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Abstract 19 

Increasing number in global COVID-19 cases demands for mathematical model to 20 

analyze the interaction between the virus dynamics and the response of innate and 21 

adaptive immunity. Here, based on the assumption of a weak and delayed response of 22 

the innate and adaptive immunity in SARS-CoV-2 infection, we constructed a 23 

mathematical model to describe the dynamic processes of immune system. Integrating 24 

theoretical results with clinical COVID-19 patients’ data, we classified the COVID-19 25 

development processes into three typical modes of immune responses, correlated with 26 

the clinical classification of mild & moderate, severe and critical patients. We found that 27 

the immune efficacy (the ability of host to clear virus and kill infected cells) and the 28 

lymphocyte supply (the abundance and pool of naïve T and B cell) play important roles 29 

in the dynamic process and determine the clinical outcome, especially for the severe and 30 

critical patients. Furthermore, we put forward possible treatment strategies for the three 31 
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typical modes of immune response. We hope our results can help to understand the 32 

dynamical mechanism of the immune response against SARS-CoV-2 infection, and to 33 

be useful for the treatment strategies and vaccine design. 34 

Introduction 35 

Coronavirus disease 2019 (COVID-19) caused by the coronavirus SARS-CoV-2 has 36 

spread globally, having a huge impact on global politics, economy and society. 37 

Compared to other viral infectious diseases, such as influenza, severe acute respiratory 38 

syndrome (SARS), Middle East respiratory syndrome (MERS), and acquired immune 39 

deficiency syndrome (AIDS), COVID-19 exhibits multiscale different characteristics. 40 

Epidemiologically, COVID-19 has a relatively longer incubation period (~5.8 days) with 41 

a number of asymptomatic patients, which intensifies the difficulty of management and 42 

prevention (1). For the within-host viral infection, about 80% COVID-19 patients exhibit 43 

mild symptoms and recover within 3~4 weeks after regular treatments (2). The severe 44 

and critical COVID-19 patients (~20%) are related to lymphopenia, high neutrophil 45 

counts and cytokine release syndrome (CRS) or cytokine storm, characterized by 46 

elevated inflammatory cytokines levels like IL-6. CRS and succeeding comorbidities 47 

usually cause bad clinical outcome and even death, although the overall intensity of the 48 

cytokine storm in COVID-19 patients is milder than SARS patients (3).  49 

More studies and evidences show that the SARS-CoV-2 virus, compared to SARS-50 

CoV and MERS-CoV, in the early infection period tends to induce less effective anti-51 

viral innate immune responses with a delayed or lower type-I interferon (IFN) response 52 

and lower HLA-II expression level (4, 5). Furthermore, marked lymphopenia and 53 

impaired humoral immunity with the loss of germinal centers (6) suggest that the weak 54 

adaptive immune response could contribute to damped clearance of virus and thus 55 

chronic infection. 56 

Though the knowledge and clinical data of COVID-19 is increasing, a systemic view 57 

of immunologic response in SARS-CoV-2 infection remains necessary. Due to the 58 

variance in immune status and response dynamic processes among patients, it is hard to 59 

make up an effective therapeutic schedule, for example, the effects of remdesivir, IFN-γ 60 

and antibodies remain controversial (7-13).  61 

Here, we investigated the immune response against SARS-CoV-2 infection by 62 

analyzing the longitudinal hemogram data of 194 patients from Wuhan Union Hospital 63 
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and also by mathematical modeling the within-host immune dynamics. We constructed 64 

within-host virus-immune interaction network, together with a mathematical model 65 

depicting the dynamic processes and the response of the innate immunity and adaptive 66 

immunity against SARS-CoV-2 infection. We simulated and classified the different 67 

modes of patient’s immune responses, which correspond to the longitudinal data of 68 

COVID-19 patients, and we propose the possible treatment strategies to improve the 69 

immune status of COVID-19 patients.  70 

Immune network and model, immune efficacy and T cell supply 71 

The human immune system is a complex defense system involving dozens of 72 

different cell types and hundreds of interacting molecular pathways, protecting human 73 

body from dangerous pathogens. A mathematical model, which describes the complex 74 

interactions in immune system and the demographic differences in patient’s health 75 

status, should help us to understand the underlying immune response, to classify the 76 

patients based on their immune response processes, and provide possible definitive 77 

treatment strategies. 78 

We analyzed 194 COVID-19 patients’ longitudinal data from Union Hospital of 79 

Tongji Medical College in Huazhong University of Science and Technology (Wuhan, 80 

P. R. China), including the hemogram, the serum cytokine profile and treatments at 81 

different time points, as well as their clinical classification and outcome. We found that 82 

among mild, severe and critical COVID-19 patients, the time sequences of counts of 83 

white blood cell, neutrophil and lymphocyte, together with IL-6 levels in peripheral 84 

blood behave significant different, indicating the severity of patients (Fig. 2B). In 85 

critical patients, the elevated neutrophil counts and myeloid-derived suppressor cell 86 

(MDSC) fraction are significantly greater than the mild and severe patients, which 87 

could be accredited to the chronic viral and bacterial co-infection (Fig. S5B).  88 

Based on the recent evidences and clinical data about COVID-19, we put forward a 89 

possible immune mechanism during SARS-CoV-2 infection: a slow innate immune 90 

response in the early infection stage leading to extensive tissue damage and 91 

inflammation, and a weak adaptive immune response in later stage resulting in the 92 

chronic infection and bad clinical outcome. 93 
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We simplified both innate and adaptive immune response processes within-host 94 

caused by the SARS-CoV-2 infection, and constructed a virus-immune interaction 95 

network with the viral infection module, innate immunity, cellular immunity, humoral 96 

immunity, and immunosuppression modules (Fig. 1). During the SARS-CoV-2 infection, 97 

infected lung epithelial cells recruit innate immune cells through chemokine secretion, 98 

including neutrophils (Neut), macrophages (MΦ), dendritic cells (DC), and natural killer 99 

cells (NK). These cells serve as the initial immune defense in the virus-immune 100 

interaction network against the virus, and secrete the inflammatory cytokines like IL-6 101 

and TNF-α. The DC and MΦ engulf and process SARS-CoV-2 specific antigens they 102 

encounter, and then they work as antigen-presenting cells (APC) to activate naïve T and 103 

B cells. The activated CD4+ and CD8+ T cells proliferate and differentiate into effective 104 

helper T cells (Th) and cytotoxic T cells (CTL), then travel to the airway and lung 105 

fighting against the pathogens. Meanwhile, the germinal centers in lymph nodes form 106 

around the pathogen-loaded dendritic cells, where naïve B cells go through affinity 107 

maturation with clonal selection and differentiate into plasma cells that produce 108 

immunoglobulin (Ig) to clear the virus. During this process, regulatory T cells (Treg) are 109 

also activated to prevent the over activation of immune system and turn off the immune 110 

response when the virus is cleared.  111 

For the sake of simplicity and clarity of the model, we made the following main 112 

simplifications and assumptions. (1) We focus on the host immune response in lung 113 

and nearby draining lymph nodes (lung area). (2) IL-6 is selected as the key indicator 114 

of inflammation. (3) To compare with clinical data, we add the antiviral drug term 115 

(parameter   in Eq.2) in our model. (4) We discuss the primary virus infection and 116 

immune response, and ignore the process and function of SARS-CoV-2-specific 117 

memory T and B cells. (5) The cytokine level in lung is estimated to be 10 times of the 118 

peripheral blood cytokines, providing a reference for comparison between modeling 119 

results and clinical data. More details about the interactions among virus, immune cells 120 

and cytokines can be found in Table 1 of Supplemental Material (SM), and our other 121 

assumptions are listed in section 1.2 of SM.  122 
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 123 

Fig. 1.The immune system response network against SARS-CoV-2 infection. (A) The network can be 124 

divided into five modules: viral infection, innate immunity, cellular immunity, humoral immunity and 125 

immunosuppression modules, each part including complex and nonlinear interactions among immune 126 

cells and cytokines. (B) The overall interactions among the five modules. 127 

Then we built a 24-variable ODE model to depict the dynamical process of immune 128 

response against SARS-CoV-2 infection. Clinical data and results, together with the 129 

evidence on the lower IFN-I response (4, 5), provide a reference for the construction 130 

and parameterization of the model. In lung area, we define [nCoV] as the concentration 131 

of free viral load, [H] and [If] denote respectively the concentrations of healthy 132 

pulmonary epithelial cell and productively infected cell. The concentrations of 133 

neutrophils, APC (DC and MΦ), natural killer cells and cytotoxic T lymphocytes 134 

(CTL) are denoted as [Neut], [APC], [NK] and [CTL] respectively. [Ig] is the 135 

concentration of antibodies. The viral load and lymphocytes are in the unit of 106/mL, 136 
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the unit of cytokines is pg/mL, and the unit of antibodies is μg/mL. 137 

In the viral infection module, we have the following equations to depict how the 138 

SARS-CoV-2 virus infects the lung epithelial cells.  139 

  
1 1 2

[ ]
[ ] ( [ ] [ ])[ ] (1)clear clear

If

d nCoV
N d If k Neut k A Ig nCoV

dt
        140 

  1 2 3infect

[ ]
[ ][ ] [ ] [ ] [ ] [ ] [ ] (2)kill kill kill

If

d If
k nCoV H k APC k NK k CTL If d If

dt
      141 

  
infect

[ ]
[ ][ ] [ ] (3)H H

d H
r k nCoV H d H

dt
     142 

The viral dynamics is described in Eq.1. The virion particles are produced from 143 

infected cells at the rate of 1 [ ]IfN d If , where γ stands for a conversion factor between 144 

particle count and extracellular particle number density, N1 is the burst size of SARS-145 

CoV-2 virus, dIf is the death rate of infected cells that release new virions. The viruses 146 

are cleared by neutrophils [Neut] and antibodies [Ig] at the rate of 147 

1 2( [ ] [ ])[ ]clear cleark Neut k A Ig nCoV   . In Eq.2, the epithelial cells are infected by free 148 

virions at rate [ ][ ]infectk nCoV H , where   stands for the effect of antiviral drugs, 149 

kinfect is the infection rate of virus. The infected cells are killed by APC (DC and MΦ), 150 

natural killer cells and CTL at the rate  1 2 3[ ] [ ] [ ] [ ]kill kill killk APC k NK k CTL If  . The 151 

infected cells die at rate [ ]Ifd If  and release new free virion particles. In Eq.3, the 152 

healthy lung epithelial cells regenerate at the rate Hr  and undergo normal apoptosis at 153 

rate [ ]Hd H .  154 

We define 1 2 3( ) [ ] [ ] [ ]kill kill kill kill

Ife t k APC k NK k CTL d     and 155 

1 2( ) [ ] [ ]clear clear cleare t k Neut k A Ig    . Under adiabatic approximation of change of the 156 

infected cells, we have 
0

[ ]
( 1)[ ]cleard nCoV

e R nCoV
dt

  , where the reproductive ratio 157 

is defined as 
1 infect

0

[ ]If

clear kill

N d k H
R

e e





. To represent the ability of immune system to 158 

clear the virus and kill the infected cells, we define the host immune efficacy at time 159 

point t  as ( ) ( ) ( )clear kille t e t e t . Thus, at time point t , if 0 ( ) 1R t  and 160 

1 infect( ) [ ]Ife t N d k H , the population of virus will decrease; otherwise the population 161 
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of virus will increase. 162 

When the naïve CD8+T cells meet and interact with antigen-loaded APCs in the 163 

lymph nodes, they are activated, proliferate and differentiate to CTL, then move to the 164 

lung area to fight against the virus. We use a logistic term to describe the homeostasis of 165 

naïve CD8+ T cell supply with capacity KCD8 and growth rate rCD8, kCTL represents the 166 

activation rate to CTL from the naïve CD8+ T cell by APC interaction. Thus, we wrote 167 

the dynamics of naïve CD8+T cell as: 168 

5

0 0
8 0 05 5

8

[ 8 ] [ 8 ] [ ]
[ 8 ] 1 [ 8 ]      (4)

[ ]
CD CTL

CD A

d CD T CD T APC
r CD T k CD T

dt K K APC

 
  

   
 

 169 

Steady state solution gives out 

5

0 85 5

8

[ ]
[ 8 ] 1

[ ]

CTL
CD

CD A

k APC
CD T K

r K APC

  
   

 
. We define 170 

the host supply ability of naïve CD8+T cell as 
5 5

8
8 5

[ ]

[ ]

CD A
CD

CTL

r K APC
s

k APC


 , which 171 

indicates the ability of CD8+ T cell supply to produce more CTL. If 8 1CDs  , there 172 

will have sufficient naïve CD8+T cell. Once chronic infection takes place, the patients 173 

with 8 1CDs   might experience CD8+ T cell exhaustion. When [ ] AAPC K ,174 

8
8

CD
CD

CTL

r
s

k
 . Thus, the host supply ability 8CDs  determine whether the CD8+ T cell 175 

pool can supply more CTL cells in the ‘killing’ infected cell process, which works as 176 

3 [ ]killk CTL  term in the ( )kille t  and ( )e t . Similar supply analysis and results can be 177 

applied to CD4+ T cells.  178 

More details concerning immune cell and cytokine dynamics can be found in the 179 

section 2 of SM.  180 

Furthermore, we also utilized the model to simulate other viral infectious diseases, 181 

including influenza and severe acute respiratory syndrome (SARS). The differences in 182 

virus infection rate, burst size and activation strength of the immune system lead to 183 

significant differences in epidemical features among influenza, SARS and SARS-CoV-184 

2, especially the incidence rate, incubation period and critical rate. Detailed parameter 185 

settings and results are shown in the section 3 of SM. 186 
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Modeling typical modes of immune response against SARS-CoV-2 187 

Demographically, the immune system’s capability and response vary individually, 188 

susceptible to age, fitness and gender differences (14, 15). In Fig. 2A, we adopted 189 

Latin hypercube sampling method (16) to search across the parameter space and 190 

identified three typical modes of the immune responses against SARS-CoV-2 infection, 191 

where they differ in the extent of tissue damage, final state viral load and immune 192 

response, in particular the levels of host immune efficacy e  and supply ability 8CDs . 193 

We also defined asymptomatic patients by underactive immune and inflammatory 194 

response. Full trajectory of the three immune modes and asymptomatic patients can be 195 

found in Fig. S2A and their definitions in Table S2 of SM. Parameter sample range and 196 

initial value choice can be found in section 7 of SM. Sampled curves are aligned at 197 

[nCoV]=106/mL.  198 

During the early stage of infection, the post admission days (PAD) 0~7, a faster and 199 

stronger innate immunity is evoked in the mode 1 patients, protecting lung tissue from 200 

viral damage. For the mode 2 and 3 patients, delayed and weaker innate immunity 201 

brings about more extensive damages with higher viral load, manifested in Fig. S2C 202 

and D of SM. During the middle stage (PAD 7~14), the adaptive immunity of mode 1 203 

and 2 patients is built up successfully, providing the patients with strong immune 204 

efficacy, averaged at max 12e  , which is enough to clear the virus and kill the infected 205 

cells. For the mode 2 patients, the accumulated tissue damage at early stage over-206 

activates the innate immunity, especially neutrophils and monocytes and thus causes 207 

temporary cytokine storm. The mode 3 patients’ immune response stays low at about 208 

3.5e  , possibly attributed to limited antibody production and inadequate CD8+ T cell 209 

supply. During the late stage (PAD 14+), the mode 1 and 2 patients recover from the 210 

infection, however the mode 3 patients experience chronic infection and 23% end up 211 

with naïve CD8+T cell pool insufficiency (denoted as insufficient 8CDs ). Time course of 212 

81/ CDs  and e of the three modes are shown in Fig. 2C and Fig. 2D.  213 

In comparison to mode 2, mode 3 is more likely to appear in older patients with 214 

underlying diseases, including but not limited to hypertension and diabetes mellitus, 215 

for their fragile immune systems. This view is also supported by recent study on the 216 

association between adaptive immunity and age (18). In addition to these, in mode 3, 217 
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long-termed damage of lung epithelial cells and inadequate immune efficacy could 218 

possibly induce secondary bacterial or fungal infection, discussed in section 7 of SM, 219 

thus lead to overactive inflammatory response and cytokine storm. Therefore, patients 220 

with mode 3 response are more likely to be critical and should be paid with extra 221 

attention. 222 

Figure 2. 223 

 224 

Fig. 2. Sampling result of host immune response against SARS-CoV-2 infection. (A) 225 
Schematic illustration of three typical modes of immune response, the sampled curves are aligned 226 
at [nCoV]=106/mL. Innate immunity is defined by the summation of APC and NK density, 227 
cellular immunity is defined by CTL density and humoral immunity is defined by antibody level. 228 
(B) Time course of immune efficacy e  of the three immune modes. During early stage, mode 1 229 
has higher e  compared to mode 2 and 3, leading to less extensive tissue damage and thus milder 230 
level of cytokine storm. At around day 14, e  value of mode 1 and 2 rises to the peak, 231 
corresponding to the fully activation of immune system. Meanwhile, mode 3 patients do not show 232 
the peak, suggesting underactive adaptive immunity leads to chronic infection. (C) Time course of 233 

inverted CD8+ T cell supply 81/ CDs  of mode 1, 2 and 3. Both mode 1 and 2 pass 8 1CDs   234 

temporarily, corresponding to the maximum activation from innate immunity to adaptive 235 

immunity, while mode 3 patients show a durative 8 1CDs  , leading to insufficient CD8+ T cell 236 

supply. (D) Mode 3 patients are further divided in to naïve CD8+T cell insufficient ones 237 

(insufficient 8CDs ) and sufficient ones (sufficient 8CDs ). 238 
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Classification of patients and relevant treatment strategies 239 

To understand the dynamical features and processes of COVID-19 patients’ 240 

immune response, we investigated the longitudinal data of hemogram and cytokine 241 

profile of 64 patients (out of 194 patients) with multiple cytokine data points (≥4) 242 

from Wuhan Union Hospital in China. All patients were divided into mild & moderate, 243 

severe and critical groups based on their clinical symptoms, according to the 7th 244 

Version of the Novel Coronavirus Pneumonia Diagnosis and Treatment Guidance (19).  245 

Here we mainly focus on the immune response features of the COVID-19 patients, 246 

which imposes huge impact on patient’s clinical status. Similar to the immune efficacy 247 

e , we define the clinical efficacy of innate and adaptive cellular immunity of patients 248 

as  *( ) %( ) %( ) %( )e t Neut t Monocyte t Lymphocyte t , where %( )Neut t , 249 

%( )Monocyte t , %( )Lymphocyte t  are respectively the proportion of neutrophils, 250 

monocytes and lymphocytes in peripheral blood at time point t . 251 

In Fig. 3A, we classified the patients by their IL-6 level and averaged *e  value ( *e ) 252 

into three classes. The class 1 profile (31 patients) has * 0.15e    and 253 

maxIL-6 < 200 pg/mL  , includes 15 mild patients and 16 severe patients. The class 2 254 

profile (20 patients) has * 0.15e    and maxIL-6 > 200 pg/mL  , includes 9 mild, 10 255 

severe and 1 critical patient. The class 3 profile (8 patients) has * 0.15e    and 256 

maxIL-6 > 200 pg/mL , includes 1 severe and 7 critical patients. 5 patients belong to none 257 

of the above groups and are taken as exceptions. 258 

In Fig. 3B, we aligned and averaged the time course of the three classes patients’ 259 

peripheral blood cell and cytokine profile. We particularly fixed the class 2 and 3 260 

patients’ IL-6 peak at the 30th day and smoothed the curve using a triple-window 261 

averaging method (see this method in section 5.1 of SM). Time series data of the three 262 

classes patients differ significantly in the neutrophil, lymphocyte, IL-6, IL-10 level and 263 

immune efficacy. The class 1 patients exhibit low neutrophil counts, low IL-6 level 264 

(milder inflammatory response), high lymphocyte counts and high *e  level, indicating 265 

mild symptom and effective immune response. The class 1 patients are less likely to 266 

develop into critical cases and would recover smoothly. The class 2 patients show 267 
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temporarily stronger inflammatory response (higher IL-6 level) than the class 1, whose 268 

IL-6 peak usually has a 3-day full width at half maximum (FWHM). The class 3 269 

patients show a longer period of cytokine storm status with IL-6 peak and a 13-day 270 

FWHM. In addition, the class 3 patients with lymphopenia and low *e  value suggest 271 

the incompetent immune response and possible exhaustion of T cells; the significantly 272 

elevated level of neutrophils and IL-10 peak with a 7-day FWHM might indicate the 273 

occurrence of secondary bacterial infection and the emergence of MDSC, both could 274 

attribute to chronic infection and poor clinical outcome.  275 

Thus, we correspond the class 1, 2 and 3 COVID-19 patients to the in silico mode 276 

1, 2 and 3 immune response against SARS-CoV-2 infection respectively. We hope our 277 

immunity-based classification method can serve as an indicator of patient’s immune 278 

response and clinical conditions. 279 

Figure 3. 280 

 281 

Fig. 3. The 64 clinical patients are classified by their IL-6 level and the immune efficacy in peripheral 282 
blood. (A) We identify 31 patients as the class 1 profile (15 mild & moderate patients, 16 severe patients), 283 
20 patients as the class 2 profile (9 mild & moderate patients, 10 severe patients and 1 critical patient) and 284 
8 patients as the class 3 profile (1 severe patient and 7 critical patients). (B) Averaged time series of the 285 
class 1, 2 and 3 patients. Compared to the steady curve of class 1 patients, class 2 and 3 patients show 286 
different extent of inflammation, characterized by the level and width of IL-6 peak. In addition, the class 287 

3 patients show low *e  level. 288 

 289 

  Combing the theoretical results and clinic classification, for the in silico patients 290 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted January 13, 2021. ; https://doi.org/10.1101/2021.01.11.21249562doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.11.21249562


 12 / 18 

 

with different immune response modes, we simulated their disease processes and 291 

possible clinic outcomes, and try to put forward the available treatment strategies.  292 

The main treatment strategies of COVID-19 are to prevent the potential chronic 293 

infection and cytokine storm, increase the immune efficacy, and moderately inhibit 294 

excessive inflammatory response. Here we consider several mostly discussed agents for 295 

COVID-19: (1) Antiviral drugs (AntV), preventing viral cell entry or inhibiting the 296 

production of new progeny virus (20). (2) IFN-γ, increasing innate immune response and 297 

augmenting the successive adaptive immune response (21). (3) Monoclonal antibody 298 

(Ig), blocking viral receptor activation, suppressing the virus and modifying the 299 

inflammatory response (22). (4) Glucocorticoids (GC), preventing excessive immune 300 

response that causes extensive tissue damage and inhibiting cytokines from production 301 

and taking effects (23, 24).  302 

We simulated the course of disease of in silico patients without any treatments, and 303 

examined the outcome of different treatment strategies to determine the effect of the 304 

above drugs and find reasonable combination of treatments. To quantify our results, we 305 

defined a model-based Q value to assess patient’s status and examine the effects of the 306 

above medications. The scoring function Q includes patient’s maximum immune 307 

efficacy *
maxe , respiratory capacity (defined by minimum healthy lung epithelial cells 308 

min[ ]H ), inflammation level (defined by maximum IL-6 level max[ 6]IL ), and whether 309 

chronic infection happens. It is formulated as:  310 

 
*

max min
1 2 3 4 [ ]* *

max min max

[ 6][ ]
1 1 1 1 ,

[ ] [ ] [ 6] [ 6]

c
nCoV

c c c

e ILH
Q q q q q

e e H H IL IL


   
       

       
 311 

where we set 1 0.4q  , 2 0.4q  , 3 3q  , 4 1q  ,
* 10ce  ,

630 10 /cH mL  ,312 

[ 6] 2000 /cIL pg mL  . The Kronecker function [ ]nCoV  equals to 1 when final viral 313 

load is zero, equals to 0 when virus is not cleared. 314 

  We first assessed the effect of the above drugs used singly on the in silico patients 315 

in different modes, illustrated by the change in Q value, as in Fig. 4A. Treatment 316 

periods are divided into early (PAD 0~7), middle (PAD 7~14) and late stage (PAD 317 

14+) referred to the estimation in (17). Effects of AntV, IFN-γ, Ig are positive during 318 

early stage for their role in limiting virus invasion and tissue damage, effect of GC is 319 

also positive during early stage for prevention of CRS. During middle stage, AntV and 320 
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IFN-γ change little of the patients’ score, but AntV is still recommended during the 321 

whole course of disease for preventing superinfection (this situation is seen in our 322 

simulation results). Usage of GC on mode 1 and 2 patients during middle stage 323 

decreases patient’s Q score and is not recommended. Middle and late stage Ig benefits 324 

the most on mode 3 patients for their role in cooperating with host’s immunity. 325 

We next tested all combinations of treatment strategies with different kinds of drugs 326 

used during different stages of in silico patients with reasonable treatment strategies 327 

summarized in Fig. S8. Antiviral drugs are recommended during the whole course of 328 

infection. The mode 1 patients only need antiviral drugs for their recovery. For mode 2 329 

patients, usage of IFN-γ accents innate immune efficacy and helps contain the initial 330 

tissue damage, while usage of GC can reduce inflammation in advance of cytokine storm. 331 

For mode 3 patients, cytokine storm lasts longer thus it is desired to prolong the usage 332 

of GC during early and middle stage, while during the late stage monoclonal antibodies 333 

act as backup for adaptive immunity and help clear the virus. Simulation results 334 

(ensemble averaged) for mode 2 and 3 patients with the above treatment strategies are 335 

shown in Fig. 4C and D. To assist with the formation of treatment plans, we adopted 336 

CPCA on our simulation results and identified several early stage biomarkers 337 

distinguishing the patients into mode 1, 2, and 3, including viral load, IL-6, IL-10, TNF-338 

α and Ig, shown in Fig. S5 in SM. 339 

  Bacterial co-infection is tested positive in more than 50% of the deceased patients 340 

(2, 25), which we also found clinically. We simulated the course of disease with 341 

bacterial co-infection arising from mode 2 and 3, and denoted them as mode 2*, mode 342 

3.1* and mode 3.2*, where mode 3.1* patients end up with uncleared virus, while 343 

mode 2* and mode 3.2* patients become virus-negative. Detailed assumptions, 344 

definitions and time courses concerning bacterial co-infection are in section 7 in SM.  345 

  In bacterial co-infection, antibiotics (AntBio) is also included into treatment plans. 346 

Similar to Fig. 4A, we assessed the effect of each drug in mode 2*, 3.1* and 3.2* 347 

patients, shown in Fig. 4B. Effect of early usage of GC alone turns negative due to its 348 

immunosuppressive effect, which in turn increases tissue damage and chances of 349 

bacterial co-infection, leading to extensive inflammatory response induced by bacteria. 350 

However, early and middle usage of GC, accompanied by AntBio, still makes a 351 

favorable plan, as shown in Fig. 4E. 352 
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Figure 4 353 

 354 

Fig. 4 Treatment strategies on in silico patients. (A) Effects of different drugs in improving patient’s status 355 

(Q value) when used singly at different COVID-19 development stages. Median value of Q  in the 356 

whole sample is taken to assess the efficacy of the drugs. (B) Effects of different drugs on patients with 357 

bacterial co-infection. (C~E) The ensemble averaged immune response trajectories untreated (in dashed 358 

line) and the trajectories treated (in solid line) of the mode 2 patients (C), the mode 3 patients (D) and the 359 

mode 3.1* patients with bacterial co-infection (E). 360 

   361 
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We summarized our results in flowchart in Fig. 5, as a reference for an ideal procedure 362 

in treating COVID-19 patients.  363 

Figure 5 364 

 365 
Fig. 5. Procedure for identifying the different immune modes and formulating proper therapeutic schedules. 366 

 367 

 368 

Discussion 369 

The immune system is a complex defense system that protects us from the pathogens, 370 

including virus, bacteria, parasites and other invaders. The response and regulation of 371 

immune system involve dozens of cell types and hundreds of signal molecules with 372 

different ligand-receptor interactions, while these lymphocytes and molecules circulate 373 

in the whole body to clear invaders and kill infected cells. The immune system usually 374 

works quickly, effectively and resiliently. It prepares in advance through lymphocyte 375 

abundance and pool; it learns from experience by memory lymphocyte. On the other 376 
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hand, it has checks and balance to prevent the over activation of immune system. 377 

However, when a new virus or invader infect the host and there is no effective drug 378 

treatment, the host immune system might lose the balance and exhaust the lymphocyte 379 

abundance and pool. This may result in poor clinical outcome and even the epidemic 380 

spread. In the last decade of the twentieth century, during the treatment of HIV, hepatitis 381 

B virus and hepatitis C virus infection, the mathematical modeling interpreting 382 

quantitative clinical data has made a significant contribution to understand the dynamics 383 

of these viruses and the drug treatment strategy (26-30). 384 

Since 2019, the ongoing of COVID-19 pandemic has sickened millions and killed 385 

more than 1 million people worldwide. There is still a lack of reliable effective treatment 386 

strategies toward the different immune status in patients. In this study, we constructed a 387 

mathematical model to describe the dynamic response of immune system. We classified 388 

the COVID-19 development processes into three typical modes of immune responses, 389 

and put forward effective treatment strategies for relevant immune response processes. 390 

In this work, we only focus on the immune response, and ignore other clinical symptoms 391 

such as multiple system and organ failure and pathological damage of other organs. We 392 

simplified the innate and adaptive immune network and chose CD4+ and CD8+ T cells 393 

to motivate and orchestrate the immune responses to SARS-CoV-2 infection. More 394 

quantitative and multiple time point clinical data are needed to verify our model and 395 

predictions, especially the treatment strategies for different modes of immune response. 396 

In our recent unpublished work, we are investigating more types of immune cells 397 

including the memory T and B cells, the bacteria infection and MDSC, together with the 398 

recirculation among blood, lung, lymph node, spleen and bone marrow. In addition, we 399 

hope our work can help to classify the patients clinically by their early period hemograms 400 

and cytokine profiles, and to choose effective treatments based on their dynamic immune 401 

status. Furthermore, we hope that our approach can be adapted to other kinds of viral 402 

and bacterial infections, and can be applied to describe and predict the cytokine storm 403 

on CAR-T immune treatment (31, 32). 404 

In summary, our work provides a quantitative framework about the complex 405 

interactions between virus infection and host immune response. More feedbacks with 406 

clinical treatment and data will help us to obtain the systemic and quantitative 407 

understanding of dynamics that immune system responds to the infection of SARS-Cov-408 

2 virus.  409 
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