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Abstract 

Objectives To estimate the short-term effect of stringent lockdown policies on non-COVID-19 

mortality and explore the heterogeneous impacts of lockdowns in China after the COVID-19 

outbreak. 

Design Employing a difference-in-differences method.  

Setting Using comprehensive death records covering around 300 million Chinese people, we 

estimate the impacts of city and community lockdowns on non-COVID-19 mortality outside of 

Wuhan.  

Participants 44,548 deaths recorded in 602 counties or districts by the Disease Surveillance Point 

System of the Chinese Center for Disease Control and Prevention from 1 January 2020 to14 March 

2020. 

Results We find that lockdowns reduced the number of non-COVID-19 deaths by 4.9% 

(cardiovascular deaths by 6.2%, injuries by 9.2%, and non-COVID-19 pneumonia deaths by 

14.3%). A back-of-the-envelope calculation shows that more than 32,000 lives could have been 

saved from non-COVID-19 diseases/causes during the 40 days of the lockdown on which we 

focus. 

Main outcome measures Weekly numbers of deaths from all causes without COVID-19, 

cardiovascular diseases, injuries, pneumonia, neoplasms, chronic respiratory diseases, and other 

causes were used to estimate the associations between lockdown policies and mortality. 

Conclusions The results suggest that the rapid and strict virus countermeasures not only 

effectively controlled the spread of COVID-19 but also brought about unintended short-term 

public health benefits. The health benefits are likely driven by significant reductions in air 
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pollution, traffic, and human interactions during the lockdown period. These findings can help 

better inform policymakers around the world about the benefits and costs of lockdowns policies in 

dealing with the COVID-19 pandemic.  
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Introduction 

By the end of 2020, COVID-19 had affected more than 219 countries and caused more than 1.7 

million deaths worldwide.1 Facing this unprecedented crisis, different countries adopted various 

measures to mitigate its impacts, ranging from one extreme, where governments imposed 

draconian measures to restrict human mobility immediately after the outbreak, to the other 

extreme, where governments were reluctant to adopt any serious disease preventive measures and 

explicitly resorted to herd immunity. Effective policies not only depend on the social preferences 

of people and the capacity of government but also depend on our accurate understanding of the 

costs and benefits of different counter-COVID-19 measures. However, relatively little is known 

about the broader impacts of these policies. 

A key component when evaluating the welfare implications of the anti-contagion policies is their 

overall public health consequences. Multiple studies have shown that strict social distancing and 

human mobility restrictions can effectively control the spread of COVID-19 and thus save lives 

from the virus.2-6 However, it remains unknown to researchers and policymakers how such 

interventions affect disease patterns and deaths from other causes. On the one hand, hospitals may 

decline non-urgent service requests (especially when the system is overburdened by COVID-19)7 

and the fear of getting infected by COVID-19 may make patients reluctant to visit hospitals. This 

could impact the quality of health services and delay medical treatment, which would negatively 

affect population health. Additionally, in many countries, the strict virus containment policies led 

to sudden and sharp economic disruption, causing massive layoffs.8 As documented in the previous 

literature, such economic downturns and high unemployment could also damage population 

health.9-15 These factors would increase mortality when strict counter-virus measures were 

enforced. On the other hand, because the virus containment policies significantly improved air 
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quality, restricted human-to-human interactions, and reduced work and traffic accidents, it is also 

possible that a large number of people could be saved from dying from air pollution, other types 

of communicable diseases, and accidents.17-19 Therefore, it is of great scientific and policy 

relevance to assess whether the counter-virus measures bring about additional public health gains 

or additional public health losses.  

Using data from China, we examine how city and community lockdown policies affect non-

COVID-19 mortality. We focus on China because the country mandated strict social distancing 

and lockdown policies to control the virus. Within a few weeks after the COVID-19 outbreak in 

Wuhan, a large number of cities enforced strict quarantines, traced close contacts, prohibited 

public gatherings, mandated social distancing, and limited human mobility. A large number of 

cities were locked down even though they had less than 100 confirmed cases (Figure SM1 and 

Figure SM2). Exploiting the staggered introduction of city and community lockdowns in different 

cities of China, we estimate the impacts of lockdowns on the number of deaths from various causes 

and explore the channels through which these impacts are manifested. These results will help 

policymakers around the world design effective measures to mitigate the damages from the 

pandemic.  

The core of our empirical analysis uses the comprehensive deaths record from China’s Disease 

Surveillance Points (DSPs) system, covering more than 324 million people in 605 DSP’s 

districts/counties in 321 cities, which accounts for 24.3% of the country’s population.20, 21 This 

dataset includes cause-specific deaths, which allows us to examine the mechanism of lockdowns’ 

impacts on non-COVID-19 mortality. Each city’s lockdown information is collected from news 

media and government announcements. During the end of January and the mid of February, a large 

number of Chinese cities have implemented the lockdown policies (Figure 1). There are two types 
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of lockdowns: city lockdown and community lockdown. The former is defined as mobility being 

restricted across different cities, and the latter is defined as the restriction of mobility within a city. 

Matching these datasets, we construct a daily DSP site-level panel dataset from January 1 to March 

14, 2020, which is the period largely overlapping with the coronavirus outbreak in China. Our 

dataset includes 393,133 death records that were reported to the DSPs system by May 15, 2020 

(Table SM1). Note that we exclude 3 DSPs in Wuhan from the baseline analysis because the city 

is the epicenter of the outbreak in China, and we are concerned that its death reporting process 

could have been affected during the study period.22  

To quantify the impacts of lockdowns on mortality, we employ a difference-in-differences (DiD) 

approach, which is an econometric approach and is widely used to infer causal impacts of various 

policies and events using observational data23. An advantage of this approach is that it compares 

the policy effects relative to the plausible counterfactuals. While the results from a before-and-

after comparison could be driven by different mortality trends or other unobserved confounders, 

DiD compares the changes in mortality between the locked-down DSPs (treatment group) and the 

non-locked-down DSPs (control group) before and after the enforcement of lockdown policies. In 

other words, the control group can serve as a counterfactual, mimicking what would have 

happened in locked down DSPs in the absence of the lockdown, which essentially allows us to 

compare the policy effects relative to business as usual. Note that a key assumption of the DiD is 

that the treatment and the control group follow parallel trends in the number of deaths in the 

absence of the lockdown policies. We examine whether this assumption is likely to hold using an 

event-study test. We describe the model in more detail in the Materials and Methods. 

 

Methods 
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Materials  

Study area: We collected 44,548 deaths from 605 Disease Surveillance Point (DSPs) 

districts/counties from January 1 to March 14, 2020, which were reported to the DSPs system by 

May 15, 2020. In our baseline analysis, we exclude three points (districts) in Wuhan due to 

concerns that the data might be unrepresentative because the pandemic started there. 

Mortality Data: Weekly mortality data are provided (See supplementary materials and methods). 

The causes of death are coded in accordance with the International Classification of Diseases-10th 

revision (ICD-10). We classified the main underlying causes of deaths into 6 categories: I00-I99 

for cardiovascular diseases (CVD), V01-Y89 for injuries, J12-J15, J18.9 and J98.4 for pneumonia 

(excluding COVID-19), C00-C97 for neoplasms, J30-J98 for chronic respiratory diseases, and 

other causes (remaining ICD-10 codes for all other causes). We further disaggregate 

cardiovascular diseases, injuries, and pneumonia deaths into specific diseases/causes. 

Cardiovascular diseases include stroke (I60-I62, I67, and I69), myocardial infarction (I20-I25), 

and other cardiovascular diseases. Injuries include traffic accidents (V01-V04, V06, V09, V87, 

V89, and V99), suicide (X60-X84 and Y87), and other injuries. Pneumonia includes mycoplasma 

pneumonia (J18.9), viral and bacterial pneumonia (J12-J15), and pulmonary infection (J98.4). We 

also divide the daily number of deaths into three age groups (0-15, 15-64, and ≥65). All death data 

are analyzed at the aggregated level.  

Lockdown Data: We collected local governments’ lockdown information city by city from news 

media and government announcements, details in supplementary materials and methods. The 

evolution of different DSPs’ lockdown status is presented in Figure SM1 and Figure SM2. In Table 

SM11, we further provide a complete list of cities that adopted different lockdown policies at 

different times. The lockdowns gradually spread to different surveillance districts/counties 
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between January 23 and February 20. By the end of February, 486 out of 602 surveillance points 

had lockdown policies. 

Weather Data: Weather variables include daily temperature, atmospheric pressure, relative 

humidity, wind speed, and precipitation. The data are obtained from the China Meteorology 

Administration (CMA). We aggregate station-level air pollution data to city-level data using the 

inverse squared distance (to city centers) as the weights. Stations closer to the population center 

are given higher weights so that city-level weather data can be representative of people dwelling 

in the city.  

Air Pollution Data: We obtain air pollution data from the Ministry of Ecology and Environment. 

The original dataset includes hourly air quality readings from over 2,000 monitoring stations 

covering 338 prefectural cities in China. We follow the same procedure to aggregate station level 

air pollution data to the city level. As an omnibus measure of the overall air quality, we use PM2.5 

concentration in our regressions. Our results are quantitatively unchanged if we use the Air Quality 

Index or PM10.  

Socio-Economic Conditions: We assemble the socio-economic data at the city or county level 

from the 2018 China City Statistical Yearbook and 2018 China County Statistical Yearbook, 

including GDP, population, and the number of hospital beds per 1,000 people. We also obtain data 

on the employment share of the manufacturing and service industries using the 10% sample of the 

2015 1% Population Sampling Survey in China.  

Summary Statistics: We report the summary statistics of mortality, lockdown status, and other 

covariates for 602 DSP counties in Table SM1. In Panel A, we report the summary statistics of the 

DSPs data. The average daily total number of deaths at the county level is 8.7, with a standard 

deviation of 0.025. The leading cause of death during this period is cardiovascular diseases, which 
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account for 49.7% of all deaths. The second leading cause of death is neoplasms (22.3%), followed 

by chronic respiratory diseases (8.7%), and injuries (5.5%). In Panel B, we report the summary 

statistics of several other variables. The PM2.5 concentration during our study period is 50 µg/m3, 

five times higher than the WHO standard (10 µg/m3 for annual mean, and 25 µg/m3 for a daily 

mean). The average share of employment in the manufacturing industries was 24.2% as of 2015. 

Statistical Analysis 

To quantify the impacts of lockdowns on mortality, we employ a difference-in-differences (DiD) 

approach, which is an econometric approach and is widely used to infer causal impacts of various 

policies and events using observational data23. An advantage of this approach is that it compares 

the policy effects relative to the plausible counterfactuals. While the results from a before-and-

after comparison could be driven by different mortality trends or other unobserved confounders, 

DiD compares the changes in mortality between the locked-down DSPs (treatment group) and the 

non-locked-down DSPs (control group) before and after the enforcement of lockdown policies. In 

other words, the control group can serve as a counterfactual, mimicking what would have 

happened in locked down DSPs in the absence of the lockdown, which essentially allows us to 

compare the policy effects relative to business as usual. Note that a key assumption of the DiD is 

that the treatment and the control group follow parallel trends in the number of deaths in the 

absence of the lockdown policies. We examine whether this assumption is likely to hold using an 

event-study test. We describe the model in more detail in the Supplementary Materials and 

Methods. 

Ethical Approval 

The ethics committee from the National Center for Chronic Non-Communicable Disease Control 

and Prevention (NCNCD) of the Chinese Center for Disease Control and Prevention approved the 
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study. No individual consent was required as all the data were analyzed at aggregated level, and 

no patients were involved in setting the research question or the outcome measures, nor were they 

involved in developing plans for recruitment, design, or implementation of the study.  

 

Results 

Impacts of City and Community Lockdowns on Non-COVID-19 Deaths 

Figure 2 summarizes the baseline regression results by fitting the DiD model (Equation A1; full 

results are in Table SM2). Panel A reports the effects on the number of deaths, while Panel B 

reports the percentage change. In row (1), we find that lockdowns overall have a negative impact 

on non-COVID-19 mortality. After human mobility is restricted, the DSP-level daily number of 

deaths decreased by 0.429 (or 4.92%), as compared to the control group.  

In rows (2) to (7), motivated by several factors that could potentially affect population health 

during the lockdown period, we separately examine the effects on different causes of death. We 

are especially interested in the following three outcome variables: cardiovascular diseases (CVD), 

injuries, and (non-COVID-19) pneumonia deaths. Existing literature on the acute effects of air 

pollution suggests that elevated air pollution levels can significantly increase deaths from strokes, 

myocardial infarction, and other types of cardiovascular diseases.24-25 We thus expect the number 

of deaths from CVDs may decrease due to the improved air quality.27 As shown in row (2) of 

Figure 2, we find that cardiovascular deaths were reduced by 6.2% (0.27 in levels) after lockdown. 

Relatedly, as the lockdown policies restrict production, social activities, and traffic, we expect the 

number of deaths from injuries (which include workplace injuries, traffic accidents, etc.) to also 

drop. The result in row (3) of Figure 2 confirms this conjecture; we observe that the number of 
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deaths caused by injuries decreased by 9.2% (0.044 in levels). In addition, as human mobility is 

greatly restricted during the lockdown period, this should reduce the likelihood of people getting 

infected by and dying from other types of bacteria and viruses that cause pneumonia. The result in 

column (4) shows that deaths from non-COVID pneumonia were reduced by a large margin of 

14.7% (0.022 in levels) during the lockdown period.  

In rows (5) to (7), we report the findings on several other causes of death that are less likely to be 

affected by short-term restrictions on human activities. They include deaths from neoplasms, 

chronic respiratory diseases, and other diseases. While the coefficients for these causes of death 

are also negative, they are all not statistically significant. We thus conclude the temporary human 

mobility restrictions during China’s lockdowns primarily reduce the deaths caused by acute 

diseases and accidents and have a weaker impact on people with chronic diseases and cancers.  

Some additional analyses complement our main findings. A key assumption of the DiD is that the 

treatment and the control group follow parallel trends in the number of deaths in the absence of 

the lockdown policies. Using an event-study approach, we show that this assumption is likely to 

be held (Figure 3 and Supplementary Note 1 and Table SM3). Also, we find that our results are 

robust to the inclusion of additional controls, adoption of different weighting, and sampling 

(Supplementary Note 2, Table SM5, and Figure SM3). Finally, we further disaggregate the data 

into more specific causes/diseases (Table SM4). For example, in the cardiovascular disease 

category, we observe that deaths from myocardial infarction, strokes, and other types of 

cardiovascular diseases all significantly decreased after the lockdown. 

Heterogeneity 

In Figure 4, we examine the heterogeneous impacts of lockdowns on mortality. Here we report our 

findings on the total number of non-COVID-19 deaths and explore the following dimensions: 
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baseline income (measured by per capita GDP in 2018), healthcare resources (measured by 

hospital beds per thousand people in 2018), air pollution levels (measured by average PM2.5 

concentrations in 2019), industrial structure (measured by the share of employment in 

manufacturing industries in 2015), and initial health status (measured by mortality rate in 2019).  

To do so, we interact the lockdown indicator separately with each of the heterogeneity dimensions 

in the regression (Table SM6), and then plot the predicted impacts and their 95% confidence 

intervals in Figure 4. We observe significant heterogeneities with respect to the air pollution level, 

the employment shares in the manufacturing industries, and the baseline mortality level. 

Specifically, the health benefit of lockdowns on mortality is greater when a DSP is more polluted 

and more industrialized, and when the initial health status is worse. This finding is consistent with 

several previous studies which show that China’s lockdowns significantly reduced the air 

pollution.17-18  

We also repeat this exercise separately for deaths from specific causes: cardiovascular diseases, 

injuries, and non-COVID-19 pneumonia (Figure SM4). Several patterns stand out: (1) for 

cardiovascular diseases, there exist significant heterogeneities for air pollution and industrial 

structure, with more polluted and more industrialized cities seeing fewer deaths from 

cardiovascular diseases during lockdowns relative to other cities (Panel a); (2) for injuries, the 

more industrialized the DSP, the higher its initial injury mortality, and, as expected, the greater the 

impact of the lockdown (Panel b); (3) for pneumonia, we only observe significant heterogeneity 

with respect to initial mortality rate, i.e., cities with a higher initial pneumonia mortality rate are 

more strongly affected by lockdowns (Panel c). Across all the causes of death, per capita GDP and 

availability of healthcare resources do not seem to play an important role in terms of magnitude, 

although occasionally they are statistically significant. The corresponding regression results are 
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reported in Tables SM7-9. As a side note, we also examined many other dimensions of 

heterogeneity, including the severity of the COVID-19 outbreak, alternative measures of health 

care resources, other measures of economic structure, etc. However, we do not observe strong 

heterogeneities along these dimensions and thus do not report them in the paper.   

Finally, we investigate which age group(s) are driving the overall reduction in mortality. We 

expect older people and younger people to be sensitive to the overall lockdown policies, while we 

expect adults to be vulnerable to injuries and accidents. Figure SM5 summarizes the results. We 

find that children (-10.6% in row 1) and the elderly (-5.5% in row 5) are indeed more likely than 

adults (-2.5% in row 2) to be saved by the lockdown policies. If we further examine different 

causes of death, we find that the elderly is saved both from air pollution-related disease (-6.6% in 

row 6) and infectious disease (-17.0% in row 8), and younger adults are protected from injuries (-

14.7% in row 4). These results are generally consistent with our understanding of the threats of 

various diseases to different age groups. More detailed results are represented in Table SM10. 

Back-of-the-envelope calculation 

In Figure 5, using the estimates in our analyses, we calculate the averted non-COVID-19 deaths in 

the whole nation due to the lockdown policies during our study period. In Panel a, we plot the 

predicted average daily deaths. The red and blue lines respectively represent the predicted deaths 

with and without lockdown policies. Therefore, the differences between these lines can be regarded 

as the lockdown effects. We see that these two lines start to diverge as more cities implement 

lockdown policies, and the difference remains stable throughout mid-March.  

Because our dataset includes around a quarter of the Chinese population, we apply our estimates 

to the entire Chinese population in Panel b. During our study period, 486 DSPs (80.7%) eventually 

implemented lockdowns, with an average of 38.5 days. We apply our estimates to all the cities that 
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implemented the lockdown policies and calculate the number of averted deaths during our study 

period. We find that the lockdown policies brought about considerable health benefits: as many as 

32,023 lives may have been saved. If we look at the cause-specific effects, we find that 

cardiovascular diseases account for 62.9% (20,129) of overall averted deaths. Deaths from injury 

also declined by 10.2% (3,261), pneumonia by 5.0% (1,607), respiratory by 7.4% (2,373), and 

cancer by 8.5% (2,726).  

 

Discussion 

When COVID-19 spread across the globe, we observed a large variation in the public responses 

in mitigating its impacts: some countries immediately adopted harsh counter-virus measures while 

others delayed the launch of the policies. As an example of prompt and stringent responses to the 

COVID-19 outbreak, we investigate the mortality consequences of community and city lockdowns 

using data from China (excluding Wuhan) during the pandemic period. Here, we discuss several 

important implications of our findings. 

First and foremost, our findings demonstrate that the China’s lockdowns not only effectively 

controlled the spread of COVID-19, but also brought about unintended short-term benefits to 

population health during this period. We find that such policies reduced non-COVID-19 deaths by 

4.92%, which corresponds to 32,000 averted deaths in the nation during 40 days of lockdown. 

Given the increasingly heated cost-benefit debates regarding different counter-COVID-19 policy 

choices across the world, our results provide a benchmark to understand the health consequences 

of the lockdown policies. Besides China, several other countries have managed to take the COVID-
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19 threat under control after one to two months’ strict social distancing, largely because they dealt 

with the COVID-19 quickly and decisively.  

Second, our research points out the directions to improve population health after the pandemic. In 

particular, we observe a significant reduction in the number of cardiovascular deaths during the 

lockdown periods, and the effect is larger in cities with higher levels of initial air pollution. A 

back-of-the-envelope calculation suggests that the total number of averted premature deaths from 

cardiovascular diseases in the locked-down DSPs alone has far exceeded the total number of deaths 

caused by COVID-19 in China. This result suggests that air pollution imposed a significant health 

risk to the Chinese population and it is critically important for the government to continue to 

improve the environmental quality even when the lockdown is lifted.28, 29 Besides, the finding on 

pneumonia mortality confirms that reducing human contacts and raising awareness of preventive 

measures (such as wearing masks) not only helps control the spread of COVID-19, but also other 

infectious diseases. These measures should be more appreciated by both public health practitioners 

and governments. 

Third, our results also serve as corroborating evidence that China’s COVID-19 data outside of 

Wuhan are largely reliable. The logic is the following: if the deaths from COVID-19 were 

intentionally classified as other causes, such as pneumonia or other unclassified diseases, we might 

observe an unexplainable hike in those causes of death in the locked-down cities (presumably, 

there were few cases of COVID-19 in the control group). Our results suggest this is not the case; 

we find that the lockdown reduces all these causes of death in the locked-down cities (using data 

outside Wuhan), suggesting that COVID-19 deaths are unlikely to be misreported in a substantial 

way. For Wuhan, however, we do have suggestive evidence of potential misclassification of 
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COVID-19 deaths, as including Wuhan in the regression reverses the sign for deaths from non-

COVID-19 pneumonia. 

Finally, while the literature has emphasized that economic downturns are usually associated with 

increased mortality (particularly in less affluent countries), our analyses show that the negative 

health effects of income shocks during China’s lockdowns were offset by unintended benefits to 

population health, at least in the short run. While economic collapse is likely to seriously harm 

public health in the long run, we believe that countries currently affected by COVID-19 can 

maintain overall population health for a short time by containing the virus as quickly as possible 

through strict social distancing/mobility restrictions.  

 

Strengthen and limitations of study 

This study has several major strengths. First, we use the largest mortality database in China, 

covering a quarter of the Chinese population. The data are nationally representative, and our 

findings are unlikely to be affected by potential data misreporting in a specific city (i.e., Wuhan). 

Second, this study examines the effects of lockdowns on a variety of causes of death in China, 

which provides insights on the overall health implications of lockdown policies. Third, we explore 

the mechanism of lockdowns’ impacts on cause-specific deaths and show that improvement in air 

quality, reduction in accidents, and less human interactions can help explain the impacts.  

However, a few limitations should be noted here. First, due to the data unavailability in personal 

daily activities and family care at the household level, we are unable to study the effect of 

lockdowns on morbidity, especially for those who were concerned and did not go to hospitals when 

getting sick. Second, our research only focuses on the short-term effect of the lockdown policies, 

so our findings cannot be applied to the long-term case. In the long run, there could be a harvesting 
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effect (normally negative) on mortality rates, especially for mortality due to chronic diseases, 

which might be caused by the delay of medication and physical examinations during lockdowns. 

Also, if lockdowns were sustained for an extended period of time, low-income households would 

suffer a lot, and their health conditions would significantly deteriorate. Finally, we focus on China, 

where households generally have high saving rates and support stringent virus-control policies. 

Our findings are thus more relevant to countries with similar institutions, such as Japan and South 

Korea. Future research using data from other countries is needed to better understand the overall 

benefits and costs of the global pandemic.  

 

Conclusions and implications 

Understanding the broader social and health impacts of different counter-COVID-19 policies is 

critical for optimal policy design. Using comprehensive death records data from China, this paper 

provides the first empirical evidence that strict city and community lockdowns brought about 

unintended short-term health benefits. We observe fewer deaths from cardiovascular diseases, 

traffic accidents, and non-COVID-19 pneumonia during the lockdowns. This result is likely to be 

driven by the significant improvement in air quality, reduction in traffic volume, and less human 

interactions. Policymakers in other countries, particularly those face similar public health 

challenges, should consider these unintended benefits in designing their strategies to fight against 

COVID-19.  
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Supplementary Materials and Methods 

Materials  

DSP Data: The Disease Surveillance Points (DSPs) system is managed by the Chinese Center for 

Disease Control and Prevention. The system collects death records from the surveillance locations 

to understand death and disease patterns in China. The system was established in 1978 and has 

gradually increased its geographical coverage over the past four decades. In 2013, the system got 

a major upgrade and expanded its coverage from 161 points to 605 points, making the data 

representative both at the provincial and national levels. Each surveillance point represents a 

district (if in urban areas) or a county (if in rural areas). For each surveillance point, deaths that 

occurred in both hospitals and homes are reported, and the causes of death are determined 

according to a standard protocol by trained staff located in local hospitals or CDC branches. The 

DSPs system covers more than 324 million people in China, which accounts for 24.3% of the 

country’s population.20,21 The quality control procedures include annual training of standard 

workflow, random checking of the accuracy of disease classification and duplication, retrospective 

surveys on underreporting, and logic checks on the completeness and accuracy of disease codes. 

These quality checks are required to be done at the county, province, and national levels.  

In addition to the DSPs system, the Chinese CDC also manages the Communicable Disease 

Surveillance (CDS) system. The DSPs system is used for death registration, while the CDS system 

is used to monitor the development of infectious diseases, including COVID-19. These two 

systems are managed by different subsidiaries in the Chinese CDC and have separate 

administrative structures. Because the purpose of the DSPs system is to understand the overall 

cause-of-death patterns in China, and because the death registration process carries no political 
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stake, there is no incentive for local hospitals or CDC branches to hide regular death information 

from the central government.  

Details of Lockdown Data: Most of the cities’ lockdown policies were directly issued by the city-

level governments, while a few were promulgated by the provincial governments. There are two 

types of lockdowns: city lockdown and community lockdown. The former is defined as human 

mobility being restricted across different cities, and the latter is defined as mobility being restricted 

within a city. At the early stage of the outbreak, to prevent the virus from spreading outside Hubei 

province, city lockdowns were adopted in Wuhan and its neighboring cities. The purpose of city 

lockdowns was to restrict people in the epicenter of coronavirus from traveling to other cities. 

Later, as more cases were identified in other cities, community lockdowns were implemented to 

further control the spread of the coronavirus within cities. The time lag between city lockdowns 

and community lockdowns was typically one to two weeks. 

Methods 

We use a generalized Difference-in-Differences (DiD) model to identify the impact of counter-

COVID-19 measures on mortality. First, in our baseline regression, we estimate the relative change 

in the number of deaths between the treated and control DSPs using the following model:  

𝐷௜௝௧ = 𝛼 + 𝛽 ⋅ 𝑙𝑜𝑐𝑘𝑑𝑜𝑤𝑛௝௧ + 𝜆௜ + 𝜋௧ + ℰ௜௝௧ (𝐴1) 

where 𝐷௜௝௧ denotes the daily number of deaths in DSP i in city j on date t, and 𝑙𝑜𝑐𝑘𝑑𝑜𝑤𝑛௝௧ is a 

dummy variable indicating whether a city/community lockdown is in place in city j on date t. The 

lockdown dummy takes the value one if either city lockdown or community lockdown was 

implemented, and zero otherwise. Thus, the coefficient 𝛽 measures the average effect of three 

types of lockdown policies: mobility restrictions across cities (city lockdown), mobility restrictions 
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within a city (community lockdown), and both restrictions (city lockdown + community 

lockdown). To understand how the city and community lockdowns affect health outcomes 

differently, we separately estimate these effects (Table SM5). 𝜆௜ are DSP-fixed effects and 𝜋௧ 

indicate date fixed effects. ℰ௜௝௧ is the error term. 

The county fixed effects, 𝜆௜, which are a set of DSP-specific dummy variables, can control for 

time-invariant confounders specific to each DSP. For example, the DSP’s geographical conditions, 

short-term industrial and economic structure, income, and natural endowment can be controlled 

by introducing the DSP fixed effects. The date fixed effects, 𝜋௧, are a set of dummy variables that 

account for shocks that are common to all DSPs in a given day, such as the nationwide holiday 

policies, macroeconomic conditions, and the national time trend for mortality. As both location 

and time fixed effects are included in the regression, the coefficient 𝛽 estimates the difference in 

the number of deaths between the treated (locked down) and the control cities before and after the 

enforcement of the lockdown policy. We also add a set of control variables in the regressions to 

check the robustness of the results (Figure SM3). 

The underlying assumption for the DiD estimator is that lockdown and control cities would have 

parallel trends in the number of deaths in the absence of the event. Even if the results show that 

mortality declines in the treatment counties after the lockdown, the results may not be driven by 

the lockdown policy, but by systematic differences in treatment and control cities. This assumption 

is untestable because we cannot observe the counterfactual: what would happen to the mortality 

levels in the locked-down counties if such policies were not enforced. Nevertheless, we can still 

examine the trends in mortality for both groups before the lockdown and investigate whether the 

two groups are indeed comparable. To do so, we conduct the event study and fit the following 

equation:  
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𝐷௜௝௧ = 𝛼 + ෍ 𝛽௞ ⋅ 𝑙𝑜𝑐𝑘𝑑𝑜𝑤𝑛௜௝௧,௞

ெ

௠ୀ௞,௠ஷିଵ

+ 𝜆௜ + 𝜋௧ + ℰ௜௝௧ (𝐴2) 

where 𝑙𝑜𝑐𝑘𝑑𝑜𝑤𝑛௝௧,௞ are a set of dummy variables indicating the treatment status at different 

periods. Here, we put 7 days (one week) into one bin (𝑏𝑖𝑛 𝑚 ∈ 𝑀), so that the trend test is not 

affected by the high volatility of the daily number of deaths.  

The dummy for 𝑚 = −1  is omitted in Equation (A2) so that the post-lockdown effects are 

relative to the period one week before the launch of the policy. The parameter of interest 𝛽௞ 

estimates the effect of lockdown 𝑚 weeks after the implementation. We include leads of the 

treatment dummy in the equation, testing whether the treatment affects the air pollution levels 

before the launch of the policy. Intuitively, the coefficient 𝛽௞  measures the difference in the 

number of deaths between cities under lockdown and otherwise in period 𝑘  relative to the 

difference two weeks before the lockdown. If lockdown reduces mortality, 𝛽௞ would be negative 

when 𝑘 ≥ −1. If the pre-treatment trends are parallel, 𝛽௞ would be close to zero when 𝑘 ≤ −2. 

We feel confident in using the estimates from our main results to calculate the averted deaths in 

the entire country, because our dataset includes around one-quarter of the Chinese population and 

are representative. To do so, we predict the number of deaths in two scenarios: with/without 

lockdown policies. Taking the difference between these two predicted deaths, we can calculate the 

number of saved lives from the lockdown policies. To do so, we first predict the number of deaths 

with lockdown policies in each DSP county/district in each day by fitting the following model: 

𝐷෡௜௝௧ = 𝛼ො + 𝛽መ ⋅ 𝑙𝑜𝑐𝑘𝑑𝑜𝑤𝑛௝௧ + 𝜆መ୧ + 𝜋ො௧ (𝐴3) 

where 𝐷෡௜௝௧ denotes the predicted deaths with lockdown policies in each DSP county/district i in 

city j. 𝛼ො , 𝛽መ  , 𝜆መ୧ , and 𝜋ො௧  are the fitted values from Equation (A1). In this function, predicted 
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deaths in each DSP, denoted by 𝐷෡௜௝௧ , can be affected by the lockdown status (represented by 

𝑙𝑜𝑐𝑘𝑑𝑜𝑤𝑛௝௧).  

We then predict the counterfactual, i.e., the number of deaths that would have occurred without 

lockdowns in any DSP, by fitting the following equation: 

𝐷෡௜௝௧(0) = 𝛼ො + 𝛽መ ⋅ 𝑙𝑜𝑐𝑘𝑑𝑜𝑤𝑛௝௧(0) + 𝜆መ୧ + 𝜋ො௧ (𝐴4) 

where 𝐷෡௜௝௧(0)  denotes the predicted averted deaths without any lockdown policies. 

𝑙𝑜𝑐𝑘𝑑𝑜𝑤𝑛௝௧(0) always takes a value of zero so that this function is not affected by the policies. 

Taking the differences between 𝐷෡௜௝௧ and 𝐷෡௜௝௧(0), we can calculate how many non-COVID-19 

deaths are saved from the lockdown policies in each DSP in each day.  

Because lockdowns were implemented for 38.5 days on average, we estimate the following model 

to obtain the averted deaths in the whole country during our study period: 

𝐷෡௔௟௟ =
𝐶ℎ𝑝𝑜𝑝௅஽

𝐷𝑆𝑃𝑝𝑜𝑝௅஽
∗ ෍ 𝐷෡௜௝௧ − 𝐷෡௜௝௧(0)

௜ఢூ

(𝐴5) 

where 𝐷෡௔௟௟ denotes the averted deaths in the entire county during our study period, 𝐶ℎ𝑝𝑜𝑝௅஽ 

denotes the total Chinese population in locked-down cities (around 1,161 million), and 𝐷𝑆𝑃𝑝𝑜𝑝௅஽ 

represents the total population in locked-down DSPs counties/districts in our dataset (around 291 

million in 486 DSPs). The difference between the scenarios with and without lockdowns, denoted 

by 𝐷෡௜௝௧ − 𝐷෡௜௝௧(0), is totaled from January 1 to March 14, which is our study period (𝑖 𝜖 𝐼). Note 

that, in our main text, we repeat these steps to estimate the averted deaths from each cause and 

disease to understand how many averted deaths can be attributed to different diseases/causes. 
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Supplementary Notes 

Supplementary Note 1: Tests for Pre-Treatment Parallel Trends 

The underlying assumption for the DiD estimates in Figure 2 is that lockdown and non-lockdown 

DSPs have parallel trends in mortality without the lockdown policies. To test how likely this 

assumption is to hold, we conduct an event study and investigate whether the two groups of cities 

have parallel pre-treatment mortality (Equation A2). Figure 3 plots our findings. Here we focus on 

the four outcomes (total deaths, and deaths from cardiovascular diseases, injuries, and pneumonia) 

that are statistically significant in Figure 2.  

In Panel A, we compare the total number of non-COVID-19 deaths between the treatment and 

control groups before and after lockdowns. The difference between the two groups one week 

before the lockdown is set as the reference group (i.e., the zero coefficient for week -1), so the 

post-lockdown effects are relative to the period one-week before the launch of the policy. We do 

not observe systematic difference in the trends of mortality between the two groups one week 

before the city/community lockdown, i.e., the estimated coefficients for the lead terms (𝑘 ≤ −2) 

are positive or close to zero and statistically insignificant. This finding implies that the parallel 

trend assumption is likely to hold in our setting. In comparison, the trends break after the lockdown 

policies were enforced, i.e., the lagged terms (𝑘 ≥ 1) become negative and statistically significant. 

In addition, we observe that the difference becomes larger as more lags are included, suggesting 

an accumulating health benefit of city/community lockdowns.  

In Panels B, D, and D of Figure 3, we repeat this exercise to investigate the trends in deaths from 

cardiovascular diseases, injuries, and non-COVID-19 pneumonia before and after lockdowns. The 
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results suggest the parallel trend assumption holds for all these outcomes as well. The 

corresponding regression results are reported in Table SM3.  

Supplementary Note 2: Robustness Checks and Placebo Tests 

We conduct a variety of robustness checks and show that our results are not qualitatively affected 

by several decisions we make in the baseline analysis (Figure SM3 and Table SM5). First, we add 

weather variables into the baseline regressions, including daily average temperature, humidity, 

wind speed, and air pressure (R1), and find that the results are quantitatively unchanged. To further 

control for the differences in time trends between the treatment and control groups, we also include 

interactions of time-invariant variables (i.e., per capita GDP, number of hospital beds per thousand 

people, and total population) with a third-order polynomial function of time in the regressions 

(R2). The estimates remain similar. These results suggest that the lockdown policies are 

uncorrelated with these factors and lend additional credibility to our baseline findings.  

Second, we weight regressions by population in each DSP (R3). Intuitively, this allows us to 

estimate the lockdown effects on an average individual, instead of an average DSP. Without 

weighting, cities with smaller populations could drive the baseline results. We find that the results 

remain very similar, suggesting that this is unlikely to be the case. 

Third, we exclude 22 DSPs in Hubei province from the regression (R4). COVID-19 was first 

identified in Wuhan city in Hubei province. Thus, the DSPs in the province could be very different. 

We find that the results are quantitatively similar to the baseline. Next, we include the three DSPs 

(districts) located in Wuhan in the regressions and find the effects generally become weaker (R5). 

In addition, the sign for non-COVID-19 pneumonia is reversed and becomes positive (statistically 

insignificant) (Panel d). This finding suggests that some COVID-19 deaths could be misclassified 

as deaths caused by other types of pneumonia in Wuhan. Wuhan was the epicenter of COVID-19 
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in China and contributed to nearly half of the country’s COVID-19 cases. During the first few 

weeks after the outbreak, the city faced severe medical resource shortages, and many patients could 

not get immediate diagnoses and treatments. As a result, it would not be surprising to see that some 

people dying from COVID-19 in the city had been misclassified as dying from other types of 

pneumonia. In fact, a retrospective survey was recently conducted by the Chinese government, 

aiming to better classify causes of death in Wuhan. We thus exclude Wuhan from our baseline 

analysis.  

Fourth, we separately estimate the effects of two types of lockdowns, i.e., city lockdowns and 

community lockdowns, on the number of deaths (Panel f in Table SM6). Shortly after the COVID-

19 outbreak, a dozen cities around Wuhan (covering 65 DSPs) launched city lockdowns (mostly 

in late January). Later, as the virus started to spread outside Hubei province, more cities began to 

enforce community lockdown policies (including those that initially implemented city lockdowns). 

We include two policy dummies, i.e., city lockdowns and “city+community” lockdowns, into the 

regressions. The results show that “city+community” lockdowns play a more important role in 

reducing the number of total deaths, as well as deaths from cardiovascular diseases and non-

COVID-19 pneumonia. In other words, restricting human mobility within cities seems critical to 

explaining our results. City lockdowns have an immediate effect on deaths from injuries, likely 

because people were not allowed to travel to other cities after city lockdowns.   

Next, to address the concern that people die at home due to the lockdown might be uncounted and 

this miscalculation may overestimate the positive effect of the lockdown on public health, we 

repeat our analysis during the period of January 1 to March 14 based on the mortality data that was 

reported to DSPs system by April 23 and by June 15. If there were uncounted deaths due to the 

lockdown, there would be a larger number of death records for the later reported dates as more 
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uncounted cases having been discovered. Thus, the lockdown effect will become weaker as the 

mortality data become more precise over time. However, the estimation results using the death 

records reported by different dates give very similar results, which implies that the mis-reporting 

problem in mortality is not a concern.   

Finally, one potential threat to our empirical results is the large-scale travel across different cities 

during the study period. The COVID-19 outbreak coincided with China’s Spring Festival, during 

which many people leave the cities where they work and travel to their hometowns. If the death 

patterns are somehow correlated with this travel pattern, our results may be confounded. To 

address this issue, we conduct a placebo test using data from 2019 (Panel g in Table SM6). We 

assign the lockdown status to the same DSP in 2019 and compare changes in the number of deaths 

between the treatment and control DSPs before and after the “placebo” lockdowns. We find the 

“placebo” lockdowns do not have any impact on mortality in 2019, suggesting that our findings 

are not confounded by different mortality trends between the treatment and control groups related 

to the spring holiday travel. 
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Supplementary Figures 

 

 
Figure SM1. Distribution of lockdown dates for the DSPs This graph shows the timing of the start of the 
city/community lockdowns other than Wuhan. Panel A reports the timing of community lockdowns and city 
lockdowns. In Panel B, we draw the distribution of confirmed cases a day before the implementation of city 
lockdowns. Because the confirmed COVID-19 cases are only available at the city level, the graph is based on city-
level information.  
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Figure SM2. COVID-19 and city lockdowns outside of Wuhan in China This graph shows the confirmed 
COVID-19 cases in each city. We drop data from Wuhan in both panels. Panel A describes the total confirmed 
cases, recovered cases, active cases, and deaths in the entire nation. The red bar graph shows the timing of the 
launch of lockdown policies. Panel B reports the confirmed cases in each city. The blue line denotes cities in Hubei 
province, and the red line denotes some other major cities in China. The grey dashed line indicates the date 
(February 20) when Hubei changed its diagnostic and reporting criteria on COVID-19. 
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Figure SM3. Robustness checks Each column in each figure represents a separate DiD regression. In R0, we report 
the baseline results. In R1, the regression includes weather controls: daily average temperature, humidity, wind 
speed, and air pressure. R2 includes socio-economic status controls: interactions between time-invariant variables 
and a third-order polynomial function of time. In R3, the regression is weighted by the population. In R4, DSPs in 
Hubei province are excluded, while, in R5, three DSPs in Wuhan are included in the regression. DSP fixed effect 
and date fixed effect are both included in each regression. The standard errors are clustered at the DSP level. 
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Figure SM4. Heterogeneity analysis: CVD, injury, and pneumonia Each row in the figure represent the 
predicted impacts of lockdown at different baseline socio-economic conditions, and their 95% confidence intervals. 
The heterogeneous dimension is shown in two scenarios: one standard deviation larger (+SD) / smaller (-SD) than 
mean. The prediction is based on the estimates from Table SM6-8. The top blue dot and line represent the baseline 
point estimates and 95% confidence interval for each disease/cause category, respectively. DSP fixed effect and date 
fixed effect are both included in each regression. The total number of observations for each regression is 44,548 
covering 602 DSP counties. The standard errors are clustered at the DSP level. 
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Figure SM5. The impacts of city/community lockdowns on deaths: by age group We examine the impacts of 
lockdowns on the number of deaths from different age groups. Each row represents a separate DiD regression. DSP 
fixed effect and date fixed effect are included in all the regressions. The number of observations for each regression 
is 44,548 covering 602 DSP counties except for 3 DSP sites in Wuhan. Corresponding results are reported in Table 
SM9. 
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Supplementary Tables 

 

Table SM1. Summary statistics 

Panel A: Daily Mortality (Person) (1) (2) 

 Total 8.72 [7.32] 

 CVD 4.33 [4.02] 

 Injury 0.48 [0.85] 

 Pneumonia 0.15 [0.45] 

 Neoplasms 1.94 [2.18] 

 Chronic respiratory diseases 0.76 [1.19] 

 Others 1.07 [1.37] 

    

Panel B: Other Variables   

 Number of hospital bed per thousand people 15.95 [31.33] 

 PM2.5 concentration (μg/m³) 50.14 [40.68] 

 GDP per capita (10,000 RMB) 5.97 [3.89] 

 Share of employment in manufacturing (%) 24.20 [12.00] 

 Daily average air pressure (hPa) 962.96 [100.45] 

 Daily average wind speed (m/s) 2.67 [1.50] 

 Daily average temperature (℃) 4.72 [9.16] 

 Daily average humidity (%) 69.46 [18.38] 

    

# of DSP counties 602 
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Table SM2. The impacts of city/community lockdowns on deaths from different causes 

 (1) (2) (3) (4) (5) (6) (7) 

 
Total # of Deaths CVD Injury 

Non-COVID-19 
Pneumonia 

Neoplasms 
Chronic Respiratory 

Diseases 
Other Causes 

 

Mean = 

8.721 

Mean = 

4.330 

Mean = 

0.476 

Mean = 

0.150 

Mean = 

1.944 

Mean = 

0.756 

Mean = 

1.066 

                

Lockdown  -0.429*** -0.270*** -0.044*** -0.022** -0.037 -0.032 -0.026 

 [0.102] [0.060] [0.014] [0.009] [0.032] [0.022] [0.023] 

        

DSP Fixed Effect YES YES YES YES YES YES YES 

Date Fixed Effect YES YES YES YES YES YES YES 

Obs. 44548 44548 44548 44548 44548 44548 44548 

Adjusted R-Square 0.788 0.683 0.315 0.220 0.563 0.440 0.390 

# of DSP Counties 602 602 602 602 602 602 602 

Each cell in the table represents a separate DiD regression. All DSP districts/counties are included in the analysis except 3 from Wuhan. The outcome variable is the daily number of non-COVID-19 deaths 
from the DSP districts/counties. We use mortality data from January 1 to March 14, 2020 for this analysis; the data were extracted from the DSP system on May 15, 2020. The explanatory variable is a 
dummy indicating whether a city associated with a DSP had a lockdown policy on a particular date. The standard errors clustered at the DSP level are reported below the estimates. * significant at 10% 
** significant at 5% *** significant at 1%. 
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Table SM3. Event study estimation results 

  (1) (2) (3) (4) 

 
Total CVD Injury 

Non-COVID-19 

Pneumonia 

          

>= 7 Weeks Before 0.191 0.476 0.063 -0.01  

[0.894] [0.621] [0.117] [0.032] 

6 Weeks Before -0.165 -0.159 0.041 0.007  

[0.300] [0.183] [0.040] [0.023] 

5 Weeks Before -0.089 -0.112 0.04 0.013  

[0.198] [0.123] [0.029] [0.019] 

4 Weeks Before -0.08 -0.09 0.028 0.033**  

[0.154] [0.100] [0.025] [0.016] 

3 Weeks Before 0.049 -0.034 0.061*** 0.029**  

[0.130] [0.089] [0.023] [0.013] 

2 Weeks Before -0.068 -0.055 0.036* 0.035***  

[0.105] [0.069] [0.021] [0.013] 

Week of Lockdown Policy -0.213** -0.169** -0.01 -0.007  

[0.092] [0.065] [0.018] [0.013] 

1 Week Later -0.329*** -0.272*** -0.019 0.003  

[0.117] [0.079] [0.021] [0.013] 

2 Weeks Later -0.524*** -0.364*** -0.029 0.011  

[0.134] [0.086] [0.024] [0.014] 

3 Weeks Later -0.749*** -0.491*** -0.008 -0.012  

[0.166] [0.102] [0.024] [0.013] 

4 Weeks Later -0.906*** -0.525*** -0.041 -0.016  

[0.186] [0.113] [0.027] [0.014] 

5 Weeks Later -1.301*** -0.689*** -0.073** -0.033**  

[0.232] [0.141] [0.032] [0.017] 

>= 6 Weeks Later -1.314*** -0.792*** -0.016 -0.050**  

[0.361] [0.224] [0.066] [0.025]      

DSP Fixed Effect YES YES YES YES 

Date Fixed Effect YES YES YES YES 

Obs. 44548 44548 44548 44548 

Adjusted R-Square 0.789 0.683 0.315 0.220 

# of DSP Counties 602 602 602 602 

Notes: We include leads and lags of the start of the lockdown dummy in the regressions to test the parallel trend assumption. The 
dummy variable indicating one week before the lockdown is omitted from the regressions. The standard errors clustered at the DSP 
level are reported below the estimates. * significant at 10% ** significant at 5% *** significant at 1%.  
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Table SM4. The impacts of lockdowns on cause-specific deaths 

  (1) (2) (3) (4) 

Panel A: CVD      

  CVD Myocardial Infarction Stroke Other CVDs 

  Mean = 4.330 Mean = 1.769 Mean = 1.818 Mean = 0.743 

 Lockdown -0.270*** -0.128*** -0.086*** -0.056*** 

  [0.060] [0.032] [0.033] [0.022] 

      

Panel B: Injury     

  Injury Traffic Suicide Other Injuries 

  Mean = 0.476 Mean = 0.102 Mean = 0.073 Mean = 0.301 

 Lockdown -0.044*** -0.023*** 0.003 -0.024** 

  [0.014] [0.006] [0.005] [0.012] 

      

Panel C: Non-COVID-19 Pneumonia    

  Pneumonia Pneumonia Organism 
Viral Pneumonia & 

Bacterial Pneumonia Pulmonary Infection 

  Mean = 0.150 Mean = 0.065 Mean = 0.037 Mean = 0.061 

 Lockdown -0.022** -0.023*** 0.002 -0.001 

  [0.009] [0.006] [0.006] [0.004]       

Notes: Each cell in the table represents a separate DiD regression. All DSP districts/counties are included in the analysis except 3 DSP 
counties/districts from Wuhan. The outcome variable is the daily number of non-COVID-19 deaths from the DSP districts/counties. We use 
mortality data from January 1 to March 14 2020 for this analysis; the data were extracted from the DSP system on May 15 2020. The explanatory 
variable is a dummy indicating whether a city associated with a DSP had a lockdown policy on a particular date. DSP fixed effect and date fixed 
effect are both included in each regression. The total number of observations for each regression is 44,548 covering 602 DSP counties. The 
standard errors clustered at the DSP level are reported below the estimates. * significant at 10% ** significant at 5% *** significant at 1%.  
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Table SM5. Robustness checks and placebo test 

  (1) (2) (3) (4) 

 ` Total CVD Injury Pneumonia 

Panel A: With weather controls (R1 in Supplementary Fig 5) 

 Lockdown  -0.426*** -0.266*** -0.042*** -0.021** 

  (0.102) (0.061) (0.014) (0.010) 

Panel B: With weather and socio-economic controls (R2 in Supplementary Fig 5) 

 Lockdown  -0.391*** -0.250*** -0.043*** -0.019** 

  [0.101] [0.060] [0.014] [0.009] 

Panel C: Weighting by populations (R3 in Supplementary Fig 5) 

 Lockdown  -0.431** -0.290*** -0.041* -0.026 

  (0.176) (0.102) (0.024) (0.017) 

Panel D: Dropping cities in Hubei (R4 in Supplementary Fig 5) 

 Lockdown  -0.455*** -0.295*** -0.037*** -0.028*** 

  (0.106) (0.062) (0.014) (0.009) 

Panel E: Include Wuhan (R5 in Supplementary Fig 5) 

 Lockdown -0.254 -0.226*** -0.038** 0.050 

  [0.159] [0.067] [0.015] [0.050] 

Panel F: Change the definition of lockdown 

 Only city lockdown -0.250 0.002 -0.125*** 0.046 

  [0.193] [0.125] [0.043] [0.034] 

 City+community lockdown -0.448*** -0.299*** -0.035** -0.029*** 

  [0.106] [0.062] [0.014] [0.009] 

Panel G: Use 2019 deaths 

 Lockdown 0.088 0.102 0.002 -0.011 

  [0.101] [0.063] [0.016] [0.009]       

Notes: Each cell in the table represents a separate DiD regression. In Panel A, the regression includes weather controls: daily average 
temperature, humidity, wind speed, and air pressure. In Panel B, the regression includes socio-economic status controls: interactions between 
time-invariant variables and a third-order polynomial function of time. In Panel C, the regression is weighted by the population. In Panel D, 
DSPs in Hubei province are excluded, while, in Panel E, three DSPs in Wuhan are included in the regression. DSP fixed effect and date fixed 
effect are both included in each regression. These results are presented in Figure SM5. In Panel F, we define lockdown in a different way. The 
DSPs are classified into 1) being placed under the city lockdown, 2) being placed under both the city lockdown and the community lockdown, 
or 3) without any lockdowns. DSP fixed effect and date fixed effect are both included in each regression. Panel G uses day-to-day matched 2019 
death tolls as dependent variables and includes the controls of a set of time-varying variables. DSP fixed effect and date fixed effect are both 
included in each regression. The total number of observations for each regression is 44,548 covering 602 DSP counties. The standard errors 
clustered at the DSP level are reported below the estimates. * significant at 10% ** significant at 5% *** significant at 1%. 
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Table SM6. The heterogeneous impacts of city/community lockdowns on deaths 

 Total # of (non-COVID-19) Deaths 

  (1) (2) (3) (4) (5) (6) 

       

Lockdown  -0.425*** -0.467*** -0.421*** -0.397*** -0.409*** -0.396*** 

 [0.102] [0.112] [0.102] [0.100] [0.102] [0.110] 

Lockdown*GDP per capita -0.024     0.026 

 [0.020]     [0.025] 

Lockdown*hospital beds per 1000 people  0.002    0.001 

  [0.002]    [0.002] 

Lockdown*PM2.5 concentration   -0.010***   -0.007** 

   [0.003]   [0.003] 

Lockdown*share of employment in manufacturing    -0.032***  -0.037*** 

    [0.009]  [0.011] 

Lockdown*2019 total mortality rate     -0.001*** -0.001*** 

     [0.000] [0.000] 

DSP Fixed Effect YES YES YES YES YES YES 

Date Fixed Effect YES YES YES YES YES YES 

Obs. 44548 44548 44548 44548 44548 44548 

Adjusted R-Square 0.788 0.788 0.789 0.789 0.789 0.789 

# of DSP Counties 602 602 602 602 602 602 

Notes: Each cell in the table represents a separate DiD regression. We interact the treatment dummy with baseline socio-economic variables to understand the heterogeneity impacts of lockdowns. The 
standard errors clustered at the DSP level are reported below the estimates. * significant at 10% ** significant at 5% *** significant at 1%. 
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Table SM7. The heterogeneous impacts of lockdowns on CVD deaths 

 # of CVD Deaths 

  (1) (2) (3) (4) (5) (6) 

       

Lockdown -0.270*** -0.311*** -0.264*** -0.258*** -0.259*** -0.276*** 

 [0.060] [0.065] [0.060] [0.060] [0.060] [0.064] 

Lockdown*GDP per capita 0.002     0.016 

 [0.010]     [0.014] 

Lockdown*hospital beds per 1000 people  0.002**    0.002 

  [0.001]    [0.001] 

Lockdown*PM2.5 concentration   -0.008***   -0.006*** 

   [0.002]   [0.002] 

Lockdown*share of employment in manufacturing    -0.012***  -0.015*** 

    [0.004]  [0.005] 

Lockdown*2019 mortality rate of CVD     -0.001*** -0.001*** 

     [0.000] [0.000] 

DSP Fixed Effect YES YES YES YES YES YES 

Date Fixed Effect YES YES YES YES YES YES 

Obs. 44548 44548 44548 44548 44548 44548 

# of DSP Counties 602 602 602 602 602 602 

Notes: Each cell in the table represents a separate DiD regression. We interact the treatment dummy with baseline socio-economic variables to understand the heterogeneity impacts of lockdowns. The 
standard errors clustered at the DSP level are reported below the estimates. * significant at 10% ** significant at 5% *** significant at 1%.  
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Table SM8. The heterogeneous impacts of lockdown on deaths from injuries 

 # of Deaths from Injuries 

  (1) (2) (3) (4) (5) (6) 

       

Lockdown -0.043*** -0.046*** -0.044*** -0.041*** -0.042*** -0.035** 

 [0.014] [0.015] [0.014] [0.014] [0.014] [0.015] 

Lockdown*GDP per capita -0.004     0.001 

 [0.002]     [0.003] 

Lockdown*hospital beds per 1000 people  0.000    -0.000 

  [0.000]    [0.000] 

Lockdown*PM2.5 concentration   -0.000   -0.000 

   [0.000]   [0.000] 

Lockdown*share of employment in manufacturing    -0.003***  -0.003*** 

    [0.001]  [0.001] 

Lockdown*2019 mortality rate of injuries     -0.002*** -0.002*** 

     [0.001] [0.001] 

DSP Fixed Effect YES YES YES YES YES YES 

Date Fixed Effect YES YES YES YES YES YES 

Obs. 44548 44548 44548 44548 44548 44548 

# of DSP Counties 602 602 602 602 602 602 

Notes: Each cell in the table represents a separate DiD regression. We interact the treatment dummy with baseline socio-economic variables to understand the heterogeneity impacts of lockdowns. The 
standard errors clustered at the DSP level are reported below the estimates. * significant at 10% ** significant at 5% *** significant at 1%.  
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Table SM9. The heterogeneous impacts of lockdown on deaths from pneumonia 

 # of Deaths from Non-COVID-19 Pneumonia 

  (1) (2) (3) (4) (5) (6) 

       

Lockdown -0.020** -0.004 -0.022** -0.020** -0.020** -0.014 

 [0.009] [0.010] [0.009] [0.009] [0.009] [0.010] 

Lockdown*GDP per capita -0.008***     -0.004** 

 [0.002]     [0.002] 

Lockdown*hospital beds per 1000 people  -0.001***    -0.000 

  [0.000]    [0.000] 

Lockdown*PM2.5 concentration   0.000   -0.000 

   [0.000]   [0.000] 

Lockdown*share of employment in manufacturing    -0.001***  -0.000 

    [0.001]  [0.001] 

Lockdown*2019 mortality rate of pneumonia     -0.004*** -0.004*** 

     [0.001] [0.001] 

DSP Fixed Effect YES YES YES YES YES YES 

Date Fixed Effect YES YES YES YES YES YES 

Obs. 44548 44548 44548 44548 44548 44548 

# of DSP Counties 602 602 602 602 602 602 

Notes: Each cell in the table represents a separate DiD regression. We interact the treatment dummy with baseline socio-economic variables to understand the heterogeneity impacts of city lockdowns. 
The standard errors clustered at the DSP level are reported below the estimates. * significant at 10% ** significant at 5% *** significant at 1%.  
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Table SM10. The impacts of city/community lockdowns on deaths: by age group 

  Age 0-14 Age 15-65 Age >65 

    (1) (2) (3) 

Panel A. Total # of non-COVID-19 Deaths 

  Y Mean = 0.062 Y Mean = 1.925 Y Mean = 6.737 

 Lockdown -0.007 -0.047 -0.369*** 

  [0.005] [0.030] [0.087] 

 Adjusted R-Square 0.041 0.452 0.767 

     

Panel B. # of Deaths from CVD 

  Y Mean = 0.002 Y Mean = 0.682 Y Mean = 3.646 

 Lockdown -0.000 -0.031 -0.239*** 

  [0.001] [0.019] [0.052] 

 Adjusted R-Square 0.005 0.260 0.663 

     

Panel C. # of Deaths from Injuries 

  Y Mean = 0.014 Y Mean = 0.200 Y Mean = 0.262 

 Lockdown -0.003 -0.029*** -0.012 

  [0.002] [0.009] [0.010] 

 Adjusted R-Square 0.0141 0.124 0.293 

     

Panel D. # of Deaths from Non-COVID-19 Pneumonia 

  Y Mean = 0.003 Y Mean = 0.018 Y Mean = 0.129 

 Lockdown -0.003** 0.003 -0.022*** 

  [0.001] [0.004] [0.008] 

 Adjusted R-Square 0.006 0.024 0.215 

Notes: We examine the impacts of lockdowns on the number of deaths from different age groups in this table. Each cell represents a separate DiD 
regression. DSP fixed effect and date fixed effect are both included in each regression. The number of observations for each regression is 44,548 
covering 602 DSP counties. The standard errors clustered at the DSP level are reported below the estimates. * significant at 10% ** significant at 
5% *** significant at 1%. 
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Table SM11. Lockdown status of Chinese cities 

City Name City Lockdown Community Lockdown  City Name City Lockdown Community Lockdown 

Huanggang 2020/1/23 2020/2/1  Wuhai 2020/2/12 2020/1/28 

Ezhou 2020/1/23 2020/2/4  Lvliang  2020/1/29 

Wuhan 2020/1/23 2020/2/10  Ganzhou 2020/2/6 2020/1/30 

Xianning 2020/1/24 2020/2/5  Wuzhong  2020/1/31 

Yichang 2020/1/24 2020/2/10  Sanmenxia  2020/1/31 

Municipal County 2020/1/24 2020/2/10  Yinchuan 2020/1/31 2020/1/31 

Jingmen 2020/1/24 2020/2/10  Xinyang 2020/2/6 2020/1/31 

Shiyan 2020/1/24 2020/2/10  Lishui  2020/2/1 

Enshi 2020/1/24 2020/2/10  Anshun 2020/2/5 2020/2/1 

Jingzhou 2020/1/24 2020/2/10  Southeast Guizhou  2020/2/2 

Xiaogan 2020/1/24 2020/2/10  Xinzhou  2020/2/2 

Huangshi 2020/1/24 2020/2/11  Jinhua  2020/2/2 

Qinhuangdao 2020/1/25 2020/2/8  Liupanshui  2020/2/2 

Tangshan 2020/1/28 2020/2/6  Guiyang  2020/2/2 

Xiangyang 2020/1/28 2020/2/10  Yulin  2020/2/2 

Dongying 2020/1/30 2020/2/10  Wenzhou 2020/2/2 2020/2/2 

Chongqing 2020/1/31 2020/2/8  Fangchenggang 2020/2/8 2020/2/2 

Jining 2020/2/3 2020/2/7  Bayannur 2020/2/12 2020/2/2 

Ningbo 2020/2/4 2020/2/5  Hohhot 2020/2/12 2020/2/2 

Zaozhuang 2020/2/4 2020/2/12  Xilin Gol League 2020/2/12 2020/2/2 

Panjin 2020/2/5 2020/2/6  Zunyi  2020/2/3 

Fuxin 2020/2/5 2020/2/6  Guigang  2020/2/3 

Dalian 2020/2/5 2020/2/6  Jincheng  2020/2/3 

Fushun 2020/2/5 2020/2/6  Huai’an  2020/2/3 

Chaoyang 2020/2/5 2020/2/6  Binzhou  2020/2/3 

Jinzhou 2020/2/5 2020/2/6  Taizhou  2020/2/3 

Tieling 2020/2/5 2020/2/6  Southwest Guizhou  2020/2/3 

Shenyang 2020/2/5 2020/2/6  Zhoushan  2020/2/3 

Yangzhou 2020/2/5 2020/2/6  Fuzhou 2020/2/6 2020/2/3 

Dandong 2020/2/5 2020/2/6  Wuxi 2020/2/9 2020/2/3 

Liaoyang 2020/2/5 2020/2/6  Ulanqab 2020/2/12 2020/2/3 

Municipal District 2020/2/9 2020/2/10   Erdos 2020/2/12 2020/2/3 

Shuangyashan  2020/2/4  Lu’an  2020/2/5 

Zigong  2020/2/4  Maoming  2020/2/5 

Zhenjiang  2020/2/4  Huaihua  2020/2/5 

Anshan  2020/2/4  Ganzi  2020/2/5 

Lianyungang  2020/2/4  Liuzhou  2020/2/5 

Wuhu  2020/2/4  Suqian  2020/2/5 

Songyuan  2020/2/4  Kaifeng  2020/2/5 

Huainan  2020/2/4  Meizhou  2020/2/5 
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Table SM11. Lockdown status of Chinese cities 

City Name City Lockdown Community Lockdown  City Name City Lockdown Community Lockdown 

South Guizhou  2020/2/4  Pingdingshan  2020/2/5 

Tongren  2020/2/4  Nanchong  2020/2/5 

Bengbu  2020/2/4  Quzhou  2020/2/5 

Nanyang  2020/2/4  Lijiang  2020/2/5 

Xi’an  2020/2/4  Heihe  2020/2/5 

Wenshan  2020/2/4  Suizhou  2020/2/5 

Dezhou  2020/2/4  Fuyang  2020/2/5 

Fuzhou 2020/2/4 2020/2/4  Weifang  2020/2/5 

Hangzhou 2020/2/4 2020/2/4  Huzhou  2020/2/5 

Harbin 2020/2/4 2020/2/4  Zhuhai  2020/2/5 

Zhumadian 2020/2/4 2020/2/4  Hengshui  2020/2/5 

Nantong 2020/2/4 2020/2/4  Guilin  2020/2/5 

Changzhou 2020/2/4 2020/2/4  Meishan  2020/2/5 

Zhengzhou 2020/2/4 2020/2/4  Daxinganling  2020/2/5 

Linyi 2020/2/4 2020/2/4  Yichun  2020/2/5 

Jingdezhen 2020/2/4 2020/2/4  Quanzhou  2020/2/5 

Nanjing 2020/2/4 2020/2/4  Liaocheng  2020/2/5 

Xuzhou 2020/2/4 2020/2/4  Zhoukou  2020/2/5 

Jiujiang 2020/2/6 2020/2/4  Daqing  2020/2/5 

Yingtan 2020/2/6 2020/2/4  Jiaxing  2020/2/5 

Huaibei 2020/2/9 2020/2/4  Yancheng  2020/2/5 

Bijie  2020/2/5  Sanya  2020/2/5 

Hechi  2020/2/5  Zhaoqing  2020/2/5 

Haikou  2020/2/5  Luzhou  2020/2/5 

Wuzhou  2020/2/5   Chengde  2020/2/5 

Notes: Panel A lists the cities that were under city lockdown earlier than the community lockdown. Panel B lists the cities that enforced community 
lockdown earlier than the city lockdown. The effective dates of the two lockdown policies are both listed. 
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