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Sebastian Aniţaa, Malay Banerjeeb, Samiran Ghoshb, Vitaly Volpertc,d,e,∗

a Faculty of Mathematics, “Alexandru Ioan Cuza” University of Iasi, and
“Octav Mayer” Institute of Mathematics of the Romanian Academy, Iasi 700506, Romania

b Department of Mathematics & Statistics, IIT Kanpur, Kanpur - 208016, India
c Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1, 69622 Villeurbanne, France

d INRIA Team Dracula, INRIA Lyon La Doua, 69603 Villeurbanne, France
e Peoples Friendship University of Russia (RUDN University)
6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation

∗Corresponding author (volpert@math.univ-lyon1.fr)

Abstract. Epidemic progression depends on the structure of the population. We study
a two-group epidemic model with the difference between the groups determined by the
rate of disease transmission. The basic reproduction number, the maximal and the total
number of infected individuals are characterized by the proportion between the groups.
We consider different vaccination strategies and determine the outcome of the vaccination
campaign depending on the distribution of vaccinated individuals between the groups.
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1 Introduction

Epidemic progression in a heterogeneous population depends on the proportion of different

groups characterized by the rate of disease transmission [3, 4, 5, 6]. In this work we study

the efficacy of vaccination campaign for different vaccination strategies. We consider the

epidemic progression in a two-group population consisting of susceptible (S1, S2) and infected

(I1, I2) compartments and described by the following model:

dSj
dt

= − (βj1I1 + βj2I2)
(Sj − Vj)

N
, (1.1)

dIj
dt

= (βj1I1 + βj2I2)
(Sj − Vj)

N
− σjIj, j = 1, 2, (1.2)

where βij are the rates of disease transmissions, σj (j = 1, 2) are the clearance rates of

infected individuals, and N is the total population. Here V1 and V2 denote the number
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of vaccinated in the first and second group, respectively. Let us note that the number of

individuals in each class, which can be infected, is Sj − Vj, j = 1, 2. We suppose that

vaccination is fully efficient in the sense that vaccinated individuals cannot become infected.

For this model we are intended to calculate the basic reproduction number, size of the

epidemic and study the effect of vaccination to arrest the disease progression.

2 Epidemic indicators

In this section we determine the basic reproduction number in the heterogeneous population,

the total and the maximal number of infected individuals depending on the number of

vaccinated individuals.

2.1 Basic reproduction number

At the beginning of epidemic, let us assume that S10 and S20 denote the number of susceptible

individuals in the two groups such that S10+S20 = N , and we define S10

N
= k and S20

N
= 1−k,

where 0 ≤ k ≤ 1. The Jacobian matrix of the system (1.1) - (1.2) evaluated at the disease

free equilibrium point is

J1 =

[
θ2×2 A
θ2×2 B

]
, with A =

[
−β11a −β12a
−β21b −β22b

]
, B =

[
β11a− σ1 β12a
β21b β22b− σ2

]
,

with a = k − V1
N

and b = (1 − k) − V2
N

. Clearly, two eigenvalues equal to zero, while the

largest eigenvalue is given by

2λ = aβ11 + bβ22 − 2σ +
√

(a+ b) (aβ2
11 + bβ2

22),

where we have assumed σ1 = σ2 = σ, β12 = β21 = (β11+β22)/2 for simplicity of presentation.

Equating the largest eigenvalue to zero, we find the basic reproduction number

R0 =
aβ11 + bβ22 +

√
(a+ b) (aβ2

11 + bβ2
22)

2σ
.

2.2 Region of epidemic growth

Epidemic growth occurs for R0 > 1. Depending on the number of vaccinated individuals

in the two classes, we can determine the regions in the (V1, V2)-parameter plane, where the

epidemic progresses. Since the number of vaccinated in each group cannot be greater than

the initial number of susceptible, then V1 ≤ kN and V2 ≤ (1− k)N . The boundary between
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the regions of epidemic growth and the region epidemic extinction can be obtained from the

relation R0 = 1:

∆(V1, V2) ≡ ab(β11 − β22)2 + 4σ(aβ11 + bβ22) = 4σ2.

The epidemic extinction occurs in E1 and the epidemic progresses in E2 where:

E1 = {(V1, V2) : ∆(V1, V2) < 4σ2, V1 ≤ kN, V2 ≤ (1− k)N},

E2 = {(V1, V2) : ∆(V1, V2) > 4σ2, V1 ≤ kN, V2 ≤ (1− k)N}.

Fig. 1 shows the regions with epidemic growth and extinction for different values of k.

Figure 1: Regions of epidemic growth and extinction are marked with deep and light colours,
respectively. Parameter values are β11 = 4, β22 = 1, β12 = β21 = 2.5, σ1 = σ2 = 1 and k = 0.1
(green), k = 0.2 (red) and k = 0.3 (blue).

2.3 Final size of epidemic

Taking a sum of equations (1.1), (1.2), and then integrating between t = 0 and t = ∞, we

obtain the equalities:

S10 − Sf1 = σ1

∫ ∞
0

I1(t)dt, S20 − Sf2 = σ2

∫ ∞
0

I2(t)dt (2.1)
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under the assumption that Ij(0) = Ij(∞) = 0, j = 1, 2 and Sf1 , Sf2 are the final sizes of two

susceptible groups. Next, we divide equation (1.1) by Sj, and integrate from 0 to ∞:

− ln

(
Sfj − Vj
Sj0 − Vj

)
=

βj1
Nσ1

(
S10 − Sf1

)
+

βj2
Nσ2

(
S20 − Sf2

)
, j = 1, 2,

using the equalities in (2.1). Introducing four new quantities x1 = Sf1 /S10, x2 = Sf2 /S20,

v1 = V1/S10, v2 = V2/S20, and assuming that σ1 = σ2 = σ, β12 = β21 = (β11 + β22)/2, we

obtain the following equations

βj1k(1− x1) + βj2(1− k)(1− x2) = −σ ln

(
xj − vj
1− vj

)
, j = 1, 2,

with respect to x1 and x2. The positive solution of this system, satisfying the restriction

0 < x1, x2 < 1, determines the final size of susceptible populations (Fig. 2, left). We can

now determine the number of infected individuals in each group at the end of epidemic and

the total number of infected in both groups, Itot = N − V1 − V2 − Sf1 − S
f
2 .
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Figure 2: Left panel: analytical and numerical values of the final sizes of epidemic for two
groups for k = 0.1 (blue), k = 0.2 (green), k = 0.3 (red). Right panel: analytical and
numerical values of maximum number of infected individuals for two groups for k = 0.1
(blue), k = 0.2 (green), k = 0.3 (red). Other parameter values are as follows: β11 = 4,
β22 = 1, β12 = β21 = 2.5, σ = 1, V2 = 2.4 · 106 − V1.

2.4 Maximum number of infected

In order to find the maximal number of infected individuals in the heterogeneous population,

we consider an approximation t1m = t2m, where tjm is time at which the functions Ij(t) reach
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their maxima (j = 1, 2). Integrating equations S ′1 + I ′1, S
′
2 + I ′2 from 0 to tm, we obtain:

Sm1 − S10 + Im1 = −σ1
∫ tm

0

I1(t)dt, S
m
2 − S20 + Im2 = −σ2

∫ tm

0

I2(t)dt,

where Imj = Ij(tm), j = 1, 2. Next, we divide equation (1.1) by Sj, and integrate over [0, tm]

to find:

− ln

(
Smj − Vj
Sj0 − Vj

)
=

βj1
Nσ1

(S10 − Sm1 − Im1 ) +
βj2
Nσ2

(S20 − Sm2 − Im2 ), j = 1, 2. (2.2)

Assuming that I ′j(tm) = 0, we get from (1.2):

Smj =
σjNI

m
j

βj1Im1 + βj2Im2
+ Vj, j = 1, 2. (2.3)

As before, we assume that σ1 = σ2 = σ and set γij = βij/σ, u1 = Im1 /N , u2 = Im2 /N , and

v1, v2 as defined in the previous subsection. Using (2.3), we can rewrite equation (2.2) as

follows:

ln

(
λj
γj1u1 + γj2u2

uj

)
= (λ1 − u1)γj1 + (λ2 − u2)γj2 −

γj1u1
γ11u1 + γ12u2

− γj2u2
γ21u1 + γ22u2

,

where λj = ((j − 1) + (3− 2j)k)(1− vj), j = 1, 2. Solving this system of equations, we find

uj and, consequently, Imj , j = 1, 2 (Fig. 2, right). We then use formulas (2.3) to determine

Smj , j = 1, 2.

3 Optimization of vaccination strategies

Since there is a cost related to vaccination, an optimal control problem (optimal vaccination)

is proposed:

min
0≤V1≤V 1,0≤V2≤V 2

∫ T

0

(IV1 (t) + IV2 (t))dt+ γ(V1 + V2),

meaning that we are interested to minimize total damage of the epidemics, which includes

the cost related to the total number of infected individuals and the cost of the vaccine. Here,

(SV1 , S
V
2 , I

V
1 , I

V
2 ) is the solution to (1.1)-(1.2) which satisfies the initial conditions SVj (0) =

Sj0, I
V
j (0) = Ij0, j ∈ {1, 2}, where V = (V1, V2) ∈ [0, V 1]× [0, V 2] is the control/vaccination

strategy. Since, due to certain constraints, not all individuals may be vaccinated we have

imposed the constraints on V1, V2: 0 ≤ V j ≤ Sj0, j = 1, 2, and γ is a positive constant. Let

J (V ) =

∫ T

0

(IV1 (t) + IV2 (t))dt+ γ(V1 + V2).
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Figure 3: Left panel: various vaccination strategies shown as lines in the (V1, V2)-plane.
Right panel: plots of I1(t)+I2(t) for four vaccination strategies shown in the left figure. The
colours of the curves correspond to the colours of respective dots in the left panel. Scaling of
the black curve is shown at the right vertical axis and of other curves the left vertical axis.
Parameter values are the same as in Fig. 2.

Consider the following adjoint problem

dQ

dt
= −ATVQ+ (0, 0, 1, 1)T , Q(T ) = (0, 0, 0, 0)T , (3.1)

where ATV is the transposed of the matrix

AV =


−β11

N
IV1 −

β12
N
IV2 0 −β11

N
(SV1 − V1) −β12

N
(SV1 − V1)

0 −β21
N
IV1 −

β22
N
IV2 −β21

N
(SV2 − V2) −β22

N
(SV2 − V2)

β11
N
IV1 + β12

N
IV2 0 β11

N
(SV1 − V1)− σ1

β12
N

(SV1 − V1)
0 β21

N
IV1 + β22

N
IV2

β21
N

(SV2 − V2)
β22
N

(SV2 − V2)− σ2

 .

LetQV be a solution of problem (3.1), V ∈ [0, V 1]×[0, V 2] andQV =
(
QV

1 QV
2 QV

3 QV
4

)T
.

Following the method presented in [1, 2], we can prove that for any θ ∈ R2 such that

V + εθ ∈ [0, V 1]× [0, V 2] for any sufficiently small ε > 0.

dJ (V )(θ) =
∑
j=1,2

θj

[
γ −

∫ T

0

(
βj1
N
IV1 +

βj2
N
IV2

)
(QV

j −QV
j+2)dt

]
.

The evaluation of directional derivative of J allows us to derive a conceptual iterative algo-

rithm (gradient type) which improves at each step the control V = (V1, V2). On the other

hand, we can prove as in [1] that there exists at least one optimal control V ∗ = (V ∗1 , V
∗
2 ) ∈

[0, V 1]× [0, V 2] (optimal vaccination strategy), i.e., J (V ∗) ≤ J (V ), ∀V ∈ [0, V 1]× [0, V 2].
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Using the form of the directional derivative of J we deduce that

V ∗j =

 0,
∫ T
0

(
βj1
N
IV

∗
1 +

βj2
N
IV

∗
2

) (
QV ∗
j −QV ∗

j+2

)
dt < γ

V j,
∫ T
0

(
βj1
N
IV

∗
1 +

βj2
N
IV

∗
2

) (
QV ∗
j −QV ∗

j+2

)
dt > γ,

, j = 1, 2.

This allows us to improve the above mentioned gradient-type algorithm. More detailed

analysis and applications of this approach will be presented elsewhere.

Different vaccination strategies are illustrated in Fig. 3. Each point on the (V1, V2)-plane

shows one vaccination with the corresponding numbers of vaccinated individuals in each class.

As such, for the first vaccination we have V1 +V2 = 106 for all vaccination strategies but the

proportion between the two groups are different. Similarly, the total number of vaccinated

individuals equals 2 ·106 after the second vaccination, and so on. Thus, we consider the same

total number of vaccinated individuals at each vaccination stage with different proportions

between the classes in different vaccination strategies.

The curve with black dots in the left panel of Fig. 3 corresponds to a random choice

of vaccinated individuals. Since for k = 0.2 we have S2/S1 = (1 − k)/k = 4, then setting

V2 = 4V1 we obtain the same proportion of vaccinated individuals in each class as the

proportion between the classes of susceptible individuals. We neglect here the change of

S2/S1 during the epidemic progression. Though this vaccination strategy is quite natural, it is

less efficient compared to the other strategies where more individuals from S1 are vaccinated.

A total number 5 · 106 of individuals are vaccinated in five times with 106 vaccines each

one. The first vaccination is effectuated at the beginning of the (t = 0) and the remaining

vaccinations after every five time units. For various vaccination strategies shown in Fig. 3

(left), the corresponding functions I(t) = I1(t) + I2(t) are shown in Fig. 3 (right). We can

characterize the vaccination strategies by the functions V2(t) = fi(V1(t)), i = 1, 2, 3, 4. We

conclude that for any two vaccination strategies f1 and f2 such that f1(V1) < f2(V1), the

corresponding functions (sum of infected individuals in both classes) satisfy the inequality

I1(t) < I2(t) for all t > 0. A similar relation holds for the total number of infected individuals

at the end of epidemic.

Thus, vaccination of the first class of susceptible individuals is more efficient from the

point of view of minimizing the number of infected individuals. This conclusion can be

expected because the rate of disease transmission by this group is faster. However, this

conclusion may not hold true if we minimize the number of deaths taking into account

different mortality rates in the two groups. Let us consider an example with two groups:

S1 corresponds to people less than 60 years old, S2 to people more than 60. Assume that
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k = 0.8, that is, S10 = 0.8N and S20 = 0.2N . Consider the vaccination strategies where

V1/V2 =const and let us vary this ratio. The total numbers of infected individuals in each

group at the end of epidemic are presented in the following table.

V1/V2 V1/V2 = 8 V1/V2 = 4 V1/V2 = 1.5
I tot1 5 476 432 5 707 105 6 209 094
I tot2 1 364 707 1 227 671 908 982

The ratio V1/V2 = 4 corresponds to a random choice of vaccinees. As before, increase of

the proportion of the first group decreases the total number of infected I tot1 + I tot2 . However,

the total number of deaths depends on the mortality rate in each group. In the application

to the Covid-19, we assume that the mortality rate of infected individuals in the second

group is of the order of magnitude 10 times larger than in the first group. In this case, the

total number of deaths decreases for a larger proportion of vaccinees in the second group.
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