 55% in our study (12 out of 22) is in a similar 

range as in two previous studies (Kreuzer et al. (2017) - 50% responder; Schoisswohl et al. (2020) 

- 100% responder). However, both studies deployed magnetic stimulations over either prefrontal 

cortical regions or different positions over the superior temporal gyrus, whereas the current study 

targeted only a single region of the temporal cortex. The present goal was to examine the parameter 

frequency in more detail. Interestingly the vast majority of participants responded to high frequency 

stimulations over the left TPJ. It is assumed that high frequency protocols produce increases of 

cortical excitability (Klomjai et al., 2015). Consequently, high frequency rTMS is most likely not 

able to reduce tinnitus-associated temporal hyperactivity. But it has been suggested, that the 

induced effects can vary or shift across different targets of the cortex (Lorenz et al., 2010) and are 
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dependent on the intrinsic state of the brain region prior to stimulation (Hartwig R. Siebner et al., 

2004; Silvanto & Pascual-Leone, 2008; Weisz et al., 2012, 2014). Based on this it could be the 

case that pathological auditory cortex hyperactivity as an intrinsic state of the “tinnitus brain” might 

cause a reversal of supposed high frequency effects (shift from excitatory to inhibitory). In 

accordance with the present results, previous studies have demonstrated responder rates between 

40% and 57% in single session experiments with high frequency stimulation protocols (De Ridder 

et al., 2005; Folmer et al., 2006; Fregni et al., 2006; Christian Plewnia et al., 2003). Likewise 

treatment studies with high frequency rTMS over the temporo-parietal cortex were able to show 

significant reductions in tinnitus distress (Khedr et al., 2008, 2010).  

In addition to an rTMS individualization based on behavioral responses, the current investigation 

has striven for a novel attempt in rTMS individualization with objective measures. By the use of 

TMS-EEG combinatory measurements, we wanted to overcome the limitations of subjective 

tinnitus loudness ratings and identify personalized rTMS protocols via sham-superior increases in 

alpha respectively decreases in gamma frequency band power in at least two neighboring EEG 

electrodes on both test session. The utilization of especially these frequency bands as an 

electrophysiological response indicator is based on current neurophysiological models. In tinnitus 

pathological diminished alpha band activity was observed in contrast to healthy controls (Weisz et 

al., 2005; Weisz, Müller, et al., 2007), whereby during states of brief tinnitus suppression either 

after sound stimulation (King et al., 2020) or after rTMS (Müller et al., 2013) increases in alpha 

power were detected. While gamma band activity is assumed to underly the actual tinnitus 

perception (De Ridder, Congedo, et al., 2015; Weisz, Müller, et al., 2007) by associations with 

tinnitus loudness (Balkenhol et al., 2013; van der Loo et al., 2009). Interestingly, we were able to 

identify a substantially higher number of EEG responders than behavioral responders. For a total 

number of 20 participants, it was possible to detect an alpha response for at least one rTMS 
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protocol, whereas the entire sample featured responses in the gamma frequency band. Noteworthy, 

the quantity of alpha or gamma responders was almost twice as much as for behavioral responders. 

In line with our behavioral observations, a left 10 Hz stimulation resulted in the highest quantity 

of alpha and gamma responders. It has been shown that this type of stimulation can modulate alpha 

oscillations (Thut et al., 2011) and that alpha and gamma oscillations show a strong interplay not 

only in tinnitus (Wagner et al., 2019; Weisz, Dohrmann, et al., 2007).  

Since neurophysiological investigations were able to demonstrate relationships of the alpha and 

gamma band with tinnitus loudness (Balkenhol et al., 2013; King et al., 2020; Müller et al., 2013; 

van der Loo et al., 2009), we addressed the question if a response in the alpha or gamma band is 

associated with a behavioral response and vice versa. Our analysis did not reveal any relationship 

of EEG and behavioral responders, hampering the interpretability of our alpha and gamma findings 

as relevant for tinnitus loudness decreases in the current sample. A potential explanation for this 

lack of association could derive from the possibility, that rTMS-specific modulations/ neuroplastic 

consequences as measured with EEG simply do not instantly translate into behavioral responses. 

Consequently, longer periods of stimulation with an individualized rTMS protocol based on 

patients’ EEG response (protocol with strongest alpha increase/ gamma decrease) for example 

within the course of a daily treatment, might accumulate over time into behavioral effects and could 

tackle the deficiency of effectiveness in current rTMS treatment trials for tinnitus.  

Future studies should strive for a systematic implementation of test session approaches and 

investigate the therapeutic consequences of personalized rTMS in more detail. The present 

experiment underscores the feasibility of rTMS individualization via behavioral or 

electrophysiological responses. The results and methodology described in this sample of tinnitus 

patients might encourage neuromodulation attempts in other pathologies to personalize rTMS in 

order to account for inter-subject variability in rTMS response. 
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5. Conclusion 

The aim of this investigation was to examine the feasibility of rTMS individualization in tinnitus. 

This involved the identification of responders to specific rTMS protocols and the assessment of 

test-retest reliability of rTMS effects in tinnitus suppression and ongoing brain activity. We were 

able to demonstrate the feasibility of rTMS individualization by using test sessions with different 

rTMS protocols. Responses to specific protocols based on electrophysiological signatures could be 

identified in all patients, responses based on behavioral effects in the majority of patients. In 

contrast test-retest reliability as assessed with correlation analyses for the various rTMS protocols 

were rather low both for behavioral and electrophysiological effects. 

Taken together these findings are highly encouraging for efforts to enhance the efficacy of rTMS 

by personalizing stimulation protocols.  
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9. Tables 

Table 1 

Participants characteristics 

N (female) 22 (5)    

Handedness (left/ right/ both) (4 missings) 0/ 14/ 4    

Tinnitus laterality (left/ right/ both/ inside head) (4 missings) 1/ 1/ 14/ 2    

Tinnitus loudness fluctuation (yes/ no) (4 missings) 14/ 4    

 M ± SD Md Min Max 

Age (years) 57.05 ± 6.79 57.50 43.00 69.00 

Tinnitus duration (months) (2 missings) 131.65 ± 116.79 102.00 5.00 420.00 

Hearing loss left (dB) (8 missings) 23.42 ± 9.72 22.22 7.22 41.67 

Hearing loss right (dB) (8 missings) 27.87 ± 14.29 23.06 7.78 61.88 

THI score (0-100) 58.49 ± 19.55 58.00 30.00 90.00 

Tinnitus loudness (%) (6 missings) 70.31 ± 19.87 80.00 30.00 90.00 

RMT (%) 33.95 ± 5.33 33.00 25.00 46.00 

RMT (%) + EEG cap 41.91 ± 9.65 41.00 30.00 66.00 

Electrical field (V/m) 54.47 ± 13.90 52.50 27.00 86.00 

Electrical field (V/m) + EEG cap 66.66 ± 15.38 66.25 44.00 99.00 

M = mean; SD = standard deviation; Md = Median; Min = minimum; Max = maximum; THI = Tinnitus Handicap Inventory; RMT = resting 
motor threshold, EEG = Electroencephalography 
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Table 2 

Individual test session responses per protocol – behavioral and EEG responder. 

Subject Behavioral responder Alpha (8 - 12.5 Hz) / Gamma (30.5 - 44 Hz)  

1 
 1Hz 10Hz 20Hz 

Left 12.86 - - 
Right 17.15 - - 

 

 1Hz 10Hz 20Hz 

Left - ↓γ ↑α↓γ 
Right - ↓γ - 

 

2 - 

 1Hz 10Hz 20Hz 

Left ↑α↓γ ↑α↓γ - 

Right - - - 
 

3 
 1Hz 10Hz 20Hz 

Left 3.98 - 3.71 
Right - - - 

 

 1Hz 10Hz 20Hz 

Left ↑α↓γ ↑α - 
Right ↓γ - - 

 

4 
 1Hz 10Hz 20Hz 

Left - 10.35 - 

Right - 9.28 25.71 
 

 1Hz 10Hz 20Hz 

Left ↑α↓γ - - 

Right - - - 
 

5 
 1Hz 10Hz 20Hz 

Left - 16.42 - 
Right 10.00 16.79 21.42 

 

 1Hz 10Hz 20Hz 

Left ↑α ↓γ ↑α 
Right - - - 

 

6 
 1Hz 10Hz 20Hz 

Left - 10.71 - 

Right - - - 
 

 1Hz 10Hz 20Hz 

Left ↑α - ↑α 

Right - ↑α↓γ - 
 

7 - 

 1Hz 10Hz 20Hz 

Left - ↑α - 
Right - ↑α ↑α↓γ 

 

8 
 1Hz 10Hz 20Hz 

Left - 6.07 8.93 

Right - 4.64 9.28 
 

 1Hz 10Hz 20Hz 

Left - ↑α↓γ ↓γ 

Right - ↑α - 
 

9 
 1Hz 10Hz 20Hz 

Left - - 3.93 
Right 7.55 - - 

 

 1Hz 10Hz 20Hz 

Left ↑α↓γ ↑α↓γ ↑α↓γ 
Right ↓γ - - 

 

10 
 1Hz 10Hz 20Hz 

Left 15.36 - 5.71 

Right - - - 
 

 1Hz 10Hz 20Hz 

Left ↓γ ↑α ↓γ 

Right - ↓γ ↑α↓γ 
 

11 - 

 1Hz 10Hz 20Hz 

Left ↑α - - 
Right ↓γ ↑α↓γ ↑α 

 

12 - 

 1Hz 10Hz 20Hz 

Left - - - 

Right - ↑α ↓γ 
 

13 - 

 1Hz 10Hz 20Hz 

Left ↓γ ↑α↓γ - 
Right ↑α↓γ ↓γ - 

 

14 - 

 1Hz 10Hz 20Hz 

Left ↑α ↓γ ↑α↓γ 

Right ↓γ - ↑α 
 

15 - 

 1Hz 10Hz 20Hz 

Left ↓γ ↑α - 
Right ↓γ - - 

 

16 
 1Hz 10Hz 20Hz 

Left - 5.00 12.85 

Right - - 10.00 
 

 1Hz 10Hz 20Hz 

Left - ↑α↓γ - 

Right - ↑α ↓γ 
 

17 - 

 1Hz 10Hz 20Hz 

Left - ↓γ - 
Right ↑α ↓γ ↑α↓γ 

 

18 - 

 1Hz 10Hz 20Hz 

Left ↓γ ↓γ ↑α↓γ 

Right ↑α↓γ ↑α - 
 

19 
 1Hz 10Hz 20Hz 

Left - 13.57 13.57 
Right - - - 

 

 1Hz 10Hz 20Hz 

Left ↑α ↓γ - 
Right ↑α ↓γ ↑α 

 

20 - 

 1Hz 10Hz 20Hz 

Left ↓γ ↓γ - 

Right - - - 
 

21 
 1Hz 10Hz 20Hz 

Left - - - 
Right 7.14 - 3.93 

 

 1Hz 10Hz 20Hz 

Left - - ↓γ 
Right ↓γ ↓γ ↓γ 

 

22 

 1Hz 10Hz 20Hz 

Left - - 7.85 
Right - - - 

 

 1Hz 10Hz 20Hz 

Left ↓γ ↑α↓γ - 
Right - - - 
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Table 3 

Summary of behavioral and electrophysiological responder per rTMS protocol 

 Behavioral responder ↑Alpha ↓Gamma 

Total number of responders (N) 12 20 22 

Number of responders per protocol (N) 

Left 1 Hz 3 9 10 

Right 1 Hz 4 4 8 

Left 10 Hz 6 10 13 

Right 10 Hz 3 7 8 

Left 20 Hz 7 6 7 

Right 20 Hz 5 6 6 

 

10.  Figure legends  

Figure 1. Test session procedure. 

Test sessions were conducted on two different days according to the same procedure. Three 

different verum rTMS protocols (1 Hz, 10 Hz, 20 Hz) with 200 pulses each and one sham protocol 

(0.1 Hz) with 20 pulses were administered over the left and right temporo-parietal junction in a 

randomized order. Thus, a total number of 8 different rTMS protocols was applied on each test 

session day. Before and after each magnetic stimulation, participants were requested to rate the 

subjective loudness of their tinnitus on a numeric rating scale from 0% to 110% (0% - complete 

absence of tinnitus; 100% - no change; 110% - 10% loudness increase) at seven points in time (30 

seconds inter-rating interval). In parallel to these ratings, resting state brain activity was recorded 

with electroencephalography (EEG) for three minutes. At the end of each rTMS protocol (pre-

rating/ recording – stimulation – post-rating/ recording), patients had to rate the induced level of 

discomfort on a numeric rating scale from 0 to 10 (10 – utmost discomfort).  

 

Figure 2. Reliability of TMS-induced changes in tinnitus loudness. 

Spearman correlations of rated tinnitus suppression (%) per rTMS protocol between the first and 

the second test session day are illustrated. Colored ribbons represent confidence intervals (95%). 
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Reliable changes were observed for a (b) 10 Hz stimulation over the left temporo-parietal 

junction and a (c) 20 Hz stimulation over the right temporo-parietal junction. Both correlations do 

not withstand a correction for multiple comparison and should therefore not be overrated and 

interpreted only exploratively. 

 

Figure 3. Reliability of TMS-induced changes in oscillatory brain activity 

Spearman correlations coefficients (rs) of right hemispheric 1 Hz rTMS-induced changes in the 

gamma frequency band (33 – 44 Hz) for the two test session days are projected on a topographical 

map per electrode. Significant reliable electrodes are highlighted with asterisks. Separate reliable 

changes are primary present over parieto-occipital electrodes, whereby neighboring channels PO7 

and O1 form a significant reliable cluster. However, this effect disappears after a correction for 

multiple comparison and is therefore only conditionally interpretable. 

 

Figure 4. Topography of electrophysiological response – alpha responder 

Topography and quantity of sensors showing sham-superior increases in the alpha frequency 

band in a minimum number of two neighboring channels on both test session days are illustrated 

per rTMS protocol. Responses in the alpha frequency band (8 – 12.5 Hz) to one of the verum 

protocols primarily occurred over parieto-occipital electrodes. 

 

Figure 5. Topography of electrophysiological response – gamma responder 

Topography and quantity of sensors showing sham-superior decreases in the gamma frequency 

band in a minimum number of two neighboring channels on both test session days are illustrated 

per rTMS protocol. Responses in the gamma frequency band (33 – 44 Hz) to one of the verum 
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protocols mostly appeared over frontal electrodes on both hemispheres and partially over parieto-

occipital sensors. 
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