Supplementary Material: Additional Figures

We plot the active cases (tested and actual cases) along with the cost for each of the 25 scenarios considered in Figure 3 of the main text. These are plotted in Figure 1 for all cases of $M_c^*/4$, Figure 2 for all cases of $M_c^*/2$, Figure 3 for all cases of M_c^* , Figure 4 for all cases of $2M_c^*$, and Figure 5 for all cases of $4M_c^*$.

Figure 1: Tested active cases (green solid), total active cases (blue dashed) and relaxation cost (red solid) for $M_c^*/4$ and varying C_c . The grey curve represents the baseline case of no implementation of social distancing (and thus no cost) and the black dashed line is the critical threshold $N_{\rm crit}/2$. Case values are scaled by $N_{\rm crit}$.

Figure 2: Tested active cases (green solid), total active cases (blue dashed) and relaxation cost (red solid) for $M_c^*/2$ and varying C_c . The grey curve represents the baseline case of no implementation of social distancing (and thus no cost) and the black dashed line is the critical threshold $N_{\rm crit}/2$. Case values are scaled by $N_{\rm crit}$.

Figure 3: Tested active cases (green solid), total active cases (blue dashed) and relaxation cost (red solid) for M_c^* and varying C_c . The grey curve represents the baseline case of no implementation of social distancing (and thus no cost) and the black dashed line is the critical threshold $N_{\rm crit}/2$. Case values are scaled by $N_{\rm crit}$.

Figure 4: Tested active cases (green solid), total active cases (blue dashed) and relaxation cost (red solid) for $2M_c^*$ and varying C_c . The grey curve represents the baseline case of no implementation of social distancing (and thus no cost) and the black dashed line is the critical threshold $N_{\rm crit}/2$. Case values are scaled by $N_{\rm crit}$.

Figure 5: Tested active cases (green solid), total active cases (blue dashed) and relaxation cost (red solid) for $4M_c^*$ and varying C_c . The grey curve represents the baseline case of no implementation of social distancing (and thus no cost) and the black dashed line is the critical threshold $N_{\rm crit}/2$. Case values are scaled by $N_{\rm crit}$.

We also plot the populations in each of the two social distancing classes for each of the 25 scenarios considered in Figure 3 of the main text. These are plotted in Figure 6 for social distancing class 1 and Figure 7 for social distancing class 2.

Figure 6: Total people in social distancing class 1 (S_1 , E_1 , P_1 , I_{S_1} , I_{A_1}) for different values of M_c and C_c .

Figure 7: Total people in social distancing class 2 (S_2 , E_2 , P_2 , P_M , I_{S_2} , I_{S_M} , I_{A_2} , I_{A_M}) for different values of M_c and C_c .

Next, we plot the active cases (tested and actual cases) along with the cost for each of the 25 scenarios considered in Figure 8 using the modified relaxation cost (3.1). These are plotted in Figure 8 for all cases of $\eta = 1/4$, Figure 9 for all cases of $\eta = 1/2$, Figure 10 for all cases of $\eta = 1$, Figure 11 for all cases of $\eta = 2$, and Figure 12 for all cases of $\eta = 4$.

Figure 8: Tested active cases (green solid), total active cases (blue dashed) and relaxation cost (red solid) for $\eta = 1/4$ and varying C_c . The grey curve represents the baseline case of no implementation of social distancing (and thus no cost) and the black dashed line is the critical threshold $N_{\rm crit}/2$. Case values are scaled by $N_{\rm crit}$.

Figure 9: Tested active cases (green solid), total active cases (blue dashed) and relaxation cost (red solid) for $\eta = 1/2$ and varying C_c . The grey curve represents the baseline case of no implementation of social distancing (and thus no cost) and the black dashed line is the critical threshold $N_{\rm crit}/2$. Case values are scaled by $N_{\rm crit}$.

Figure 10: Tested active cases (green solid), total active cases (blue dashed) and relaxation cost (red solid) for $\eta = 1$ and varying C_c . The grey curve represents the baseline case of no implementation of social distancing (and thus no cost) and the black dashed line is the critical threshold $N_{\rm crit}/2$. Case values are scaled by $N_{\rm crit}$.

Figure 11: Tested active cases (green solid), total active cases (blue dashed) and relaxation cost (red solid) for $\eta = 2$ and varying C_c . The grey curve represents the baseline case of no implementation of social distancing (and thus no cost) and the black dashed line is the critical threshold $N_{\rm crit}/2$. Case values are scaled by $N_{\rm crit}$.

Figure 12: Tested active cases (green solid), total active cases (blue dashed) and relaxation cost (red solid) for $\eta = 4$ and varying C_c . The grey curve represents the baseline case of no implementation of social distancing (and thus no cost) and the black dashed line is the critical threshold $N_{\rm crit}/2$. Case values are scaled by $N_{\rm crit}$.

We also plot the populations in each of the two social distancing classes for each of the 25 scenarios considered in Figure 8 of the main text. These are plotted in Figure 13 for social distancing class 1 and Figure 14 for social distancing class 2.

Figure 13: Total people in social distancing class 1 (S_1 , E_1 , P_1 , I_{S_1} , I_{A_1}) for different values of η and C_c .

Figure 14: Total people in social distancing class 2 (S_2 , E_2 , P_2 , P_M , I_{S_2} , I_{S_M} , I_{A_2} , I_{A_M}) for different values of η and C_c .