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Abstract 

Cardiovascular (CV) manifestations of COVID-19 infection carry significant morbidity and mortality. Current risk prediction 

for CV complications in COVID-19 is limited and existing approaches fail to account for the dynamic course of the disease. 

Here, we develop and validate the COVID-HEART predictor, a novel continuously-updating risk prediction technology to 

forecast CV complications in hospitalized patients with COVID-19. The risk predictor is trained and tested with retrospective 

registry data from 2178 patients to predict two outcomes: cardiac arrest and imaging-confirmed thromboembolic events. 

In repeating model validation many times, we show that it predicts cardiac arrest with an average median early warning 

time of 18 hours (IQR: 13-20 hours) and an AUROC of 0.92 (95% CI: 0.91-0.92), and thromboembolic events with a median 

early warning time of 72 hours (IQR: 12-204 hours) and an AUROC of 0.70 (95% CI: 0.67-0.73). The COVID-HEART predictor 

is anticipated to provide tangible clinical decision support in triaging patients and optimizing resource utilization, with its 

clinical utility potentially extending well beyond COVID-19.  

 

 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 10, 2021. ; https://doi.org/10.1101/2021.01.03.21249182doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

mailto:ntrayanova@jhu.edu
https://doi.org/10.1101/2021.01.03.21249182


2 
 

Main 

Patients with COVID-19, the disease caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), 

often present with cardiovascular (CV) manifestations such as myocardial infarction, thromboembolism, and heart failure.1 

Clinically overt cardiac injury or cardiomyopathy is reported in 8 to 33% of hospitalized patients2,3 and is associated with up 

to 50% mortality,4 but imaging studies suggest the true incidence of cardiac involvement in all persons infected with SARS-

CoV-2 could be as high as 60%.5 Thromboembolic events are also frequently reported in severe COVID-19 and are associated 

with mortality; one study found that 70.1% of non-survivors and 0.6% of survivors met criteria for disseminated intravenous 

coagulation.6 Furthermore, thromboembolic complications are more pronounced in acute COVID-19 infection than in other 

viral illnesses, and include pulmonary embolus and ischemic stroke, which can be fatal and are a significant cause of 

morbidity even as the infection resolves.7 Despite the prevalence of thromboembolism and cardiac injury and their 

associations with poor outcomes,6,8,9 no approach currently exists to forecast adverse CV events in COVID-19 patients in 

real time. 

Machine learning (ML) techniques are ideal for discovering patterns in high-dimensional biomedical data, especially when 

little is known about the underlying biophysical processes. ML is thus well-positioned for applications in COVID-19 and 

indeed has been employed in screening, contract tracing, drug development, and outbreak forecasting.10,11 ML approaches 

have been developed for prognostic assessment of hospitalized patients with COVID-19, including models which predict in-

hospital mortality,12–17 progression to severe disease,14,18–21 and outcomes related to respiratory function.10,15,22 A model 

was also proposed for prediction of thromboembolic events but it required that all variables be present for all patients, did 

not provide dynamic risk updates, and was trained with data from only 76 patients.23 Thus far, prognostic models have 

relied on clinical data available at a single time-point,10,22 and have not accounted for the dynamic and difficult-to-predict 

course of this novel disease.  

Here, we develop and validate a prognostic ML model to forecast the real-time risk of CV complications in hospitalized 

patients with COVID-19. We term the model the COVID-HEART predictor. We focus on predicting two clinically important 

CV outcomes in COVID-19, in-hospital cardiac arrest and thromboembolic events. In-hospital cardiac arrest is a clearly 

identifiable outcome and is often CV-related, thus it was selected to demonstrate the potential utility of the COVID-HEART 

predictor. Thromboembolic events are more difficult to identify and require imaging confirmation, thus, this outcome was 

selected to demonstrate the versatility of the COVID-HEART predictor in analyzing real-world clinical data and handling CV-

specific outcomes. The model is trained and tested with data from over 2000 patients with SARS-CoV-2 infection, confirmed 

by positive polymerase chain reaction or nucleic acid testing, admitted to multiple hospitals within a single health system. 

The resulting risk predictor is robust to missing data and can be updated each time new data becomes available, 

representing a continuously evolving warning system for an impending event. It can also predict the likelihood of an adverse 

event within multiple timeframes (e.g. 2 hours, 8 hours, 24 hours). The COVID-HEART predictor is anticipated to be of great 

clinical use in triaging patients and optimizing resource utilization by identifying at-risk patients in real time.  

Fig.1 presents a schematic of the COVID-HEART continuously-updating risk prediction technology. The TRIPOD guidelines 

for development, validation, and presentation of a multivariable prediction model,24 as recommended by Wyants et al,22 

were followed here (Supplementary Table S1).  The model uses features extracted from 106 different clinical data inputs, 

some of which are associated with CV complications in COVID-19 and in other severe respiratory illnesses (Supplementary 

Table S2). To avoid bias, variables that were directly impacted by a physician’s assessment of the patient’s condition, such 

as the fraction of inspired oxygen set on a mechanical ventilator, are excluded. The COVID-HEART predictor is trained to 

estimate the probability that a patient will experience a particular CV event within a set number of hours (outcome window) 

after any point during the patient’s hospitalization. It uses static variables (demographics and comorbidities) and dynamic 

clinical data collected during time periods of markedly different duration prior to the time point of prediction: data collected 

just prior (short features), data collected over the entire hospitalization (long features), and data collected over the entire 

hospitalization weighted such that recent data is assigned higher importance (exponentially weighted decaying features).  
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The COVID-HEART predictor was trained with stochastic gradient descent; the training approach allows, in practice, for 

continuous model update with new data without full re-training, thus ensuring accurate risk predictions as COVID-19 

treatment paradigms evolve. Three configurations of a linear classifier were investigated: one with “short features” only, 

one with features from multiple time durations, and one with features from multiple time durations that used, during 

training, the Synthetic Minority Oversampling TEchnique (SMOTE) for nominal and continuous variables25 and random 

undersampling of the majority class to account for severe class imbalance. During training, losses were weighted to strongly 

penalize prediction errors for “positive” time windows (time windows for which the patient experienced the CV outcome 

in the following outcome window). to further account for class imbalance, and the optimal classifier configuration for 

prediction of each outcome was selected based on the cross-validation area under the receiver operating characteristic 

curve (AUROC) following probability calibration. The training process and usage of the predictor are described in detail in 

Methods.  

The COVID-HEART predictor was developed and validated in a retrospective study of patients with confirmed SARS-CoV-2 

infection admitted to any one of the 5 Johns Hopkins Health system hospitals between March 1, 2020 and September 27, 

2020. Supplementary Fig.S1 shows the flow of patients through the study. In-hospital cardiac arrest and in-hospital 

thromboembolic events were predicted on a continuous basis; outcome definition is detailed in Methods. 2178 patients 

met eligibility criteria for cardiac arrest prediction, of whom 277 (12.7%) experienced in-hospital cardiac arrest. 1601 

patients met eligibility criteria for thromboembolic event prediction, of whom 32 (2.0%) experienced imaging-confirmed in-

hospital thromboembolic events. Patients were divided into development (80%) and test (20%) sets with stratified random 

selection. Supplementary Tables S3 and S4 provide demographic and clinical comparisons between patients who did and 

did not experience each outcome, and between the training and test sets.  

COVID-HEART performance for the two CV outcomes, in-hospital cardiac arrest and thromboembolic events, is summarized 

in Fig.2. The figure presents five-fold stratified patient-based cross-validation and test performance results for each of the 

three different classifier configurations. The optimal classifier configurations were selected based on the cross-validation 

area under the receiver operating characteristic curve (AUROC). Following the initial train-test split, the results of which 

were presented in Fig.2 and investigated in detail in Fig.3 and Table 1, an “outer loop” of cross-validation was added and 

results over multiple iterations were aggregated to obtain 95% confidence intervals for the cross-validation and testing 

AUROCs (Fig.2B-C). The mean cross-validation and test AUROCs were 0.91 (95% CI: 0.91-0.92) and 0.92 (95% CI: 0.91-0.92) 

for prediction of cardiac arrest and 0.77 (95% CI: 0.75-0.79) and 0.70 (95% CI: 0.67-0.73) for prediction of thromboembolic 

events, respectively.  

Supplementary Fig.S2 illustrates the COVID-HEART’s capability to accurately predict each CV outcome within outcome 

windows of different durations. This capability may provide significant clinical value in determining the patient’s short-term 

and longer-term risk, thus ensuring appropriate intervention and resources allocation. As the figures illustrate, validation 

and test results are comparable, indicating strong generalizability of the COVID-HEART. Fig.3 and Supplementary Fig.S3 

provide examples of time-series clinical data and resulting risk scores for “true positive” and “true negative” predictions for 

patients in the test set for each CV outcome. Supplementary Fig.S4 illustrates two incorrect predictions; these are discussed 

in Supplementary Results. 

In analyzing the results over many train-test splits, we found that for both outcomes, a larger number of sliding time 

windows in the test set were predicted positive for patients that eventually experienced the outcome as compared to those 

that did not: 43% (95% CI: 41%-45%) vs. 13% (95% CI: 12%-14%) for cardiac arrest, 58% (95% CI: 50%-65%) vs 27% (95% CI: 

24%-30%) for thromboembolic events. This suggests that the model is sensitive in identifying warning signs of an impending 

adverse event earlier than the pre-specified outcome window (Supplementary Fig.S5). Indeed, the median early warning 

time for patients in the test set was 18 hours (IQR: 13-20 hours) for cardiac arrest and 72 hours (IQR: 12-204 hours) for 

thromboembolic events, although the classifier was trained to predict outcomes within 2 hours for cardiac arrest and 24 

hours for thromboembolic events. This could represent a clinically useful “early warning” system. 
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It is essential for clinical decision-making to identify the features that most contribute to the predicted risk score for a 

particular CV outcome. We used a lasso regression algorithm to select features for prediction of cardiac arrest; this 

algorithm enforces sparsity and is appropriate for both continuous and categorical features. We used ANOVA F-value-based 

feature selection for prediction of thromboembolic event and strictly limited the number of features selected due to the 

small number of events in the development set. Table 1 lists the features with the largest coefficients in the optimal classifier 

for each of the two CV outcomes. Note that features were normalized prior to classifier training, and that models are not 

simple logistic regressions, thus interpretation of the coefficients is not straightforward. Many of these features confirm 

previous observations in cohorts of severely ill COVID-19 patients. For example, lower O2 saturation15 is associated with 

cardiac arrest and multiple coagulation-related labs results are associated with thromboembolic events.27,28 Interestingly, 

we found that the standard deviation of the QRS duration over the patient’s hospitalization up to the time of prediction 

was among the most influential in predicting thromboembolic events, which has not previously been reported; as of 

December 2020, most studies had only focused on the association of laboratory values with thromboembolic events. 

The COVID-HEART risk prediction approach provides transparency and clinical explainability, including the ability to 

determine which features are dominant in a patient’s risk level at a particular time, which may suggest potential patient-

specific targets for clinical intervention. Prediction models for CV adverse events in patients with COVID-19 have been 

limited by lack of sufficient data, impractical requirements for use (e.g. that all data be available for all patients or that 

measurements are taken at the same time relative to time of admission), and overly restrictive inclusion/exclusion criteria 

that result in an idealistic training cohort not representative of real patient data.23,29 Our model is designed to handle real-

world data, which may include noise, missing variables, and data collected at different points in a patient’s hospitalization. 

The inclusion of multiple time-duration features gives the model the “memory” advantages of a long short-term memory 

neural network without compromising explainability or becoming a “black box”. It is trained in a manner that achieves high 

sensitivity and specificity despite severe class imbalance. To our knowledge, these techniques have not previously been 

combined in real-time predictors for CV events.  

In this study we demonstrate highly accurate prediction of cardiac arrest and thromboembolic events in hospitalized COVID-

19 patients using the continuously-updating COVID-HEART predictor. In its current implementation the predictor can 

facilitate practical, meaningful change in patient triage and the allocation of resources by providing real-time risk scores for 

CV complications occurring commonly in COVID-19 patients. The COVID-HEART can be re-trained to predict additional 

adverse CV events including myocardial infarction and arrhythmia. The potential utility of the predictor extends well beyond 

hospitalized COVID-19 patients, as COVID-HEART could be applied to the prediction of CV adverse events post-hospital 

discharge or used in pre-hospital emergency medical services. Additionally, the ML methodology utilized here could be 

expanded to use in other clinical scenarios that require screening or early detection, such as risk of hospital readmission, 

with the ultimate goal of improved clinical outcomes through early warnings and resultant opportunity for timely 

intervention. 
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Figures 

 
Figure 1: Schematic Overview of COVID-HEART Study. (A) Time-series clinical data used as input. The continuously-updating 

COVID-HEART predictor uses features extracted from 106 clinical data inputs including electrocardiogram data, heart 

rhythm categorizations, vital signs, laboratory values, demographics, and comorbidities. Supplementary Table S3 provides 

a complete list of inputs. Data shown here are representative and do not correspond with the risk score shown in (D); Fig.3 

provides examples of real data and resulting risk scores over time for patients in the test set for the two cardiovascular (CV) 

outcomes: cardiac arrest and thromboembolic events. Electrocardiogram (ECG) data consists of measured parameters from 
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a 12-lead ECG (QRS duration, QT interval, etc.), these are recorded about once per day per patient. Heart rhythm 

categorizations and vital signs are extracted from flowsheet data. Heart rhythm annotations (e.g. atrial fibrillation, 

ventricular tachycardia, heart block) are processed with a binary label indicating whether a patient experienced each heart 

rhythm during a given time window, and an integer reflecting how many times it was recorded. Colored blocks represent 

time-windows in which a given heart rhythm was recorded. Laboratory values include variables which have been shown to 

be associated with adverse cardiovascular outcomes in COVID-19, such as D-Dimer and lymphocytes, and standard lab tests 

such as sodium and potassium levels. Each clinical measurement is assumed constant until a new value is recorded. Patients 

with missing data were not excluded to ensure the model was robust to normal variations in the quantity and quality of 

clinical data collected in a real-world setting.  

(B) Dynamics features pre-processing with sliding time windows. The dynamic (time-series) features are pre-processed for 

each patient with sliding time windows; at each time point, features are recorded for the window prior (“feature window”) 

and associated with a binary label (0,1) indicating whether the patient experienced a given outcome in the following K hours 

(“outcome window”). The classifier uses features calculated from clinical data at multiple time durations: “short features”, 

which encompass a short period prior to the time point in question, and “long features” and “exponentially weighted 

decaying features”, which encompass the patient’s entire hospitalization. The relative intensity levels within the three 

feature windows represent the weighting of values at each time; darker colors indicate higher weight. The features derived 

from the dynamic clinical inputs include the mean, minimum, maximum, standard deviation, and amplitude of first 

frequency in Fourier space. Data is censored at the time of discharge or at the time of outcome, whichever comes first. The 

COVID-HEART predictor is trained to predict in-hospital events only.  

(C) Combined features. For each time window, the processed dynamic features are combined with static features including 

demographics and comorbidities. Table 1 lists the most important features for prediction of each outcome. The model is a 

linear classifier trained with stochastic gradient descent; this training approach allows the model to be updated with new 

data without needing full re-training. Pre-processing steps include dropping features that are missing for more than 60% of 

time windows in the training set, mean-value imputation of remaining missing values, standardization, and feature selection 

using a random-forest to minimize multi-collinearity in the selected features. Each time window is treated as a separate 

data point during training, but all the time windows from each patient are assigned to the same fold of stratified 5-fold 

cross-validation. Outcome labels are per-window, so for a patient that experienced an event all time windows would be 

labeled as “no outcome” except for the windows immediately before the event. In a secondary analysis, we investigated 

whether a larger proportion of time windows were predicted positive for patients who eventually experienced the outcome 

than for patients who did not. Detail is provided in Methods. 

(D) Continuously-updating risk score. The COVID-heart predictor is trained to provide a binary output indicating whether 

the patient is at-risk for an adverse CV event (e.g. cardiac arrest, thromboembolic event) in the K hours following a given 

time point, then is calibrated to provide a risk score (probability) for the outcome. Shown is a sample risk score for a patient 

that experienced an event: green color indicates low risk score; yellow indicates a risk score within a pre-determined range 

of a threshold value, and the red indicates that the patient is at high risk for an event in the following K hours. The gray 

color represents the first T hours of the patient’s hospitalization, during which data is being collected to inform the initial 

risk score for the patient. T is the duration of the short feature window. We envision that clinical intervention could be 

made in the “yellow zone” to avert the impending event. 
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Figure 2: The COVID-HEART predictor can accurately predict the risk of cardiac arrest and thromboembolic events in real 

time. (A) COVID-HEART performance metrics for the two CV outcomes: cardiac arrest and thromboembolic events. Shown 

are 5-fold stratified patient-based cross-validation and test performance metrics for three linear classifier configurations. 

Cardiac arrest predictions presented here are for an outcome window of 2 hours, short-time feature window of 2 hours, 

and time-step of 1 hour. Thromboembolic event predictions shown here are for an outcome window of 24 hours, short-

time feature window of 24 hours, and time-step of 24 hours. Using different time-steps and feature and outcome windows 

for predicting the different outcomes is necessitated by the granularity of the outcomes within the electronic health record; 

thromboembolic events require imaging confirmation and are thus are only recorded on the date they occurred, while 

cardiac arrest is recorded with the exact time. The best-performing of the three linear classifier models for prediction of 

each CV outcome are bolded. These were selected based on the area under the receiver operating characteristic curve 

(AUROC).  

(B) Risk of cardiac arrest prediction. Cross-validation (purple) and testing (orange) receiver operating characteristic (ROC) 

curves for prediction of cardiac arrest using the optimal classifier configuration: a linear classifier with no resampling and 

short-term features only. To generate the ROC curves, 6 full iterations of 5-fold nested patient-based cross validation were 

run resulting in a total of 30 test sets and 150 inner loops of cross-validation. Shaded regions represent the 95% confidence 

interval of each ROC curve.  

(C) Risk of thromboembolic event prediction. Cross-validation (purple) and testing (orange) receiver operating characteristic 

(ROC) curves for prediction of thromboembolic events using optimal classifier configuration: a linear classifier with no 

resampling and all feature types. To generate the ROC curves, 8 full iterations of 5-fold nested patient-based cross validation 

were run resulting in a total of 40 test sets and 200 inner loops of cross-validation. Shaded regions represent the 95% 

confidence interval of each ROC curve.  
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Figure 3: Two examples of “true positive” predictions for two different patients, one from the cardiac arrest test set and 

one from the thromboembolic event test set, using the COVID-HEART predictor. (A) Clinical time-series inputs (top 7 rows) 

from which the features with the largest coefficients were derived for prediction of cardiac arrest, and time-series risk score 

(bottom row) for a patient who experienced cardiac arrest during their hospitalization, and for whom the classifier’s 

prediction was correct prior to the cardiac arrest. The most important features derived from these inputs are listed in Table 

1. A new prediction is generated every hour. The risk score is low for the first 11 days of the patient’s admission, then rapidly 

increases in the 2 hours preceding the cardiac arrest. The date refers to the days of admission relative to midnight on the 

first full day of admission. Units for each predictor are as follows: Pulse (beats/minutes), WBC (cells/ mm3), Fibrinogen 

(mg/dL), Pulse O2 saturation (%), DBP (mmHg), SBP (mmHg), GFR (mL/min) 

(B) Clinical time-series inputs (top 3 rows) from which the 3 selected features were derived for prediction of 

thromboembolic events, and time-series risk score (bottom row) for a patient who experienced a thromboembolic event 

during their hospitalization. The most important features derived from these inputs are listed in Table 1. The patient’s risk 

score increases from days 5-7 and then remains elevated leading up to the thromboembolic event, which occurs on day 14 

of the admission. The binary risk threshold is 0.002, selected automatically to balance sensitivity and specificity for the 

development data. The x-axis refers to the days of admission relative to midnight on the first full day of admission. Units for 

each predictor are as follows: QRS duration (ms), platelet count (cells*10-3/uL), aPTT (seconds). Note that for all dynamic 

clinical data, values are assumed constant until a new measurement is made. Abbreviations: white blood cell count (WBC), 

diastolic blood pressure (DBP), systolic blood pressure (SBP), glomerular filtration rate (GFR), activated partial 

thromboplastin time (aPTT) 
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        Train - Cardiac Arrest Test - Cardiac Arrest 

     Missing 
(%) 

No Outcome Outcome 
P 

Missing 
(%) 

No Outcome Outcome 
P 

Input Feature Duration Coef n = 412198 n = 440 n = 101510 n = 109 

Chronic Lung Disease   Static 0.318 0.001 85419 (20.8)  98 (22.3) 0.475 0.000 21449 (21.2) 34 (31.2) 0.014 

Pulse Maximum 2 h 0.308 0.098 87.7 (17.1) 104.5 (23.4) <0.001 0.072 87.1 (17.0) 106.1 (22.5) <0.001 

White Blood Cell Count Minimum 2 h 0.268 0.074 9.4 (5.0) 14.7 (7.8) <0.001 0.081 9.0 (4.6) 14.3 (8.0) <0.001 

Fibrinogen Maximum 2 h 0.242 0.099 21.9 (6.1) 27.1 (8.3) <0.001 0.074 22.0 (6.2) 26.8 (9.2) <0.001 

Pulse O2 Sat Mean 2 h -0.215 0.099 95.8 (2.8) 90.4 (7.1) <0.001 0.073 95.8 (2.7) 91.8 (6.8) <0.001 

DBP Maximum 2 h -0.204 0.098 70.1 (12.5) 57.7 (14.3) <0.001 0.072 69.0 (12.0) 57.1 (16.1) <0.001 

Pulse O2 Sat Maximum 2 h -0.199 0.099 96.4 (2.7) 91.2 (7.2) <0.001 0.073 96.4 (2.6) 92.6 (7.0) <0.001 

SBP Maximum 2 h -0.193 0.098 129.6 (21.3) 108.6 (27.8) <0.001 0.072 128.9 (21.4) 112.6 (30.6) <0.001 

SBP Minimum 2 h -0.175 0.098 121.3 (20.3) 99.7 (26.6) <0.001 0.072 120.4 (19.8) 100.6 (30.2) <0.001 

GFR Maximum 2 h -0.168 0.066 79.8 (38.5) 52.4 (36.2) <0.001 0.071 83.6 (39.4) 60.1 (39.3) <0.001 

Sodium Minimum 2 h 0.159 0.067 139.5 (5.2) 142.6 (6.9) <0.001 0.072 139.3 (5.3) 143.4 (8.5) <0.001 

Platelet Count Maximum 2 h -0.155 0.073 275.8 (136.0) 215.3 (125.1) <0.001 0.082 294.5 (153.3) 231.9 (133.7) <0.001 

BUN Minimum 2 h 0.153 0.068 25.7 (19.3) 44.1 (30.3) <0.001 0.072 24.1 (18.2) 38.3 (25.4) <0.001 

Temperature St Dev 2 h -0.153 0.102 0.1 (0.2) 0.1 (0.1) <0.001 0.077 0.1 (0.2) 0.1 (0.2) 0.771 

Anion Gap Minimum 2 h 0.143 0.067 12.0 (4.1) 15.4 (5.8) <0.001 0.072 11.9 (4.0) 14.7 (5.6) <0.001 

Lactate Minimum 2 h 0.137 0.595 1.4 (0.7) 4.1 (4.2) <0.001 0.612 1.5 (0.7) 4.5 (3.9) <0.001 

Pulse St Dev 2 h 0.112 0.098 2.1 (3.5) 3.5 (6.4) <0.001 0.072 2.1 (3.4) 3.3 (5.4) 0.025 

CRP Maximum 2 h 0.106 0.202 26.7 (49.0) 63.7 (80.6) <0.001 0.198 24.9 (45.4) 68.9 (84.6) <0.001 

Chloride Minimum 2 h 0.105 0.067 102.6 (5.9) 104.9 (7.5) <0.001 0.072 102.0 (5.8) 105.2 (9.1) 0.001 

Normal Sinus Rhythm Maximum 2 h -0.104 0.098 0.1 (0.3) 0.1 (0.2) <0.001 0.072 0.1 (0.3) 0.0 (0.2) <0.001 

              
  

   
Train – Thromboembolic Event Test – Thromboembolic Event 

  
   Missing 

(%) 

No Outcome Outcome 
P 

Missing 
(%) 

No Outcome Outcome 
P 

Input Feature Duration Coef n = 14854 n = 26 n = 3514 n = 6 

QRS Duration St Dev Long 0.291 0.207 3.6 (0.5) 3.4 (0.4) 0.011 0.207 3.7 (0.5) 3.8 (0.3) 0.570 

Platelet Count Maximum Long 0.059 0.086 8.4 (2.6) 9.0 (2.4) 0.277 0.065 8.5 (2.7) 9.0 (2.8) 0.679 

aPTT St Dev 24 h 0.012 0.109 75.5 (14.2) 78.6 (16.0) 0.362 0.086 76.1 (15.1) 85.3 (12.1) 0.121 

Table 1: Up to 20 features with largest coefficients for prediction of cardiac arrest and thromboembolic events.  In the table, 

“Feature” refers to the processed input to the ML algorithm based on the values of each clinical data input during each time 

window, and “Time Duration” refers to the length of time over which clinical data values were considered to calculate each 

feature. Note that all features were normalized with a mean of 0 and a standard deviation of 1 during pre-processing, 

although raw values are shown here, and that values are listed per time-window, not per-patient. The coefficients are 

applied after normalization. The optimal loss functions were log and modified Huber for prediction of cardiac arrest and 

thromboembolic events, respectively, and the classifiers were calibrated, so coefficient interpretation is non-trivial 

especially for prediction of thromboembolic events. These are not the only features included in the classifier for prediction 

of cardiac arrest. There were only 3 features included in the classifier for prediction of thromboembolic events due to the 

low number of events in the development set. P-values calculated using two-sample two-sided t-test or chi-squared test as 

appropriate. This table was generated using the python package tableone.30 Comorbidities, including chronic lung disease 

and pulmonary circulation disorders, are defined using ICD-10 codes according to the Elixhauser comorbidity definitions.31 

Abbreviations: white blood cell count (WBC), diastolic blood pressure (DBP), systolic blood pressure (SBP), glomerular 

filtration rate (GFR), blood urea nitrogen (BUN), c-reactive protein (CRP), activated partial thromboplastin time (aPTT), 

exponentially weighted decaying (Exp. Decay), coefficient (coef). 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 10, 2021. ; https://doi.org/10.1101/2021.01.03.21249182doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.03.21249182


11 
 

Methods 

Source of Data 

To develop and validate the COVID-HEART predictor, we performed a retrospective study of patients in the JH-CROWN 

COVID-19 registry. Patient data was collected for this study from the registry between March 1, 2020 and September 27, 

2020. Clinical data and outcomes were limited to those recorded in-hospital; there was no post-discharge follow-up. 

Patients were randomly assigned to development (80%) and testing (20%) data sets with stratification to ensure there were 

approximately the same proportion of patients with and without adverse CV events in each set. Assignment to development 

and testing sets was performed separately for prediction of cardiac arrest and thromboembolic events since 

inclusion/exclusion criteria and the proportion of patients with events were different. Supplementary Table S3 provides a 

demographic and clinical comparison of patients who did and did not experience each adverse event. Supplementary Table 

S4 provides a demographic and clinical comparison of patients in the development and testing set for each outcome.  

Patient Population 

The JH-CROWN COVID-19 registry includes patients of all ages seen, since January 1, 2020, at any Johns Hopkins Medical 

Institution facility (inpatient, outpatient, in-person, video consult, or lab order) with confirmed COVID-19 or suspected of 

having COVID-19. The cohort is defined as having a completed laboratory test for COVID-19 (whether positive or negative), 

having an ICD-10 diagnosis of COVID-19 (recorded at the time of encounter, entered on the problem list, entered as medical 

history, or appearing as a billing diagnosis), or flagged as a “patient under investigation” for suspected or confirmed COVID-

19 infection. Further details are available on the Johns Hopkins Institute for Clinical and Translational Research website.  

Additional inclusion and exclusion criteria were applied for the COVID-HEART study, which resulted in a subset of the JH-

CROWN registry being included. Supplementary Fig.S1 illustrates the flow of patients through the study. The COVID-HEART 

study included adult patients (age >=18 at the time of COVID-19 diagnosis) admitted as inpatients to any of the following 

hospitals in the Johns Hopkins Health System: Howard County General Hospital, Suburban Hospital, Sibley Memorial 

Hospital, Johns Hopkins Bayview Medical Center, and Johns Hopkins Hospital. For an admission to be included, patients 

must have had a laboratory-confirmed SARS-CoV-2 infection within 14 days prior to the date of admission or during the 

admission. The minimum length of time from admission to discharge or death was 4 hours for cardiac arrest prediction and 

72 hours for prediction of thromboembolic events, the difference being necessitated by the time granularity with which 

each outcome could be identified, discussed in further detail in the following section. Time spent in the emergency 

department did not count towards the admission duration, but if a patient had clinical data (e.g. laboratory values or vital 

signs) recorded in the emergency department prior to admission, those values were used to initialize the clinical data inputs 

at the start of their inpatient admission. Data were censored at the time of outcome or discharge.  

Multiple admissions were handled as follows. If a patient was transferred between hospitals in the health system and thus 

had two admissions recorded in the JH-CROWN registry with a gap of fewer than 4 hours, it was treated as a single 

admission. However, if a patient was discharged and re-admitted to the same hospital or a different hospital more than 4 

hours later, the admissions were treated separately, and all dynamic clinical data inputs were “reset” for the second 

admission. Admission-based inclusion/exclusion criteria were applied separately for each admission. 

Additional exclusion criteria were applied for prediction of thromboembolic events. Patients were excluded if they 

experienced a thromboembolic event immediately prior to admission that was diagnosed on admission or within 24 hours 

of admission. For prediction of both outcomes, patients were not excluded based on treatments received, disease severity, 

need for intensive care, missing clinical variables, or any other reason not listed here. Although excluding patients for these 

reasons may have improved the models’ performance, it would have resulted in an unrealistically “clean” cohort not 

representative of real clinical data, making the risk predictor less useful in a real-world clinical setting. 
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Outcome Definition 

In-hospital cardiac arrest was defined according to the time of death recorded in the JH-CROWN database. 270 cardiac 

arrests were associated with mortality and were defined by querying the time of death, however, cardiac arrests with 

resuscitation were also included in the outcome definition. These were queried by searching for the ICD-10 code ‘I46.X’ 

within the problem list and encounter diagnosis list. Eight patients had ICD-10 diagnosis codes reflecting in-hospital cardiac 

arrest with resuscitation. Overall, 277 out of 2178 patients (12.7%) experienced cardiac arrests; one patient experienced a 

cardiac arrest with resuscitation and later died. For patients with multiple cardiac arrests, the first outcome was used, and 

the remainder of their data were censored.   

Thromboembolic outcomes included pulmonary embolism confirmed on computed tomography (CT) angiography of the 

chest, non-hemorrhagic stroke confirmed on CT of the head, and deep venous thrombosis confirmed on either vascular 

ultrasound or CT of the abdomen or pelvis. Findings that were diagnosed or clinically apparent on initial presentation 

(confirmed on imaging within 24 hours of presentation) were excluded from analysis. For a patient with multiple adverse 

coagulation outcomes during their hospitalization, the first outcome was used. We note that such a strict outcome 

definition could mean that some outcomes were missed, especially if a patient’s immediate cause of death was a 

thromboembolic event or if the event was confirmed by point-of-care ultrasound that was not recorded in the imaging 

procedure list. However, we found that alternative outcome definition methods (such as ICD-10 diagnosis codes) resulted 

in many “false positive” outcomes upon chart review, so this method was chosen to ensure all thromboembolic events were 

confirmed with a consistent, objective level of clinical certainty. Overall, 32 out of 1601 (2.0%) eligible patients experienced 

imaging-confirmed thromboembolic events. 16 additional patients (1.0%) had imaging-confirmed thromboembolic events 

recorded on admission or within 24 hours of admission and were excluded for that reason.   

Predictors 

Supplementary Table S2 lists all clinical data inputs from which predictors were extracted. Here, we discuss the definition 

of these predictors, how they were measured, and pre-processing steps undertaken prior to dynamic feature extraction. 

Demographic inputs included age, gender, weight, height, body mass index, and race. Gender was defined as the patient’s 

legal gender (Male or Female) as listed in the electronic health record (EHR). Race was self-reported and divided into three 

categories according to the most common values in the JH-CROWN registry: Black, white, and other. The inclusion of race 

in machine learning models is controversial.32 However, there is significant evidence that Black patients and other patients 

of color experience worse outcomes in COVID-19.33 We were concerned that by not including race, our model may fail to 

account for a higher baseline risk of adverse outcomes among Black patients in the study cohort’s geographic area.34 Future 

work, prior to a prospective study, could include a re-analysis of the current results to ensure that the predictions are not 

systematically less accurate for any demographic group.32 Comorbidities were defined by mapping ICD-10 codes according 

to the Elixhauser comorbidity definitions31 using the hcuppy python library.35 

Vital signs were extracted from flowsheet data recorded in the EHR and added to the JH-CROWN registry. Pulse 

measurements were excluded if the recording was 0. Both systolic blood pressure (SBP) and diastolic blood pressure (DBP) 

were recorded using either a blood pressure cuff or an arterial line. These were combined into a single input. If a given time 

point had measurements for SBP and DBP with both modalities, the arterial line measurement took priority. SBP 

measurements between 30 and 270 mmHg were considered valid. DBP measurements between 30 and 130 mmHg were 

considered valid. If the difference between SBP and DBP was less than 15 mmHg, both measurements were considered 

invalid. Respiratory rates between 4 and 52 breaths per minute were considered valid. Temperatures between 89°F and 

105°F (31.7°C – 40.6°C) were considered valid. Pulse oxygen saturation between 30% and 100% was considered valid. Other 

flowsheet data, such as fraction of inspired oxygen and positive end expiratory pressure, were not included as these are 

directly influenced by a physician’s assessment of the patient’s condition, rather than physiologic data reflecting the 

patient’s condition in an unbiased manner. Heart rhythm indicators were also extracted from flowsheet data. 
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Laboratory tests results were extracted from EHR data and were time-stamped at the time the result was received, not the 

time of collection. This was done to ensure the model was trained with realistic data; in a prospective study it would not be 

possible to know the result of a laboratory test for a patient at the time the specimen would be collected.  

ECG measurements were extracted from the 12-lead ECG. As with laboratory tests, these measurements were time-

stamped at the time the result was received, not the time of the procedure. Parameters (QRS duration, QT interval, etc.) 

were evaluated by the clinician who interpreted the ECG results.  

For all clinical data inputs, outliers that were >5 standard deviations from the mean were removed. This threshold was 

chosen to avoid excluding abnormal but non-erroneous values. We intentionally applied minimal “corrections” to clinical 

data inputs to ensure our development and validation data sets were realistic and that our model could be applied in a real-

world clinical setting.  

The testing data set was identified and sequestered from the training data prior to model development. Since this was a 

retrospective study and did not include any data collected prospectively, there was no need of blind assessment of 

predictors for patients in the testing set. Patients were assigned to training and test sets after predictors were collected 

and outcomes were defined, but prior to model development.  

Sample Size 

The study size was determined by the number of patients in the JH-CROWN registry who met all inclusion and exclusion 

criteria for prediction of each outcome. 20% of the data was held out for testing; this was pre-determined.  

Feature Extraction and Missing Data 

Here we present methods for extracting features from dynamic clinical data and handling of missing predictors in the 

analysis. All pre-processing steps were performed using the Python Pandas data analysis library. Laboratory tests, vital signs, 

and ECG measurements were handled similarly. For each patient, each measurement for each variable within these 

categories was associated with a time-stamp at which the measurement was received. Data were re-sampled in 30-minute 

increments for the prediction of cardiac arrest and in 1-hour increments for the prediction of thromboembolic events with 

mean interpolation if multiple measurements were made in a given window. Missing values from the beginning of the 

patient’s hospitalization (e.g., if they did not have a measurement for a particular laboratory test until hour 48, or at any 

point during their hospitalization) were left empty and handled later, within the modeling pipeline. Missing values following 

a measurement (e.g., if a patient had an ECG at hour 12, then did not have another ECG until hour 48) were handled with 

forward filling; each variable was held constant until a new measurement was made.  

In the remainder of the Methods, we refer to “time point”, “time window”, “feature window”, “outcome window”, and 

“positive” time window. A time point indicates a single moment in time. The time window before a time point, during which 

clinical data are collected and features are extracted, is referred to as the “feature window”. The time window immediately 

after, in which the risk of a particular CV outcome is predicted, is referred to as the “outcome window”. “Positive time 

windows” or “positive time points” are time windows or points for which the patient experienced the CV outcome of 

interest in the following outcome window. 

Following the preprocessing steps described above, dynamic features were calculated from the processed time-series 

clinical data inputs as illustrated in Fig.1B. “Short features” encompassed a short window of time immediately preceding 

the time point at which the prediction was to be made. For example, if the feature window length was 2 hours, these 

features would include the mean, standard deviation, minimum, maximum, and amplitude of first frequency in Fourier 

space of the variable over the preceding 2 hours. “Long features” included the mean, standard deviation, minimum, and 

maximum over the patient’s entire hospitalization preceding the time point at which the prediction was to be made. 

“Exponentially weighted decay features” also encompassed the patient’s entire hospitalization preceding the time point at 
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which the prediction was to be made, but the measurements were exponentially weighted according to how recently they 

were made with more recent measurements weighted more strongly and a half-life of 1 day. 

Heart rhythm indicators were re-sampled similarly to other dynamic clinical data inputs but were treated discretely. For 

each window, two variables were recorded for each heart rhythm indicator (Atrial fibrillation, heart block, etc.): a binary 

indicator of whether the patient experienced that heart rhythm within the window and an integer-valued variable indicating 

how many times that heart rhythm was noted within the window. It was assumed that if a patient did not have any heart 

rhythm annotations within a particular hour, they did not experience an abnormal heart rhythm during that window, so 

missing values were filled in with zero for both the binary indicator variable and integer-valued variable. “Short features” 

and “long features” were calculated for each heart rhythm indicator but included only the sum (total number of times each 

was recorded over the interval) and maximum (maximum number of times a rhythm was recorded in a single hour within 

the interval).  

Dynamic features were extracted at each time point during each patient’s hospitalization. The time-step between time 

points at which predictions were made was 1 hour for prediction of cardiac arrest and 24 hours for prediction of 

thromboembolic events. For thromboembolic events, each time window began at midnight; for cardiac arrest, each time 

window began at the top of the hour, commencing with the first full hour after the patient was admitted as an inpatient. 

The difference in time-step was due to the difference in the time granularity of the outcome labels. Although cardiac arrest 

outcomes could be defined by the minute in which they occurred, and thus it would be appropriate to use a time-step as 

small as 1 minute, 1 hour was chosen to balance computational costs with the desire to train the classifier with as much 

data as possible. A time-step of 1 hour resulted in 412,198 time windows for the development set, which produced an 

accurate, generalizable classifier as demonstrated by the strong cross-validation and testing results for prediction of cardiac 

arrest. 

Each time-point was labeled with a binary outcome label indicating whether the patient experienced the outcome of 

interest in an “outcome window” following the time-point. 24 hours was selected as the outcome window for prediction of 

thromboembolic events as this was the minimum interval in which outcomes could be identified. 2 hours was selected as 

the outcome window for prediction of cardiac arrest based on practical clinical considerations. A “2-hour warning” for 

impending cardiac arrest would provide healthcare personnel sufficient time for intervention if indicated. Static features, 

including demographics and comorbidities, were then concatenated to the dynamic features. These were constant for all 

time points for each patient. 

Statistical Analysis Methods 

Three linear classifier configurations were investigated for prediction of each outcome using the feature windows and 

outcome windows described above (both 2-hour windows for cardiac arrest and 24-hour windows for thromboembolic 

events): one with short features only, one with all feature types, and one with all feature types and an additional pre-

processing step to re-sample the training data to handle class imbalance. Here, we discuss the specifications for each model. 

Unless otherwise stated, methods were the same for all three classifier configurations.  

Predictor Handling During Development 

After extracting features for all patients in the development set, static and dynamic features which were missing for >60% 

of time windows were removed. Pre-processing steps were integrated into a scikit-learn Pipeline to ensure data were 

handled correctly according to whether they were in the training or validation set during cross-validation and testing. For 

all three classifier configurations, the pre-processing steps included mean-value imputation for numerical features that 

were missing (typically at the beginning of a patient’s hospitalization or if a certain laboratory test was never performed for 

a given patient), scaling all numerical features to zero mean and unit variance, and feature selection using a lasso regression 

model for sparsity. This feature selection method was chosen as it is not biased towards selecting high-cardinality variables 

over variables with fewer discrete values (e.g., binary comorbidity features), in contrast with other popular feature selection 
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methods such as the random forest algorithm. We used ANOVA F-value-based feature selection for prediction of 

thromboembolic events and significantly restricted the number of features that could be selected to reduce the likelihood 

of over-fitting due to the very small number of events in the development set. 

For the classifier configuration with re-sampling, two additional steps were added to the pipeline after scaling but before 

feature selection. First, the Synthetic Minority Oversampling TEchnique (SMOTE) for nominal and continuous variables25 

was applied to up-sample the positive time windows by synthesizing new examples from the existing positive time windows. 

This was followed by random under-sampling to down-sample the negative time windows. There were typically only about 

0.1-1.0% positive time windows prior to re-sampling, depending on the outcome window and outcome type, so this step 

was applied to improve the class imbalance during training. 

Model Specification 

The model evaluated was a linear classifier trained with stochastic gradient descent. This model was chosen as it is highly 

explainable (not a “black box”), it is efficient to train with hundreds of thousands of time windows, and it can be updated 

without requiring full re-training. As COVID-19 treatment paradigms change, we expect that model updating would be 

necessary to retain accuracy among evolving clinical practices. The learning rate of the model was set to “optimal” with 

early stopping and balanced class weight. The model was the final step in the scikit-learn Pipeline. 

Five-fold stratified group cross-validation was used to optimize hyperparameters of the COVID-HEART predictor. Groups 

were set such that all time points from each patient were held out in the same fold of cross-validation. Hyperparameters 

were optimized for all steps in the pipeline with 500 iterations of a random grid search for prediction of thromboembolism 

(since the time step was 24 hours, there were fewer time windows and thus training was more efficient, especially for the 

model with re-sampling) and 100 iterations for prediction of cardiac arrest to maximize the validation AUROC. 

Hyperparameters included the over- and under-sampling strategy for the model with re-sampling, the maximum number 

of features selected, the loss function of the linear classifier (hinge, log, modified Huber, Huber, squared hinge), the 

regularization penalty (L1, L2, and L1L2), the regularization strength, and the L1 ratio for L1L2 regularization. Losses were 

weighted during training to strongly penalize errors for positive time windows. Following training, the optimized classifier 

was calibrated to provide risk probabilities in addition to binary predictions.  

Model Testing 

Following design of feature extraction methods, model development, and model training, the optimal models for prediction 

of each outcome were re-fit and calibrated using the entire development set. Static and dynamic features were then 

calculated for patients in the testing set using the same methods as for the development set. The fitted models were used 

to predict the risk of each CV outcome at each time point for each patient in the testing set. A binary prediction was also 

made at each time point using the optimal threshold determined by the development data during training.  

Although predictions were made at the same time steps for patients in the test set for consistency with the development 

set, it is possible to apply the model at any arbitrary time during a patient’s hospitalization. We envision that in practice, it 

could provide the physician with an updated risk score each time any new clinical data input becomes available or only after 

passing a certain “high risk” threshold, to reduce healthcare provider “alert fatigue”.  

Model Performance Assessment 

Model performance was assessed by the following metrics: accuracy, balanced accuracy, sensitivity, specificity, AUROC, F1-

score, and precision. These were calculated over the folds of cross-validation. Models were optimized and compared based 

on the cross-validation AUROC. The output of the classifier was a risk score (predicted probability that the patient will 

experience a particular CV event in the outcome window). A binary risk threshold was selected automatically to balance 

sensitivity and specificity for the development data, then applied to the test data to generate binary predictions for each 

time window in the test set. These binary predictions were used to calculate the classification performance metrics. This 
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was repeated for each fold of cross-validation and for the entire development set to make predictions for the separate test 

set. Additional metrics were calculated based on the binary risk determination at each time point to further investigate the 

sensitivity of the model in identifying early warning signs of an impending adverse CV event. These included the mean, 

median, and standard deviation of early warning time, defined as the number of hours prior to an event for which the binary 

risk prediction was positive. As a secondary analysis, the number of time windows predicted positive for patients who 

eventually experienced events and for patients who did not were compared.  

Model Updating 

The testing set was sequestered until the end of model development. There were no changes made to the model following 

testing. After determining the optimal classifier configuration for prediction of each event within the outcome windows 

specified above, we performed a secondary analysis in which we varied the length of the outcome window to investigate 

whether the COVID-HEART predictor could forecast outcomes within multiple intervals. At this point, the feature extraction 

and modeling methodology was pre-determined and only the outcome window were varied.  

Nested Cross-Validation 

Following training and validation of the optimal classifier configuration for prediction of each outcome with the train-test 

split discussed above, we added an outer loop of cross-validation to repeat the training and testing many times. Each full 

iteration of cross-validation included 5 train-test splits, selected randomly without replacement, to avoid bias. This was 

done to calculate the mean and 95% confidence interval for each validation and testing performance metric. Since there 

were few events for each outcome, the original train-test split results may be a poor reflection of the COVID-HEART 

predictor’s true capabilities. Repeating the train-test split provided a more accurate estimate of the models’ cross-validation 

and test performance. All test patient example predictions and data describing the characteristics of the development and 

testing sets were generated using the “original” optimal model with the initial randomly selected development and testing 

sets. 

Development vs. Validation  

There were no differences between development and test data in setting, eligibility criteria, outcome, and predictors. All 

patients were from a subset of the JH-CROWN registry and were randomly assigned to development and test sets after 

predictors and outcomes had been collected. 

Limitations 

While the COVID-HEART predictor overcomes many limitations of previously developed models for risk assessment in 

COVID-19 and is trained and tested on a large cohort of patients from multiple hospitals, several limitations remain. These 

include the lack of prospective validation in an external cohort and the requirement for imaging confirmation of 

thromboembolic events. The latter means that some thromboembolic events may not have been recorded, including those 

that were subclinical or were the immediate cause of death.  

There are also inherent limitations in the use of registry data rather than data prospectively collected for the purposes of 

this study.36 These include the potential for measurement error, inaccurate patient-reported history (e.g. smoking), and 

missing data. There is also left censoring measurement bias (e.g. patients transferred from other health systems may have 

different types of data available, since only data collected within the Johns Hopkins health system is available in the registry) 

and, since Johns Hopkins is a tertiary care center, patients in the registry tend to have a more severe disease course than 

the general population. However, the COVID-HEART predictor, designed to handle real-world clinical data, achieved strong 

results despite these limitations. 

Additional limitations stem from the use of the JH-CROWN registry and were not easily overcome. These include 

confounding by indication, which means that treatments were selected based on clinical indication. While our model did 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 10, 2021. ; https://doi.org/10.1101/2021.01.03.21249182doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.03.21249182


17 
 

not include treatments or other variables that were directly influenced by clinical indication, some variables in the model 

were likely indirectly influenced by clinical indication. For example, the pulse oxygen saturation may have been affected by 

changes in ventilator settings for patients who were receiving mechanical ventilation. There is also a subgroup of patients 

who had pre-existing DNR/DNI/comfort care orders. These patients would have received no interventions leading up to an 

adverse CV event, which means that the sequalae of physiologic changes for these patients may be different than for 

patients who received interventions prior to an adverse CV event. Finally, there is selection bias inherent to including only 

patients who sought care at a hospital; patients without insurance, undocumented patients, and patients with other barriers 

to seeking care may be less likely to be included.  

Supplementary Results 

Participants 

Supplementary Fig.S1 shows the flow of participants through the study. 2178 patients met eligibility criteria for cardiac 

arrest prediction. 277 experienced cardiac arrest. Supplementary Table S3 provides a clinical and demographic comparison 

of patients who did and did not experience cardiac arrest. Overall, patients who experienced cardiac arrest were older 

(mean age 73.7 years vs. 59.5 years, p<0.001) and spent more time in the hospital (338.8 hours vs. 229.2 hours, p<0.001). 

They were more likely to have valvular disease (9.7% vs. 5.1%, p=0.003), peripheral vascular disorders (14.1% vs. 8.2%, 

p=0.002), neurological disorders (39.0% vs. 18.5%, p<0.001), iron deficiency anemia (30.3% vs. 21.8%, p=0.002), 

hypertension without complications (70.0% vs. 55.4%, p<0.001), congestive heart failure (27.1% vs. 14.3%, p<0.001), fluid 

and electrolyte disorder (37.9% vs. 24.1%, p<0.001), and a history of smoking (20.2% vs. 14.6%, p=0.019). In investigating 

their first laboratory measurements on admission to the hospital for a select subset of laboratory tests that have been 

shown to be associated with adverse outcomes in COVID-19, patients who experienced cardiac arrest had statistically 

significantly higher NT-pro-brain natriuretic peptide (pro-BNP), white blood cell count, D-Dimer, C-reactive protein, ferritin, 

and troponin. They had statistically significantly lower absolute lymphocyte count. Of note, many patients were missing 

measurements for several of these tests. Finally, in investigating their first ECG recordings on admission to the hospital, 

patients who experienced cardiac arrest had statistically significantly higher QTc interval, T axis, ventricular rate, and atrial 

rate.  

These patients were divided with stratified random selection into a development set of 1742 patients (80%) in which 222 

(12.7%) experienced cardiac arrest and a testing set of 436 patients (20%) in which 55 (12.6%) experienced cardiac arrest. 

Supplementary Table S4 provides a comparison between the randomly selected development and testing sets. Since these 

patients were randomly selected, there were a few spurious differences between the development and validation set but 

no systematic differences in demographic or clinical characteristics.  

1617 patients met eligibility criteria for thromboembolic event prediction. 16 of these patients were excluded for having a 

thromboembolic event within 24 hours of admission, this usually indicated that the event occurred prior to admission and 

was confirmed with imaging on admission. 32 of the remaining 1601 experienced imaging-confirmed in-hospital 

thromboembolic events. Supplementary Table S3 provides a clinical and demographic comparison of patients who did and 

did not experience thromboembolic events. Patients who experienced thromboembolic events had longer admission 

duration (933.0 hours vs. 297.0 hours, p<0.001). They were more likely to have pulmonary circulation disorders (40.6% vs. 

5.3%, p<0.001) and congestive heart failure (34.4% vs. 18.4%, p=0.039). On admission, they had statistically significantly 

lower absolute lymphocyte count and statistically significantly shorter QRS duration.  

These patients were divided with stratified random selection into a development set of 1280 patients (80%) in which 26 

(2.0%) experienced imaging-confirmed thromboembolic events and a testing set of 321 patients (20%) in which 6 (1.9%) 

experienced imaging-confirmed thromboembolic events. Supplementary Table S4 provides a comparison between the 

randomly selected development and testing sets. There were no statistically significant differences in any clinical or 

demographic characteristics between the development and testing sets.   
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Supplementary Table S3 indicates the number of patients for which each measurement was missing. This does not 

necessarily mean they never had a measurement for a certain variable. It may mean that they had a recording at a hospital 

in a different health system prior to being transferred to a hospital in the Johns Hopkins Health System or that data was 

missing from the JH-CROWN registry. This is an inherent limitation in the use of retrospective registry data, discussed in 

further detail in Methods.  

Model Specification 

The optimal model for prediction of cardiac arrest with a feature window of 2 hours, outcome window of 2 hours, and time 

step of 1 hour was a classifier with short features only. The optimal hyperparameters included a maximum of 31 features 

selected, log loss, L2 regularization penalty, and regularization strength of 0.10. The optimal model for prediction of 

thromboembolic outcomes with a feature window of 24 hours, outcome window of 24 hours, and time step of 24 hours 

was a classifier with all features and no re-sampling. The optimal hyperparameters included 3 features, Huber loss, L1L2 

regularization penalty, L1 ratio of 0.95, and regularization strength of 0.01.  

Table 1 lists the features with largest absolute coefficients in the model for prediction of each outcome along with their 

values for time windows in the development and test sets. Feature selection was performed using the development set 

only. The most important features for prediction of cardiac arrest within 2 hours included chronic lung disease, many vital 

signs, lab tests that indicate inflammation and metabolic function, and heart rhythm annotations that provide information 

about cardiac function. Several of these have previously been noted as predictors of various adverse outcomes in COVID-

19.21,26,37,38 For example, elevated fibrinogen has been linked to high plasma viscosity in COVID-19, which may contribute to 

morbidity and mortality.28 This serves as a “sanity check” that the model is learning reasonable associations between 

predictors and outcomes, despite its novel real-time nature. The optimal classifier configuration included dynamic features 

from the 2 hours prior to the time point of prediction, suggesting that the decline in function leading to cardiac arrest occurs 

rapidly.  

The features with largest absolute coefficients for prediction of thromboembolic events within 24 hours were derived from 

QRS duration, platelet count, and activated partial thromboplastin time (aPTT). Other variables, including D-Dimer, IL-6, and 

Troponin I were associated with thromboembolic events (Supplementary Table S1), but only a few features could be 

included in the model due to the small number of events in the development set. One of the three features included in the 

model is a short feature calculated using clinical data from the 24 hours prior to the time of prediction and two are long 

features encompassing the patient’s entire hospitalization prior to the time of prediction. This suggests that data from only 

the day prior to the time of prediction do not tell the full story of the patient’s risk.   

APTT is associated with use of anti-coagulation therapy, suggesting that the model may be implicitly learning information 

about the physician’s assessment of the patient’s condition. Interestingly, to our knowledge, as of December 2020, there 

have been no studies describing the association of ECG abnormalities with thromboembolic outcomes in COVID-19. In our 

study, the standard deviation of the patient’s QRS duration over their entire hospitalization up to the time of prediction was 

among the three selected for inclusion in the classifier for prediction of thromboembolic events, however it is unclear 

whether these abnormalities were related to cardiac stunning, medications, or other etiologies. The results of our study 

suggest possible avenues for future research.  

Model Performance 

The overall performance of the optimal model for prediction of each outcome is discussed in the main text results. Here, 

we discuss the results in more detail, including patient-specific example predictions for patients in the test set for each 

outcome.  

Test Patient Example Predictions 
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The first example is the “true positive” prediction for one patient in the test set for each outcome, as shown in Fig.3. In 

predicting the risk of cardiac arrest within 2 hours for the patient whose data is shown in Fig.3A, results show that their risk 

is very low for the first 11 days of their hospitalization. On the 11th day, their oxygen saturation drops rapidly, and their 

systolic blood pressure decreases, while their white blood cell count increases. The effects of these changes are reflected 

in the patient’s risk score, which increases very rapidly in the 2 hours leading up to the time at which the patient experienced 

cardiac arrest. Although there are isolated changes in the risk score inputs during the first 11 days of their hospitalization, 

the COVID-HEART predictor is successful in determining when the patient becomes at risk of impending cardiac arrest by 

considering all the inputs together.  

In predicting the risk of a thromboembolic event within 1 day for the patient whose data is shown in Fig.3B, the results 

demonstrate that the risk score is low for the first 4 days of the patient’s hospitalization, then it crosses the binary risk 

threshold, continues to rise until day 7, and remains steadily above the binary risk threshold until day 14, when the patient 

experienced an imaging-confirmed thromboembolic event. The patient has steadily increasing platelet count, which was 

found to be predictive of thromboembolic events in our study, though to our knowledge it has not been reported elsewhere. 

The patient also has elevated aPTT at multiple points during their hospitalization, which may suggest that the physician 

treated the patient with heparin. The risk predictor can identify that the patient is at risk for an event by considering the 

changes in features extracted from these inputs over the entire duration of the patient’s hospitalization as well as in the 

day leading up to the event. This highlights the usefulness of the COVID-HEART risk predictor in identifying at-risk patients 

that may not have raised clinical suspicion for an impending thromboembolic event based on traditional risk markers.  

Supplementary Fig.S3 shows an example of a “true negative” prediction for one patient in the test set for each outcome. 

The cardiac arrest risk score for the patient whose data is shown in Supplementary Fig.S3A remains below 0.05% for their 

entire hospitalization. This patient has several drops in both systolic and diastolic blood pressure, but the COVID-HEART risk 

predictor successfully assesses their risk as low. This also illustrates the COVID-HEART risk predictor’s ability to cope with 

missing clinical data; the patient has no measurements for fibrinogen during their hospitalization. This patient did not 

experience cardiac arrest and was discharged after 2 days in the hospital. The thromboembolic event risk score for the 

patient whose data is shown in Supplementary Fig.S3B remains below 0.2% for their entire hospitalization. This patient did 

not experience any imaging-confirmed thromboembolic events.  

Supplementary Fig.S4 shows an example of an incorrect prediction for one patient in the test set of each outcome. The 

patient whose clinical data is shown in Supplementary Fig.S4A experienced cardiac arrest on day 11 of their hospitalization. 

Their risk score for cardiac arrest increased rapidly on day 8 corresponding to a sharp decrease in their systolic and diastolic 

blood pressures. However, it then decreased and remained at a constant, slightly elevated level for the following 3 days 

prior to the time at which they experienced cardiac arrest. Although they were not at the highest risk immediately before 

they experienced cardiac arrest, their risk score was above the threshold for cardiac arrest risk determined by the 

development data at the time they experienced cardiac arrest predictor. Thus, although this was technically a correct 

prediction, we focus on the risk score spike on day 8 as an example of a false positive prediction.  

The patient whose clinical data is shown in Supplementary Fig.S4B experienced an imaging-confirmed thromboembolic 

event on day 4 of their hospitalization. Their risk score was low for the duration of their hospitalization. It is unknown why 

the COVID-HEART predictor was unsuccessful for this patient. Although the COVID-HEART predictor is trained to cope with 

missing data, it is possible that the predictor was less accurate in this case because the patient had few measurements for 

QRS duration and platelet count. The patient’s aPTT was elevated above normal levels, which may indicate the patient was 

receiving prophylactic heparin. This highlights the need for further investigation of incorrect predictions by the COVID-

HEART predictor. 

Predicting CV Events Within Various Outcome Windows 
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After determining the optimal classifier configuration for prediction of each outcome with pre-determined outcome 

windows and short feature windows, we performed a series of experiments in which we varied the duration of the outcome 

window and repeated the training, optimization, and validation process as described in Methods. Supplementary Fig.S2 

shows the results of varying the outcome window for prediction of each outcome. For prediction of cardiac arrest, the 

outcome window can vary from 1 to 24 hours with little change in AUROC, sensitivity, and specificity. This analysis shows 

that the COVID-HEART predictor can predict cardiac arrest within multiple outcome window durations, representing a 

continuous early warning system for cardiac arrest that may be able to determine both the patient’s short-term and longer-

term risk. 

Supplementary Fig.S2 presents numerical results for all outcome windows for the prediction of thromboembolic events. 

When the feature window is held constant at 24 hours, we see that the results are similar for prediction of thromboembolic 

events within 1, 2, 3, and 4 days. There were only 26 patients in the development set with imaging-confirmed 

thromboembolic events and these outcomes could only be identified per-day, not at the exact time they occurred, as with 

cardiac arrest. As a result, only a few features could be selected; it is possible that a larger feature set would lead to more 

accurate prediction of the patients’ risk of thromboembolic events since more details of the patients’ clinical states could 

be considered. We believe that with either a larger cohort (with more imaging-confirmed thromboembolic events) or re-

assessing the outcome definition to include events confirmed by clinical suspicion rather than strictly requiring imaging 

confirmation could improve the results to a level comparable to the results for prediction of cardiac arrest. However, despite 

these limitations, the COVID-HEART predictor can accurately forecast thromboembolic events with a cross-validation 

AUROC of 0.77 (95% CI: 0.75-0.79) and a testing AUROC of 0.70 (95% CI: 0.67-0.73).  
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Supplementary Figures/Tables 

Section/Topic   Checklist Item Page 

Title and abstract 

Title 1 D;V 
Identify the study as developing and/or validating a multivariable prediction model, the target population, 

and the outcome to be predicted. 
1 

Abstract 2 D;V 
Provide a summary of objectives, study design, setting, participants, sample size, predictors, outcome, 

statistical analysis, results, and conclusions. 
2 

Introduction 

Background and 

objectives 

3a D;V 
Explain the medical context (including whether diagnostic or prognostic) and rationale for developing or 

validating the multivariable prediction model, including references to existing models. 
2 

3b D;V 
Specify the objectives, including whether the study describes the development or validation of the model 

or both. 
2, 3 

Methods 

Source of data 
4a D;V 

Describe the study design or source of data (e.g., randomized trial, cohort, or registry data), separately 

for the development and validation data sets, if applicable. 
3, 12 

4b D;V Specify the key study dates, including start of accrual; end of accrual; and, if applicable, end of follow-up.  3, 12 

Participants 

5a D;V 
Specify key elements of the study setting (e.g., primary care, secondary care, general population) 

including number and location of centres. 
3, 12 

5b D;V Describe eligibility criteria for participants.  3, 12 

5c D;V Give details of treatments received, if relevant.  N/A 

Outcome 
6a D;V Clearly define the outcome that is predicted by the prediction model, including how and when assessed.  13 

6b D;V Report any actions to blind assessment of the outcome to be predicted.  N/A 

Predictors 
7a D;V 

Clearly define all predictors used in developing or validating the multivariable prediction model, including 

how and when they were measured. 

13-

14,24 

7b D;V Report any actions to blind assessment of predictors for the outcome and other predictors.  14 

Sample size 8 D;V Explain how the study size was arrived at. 14 

Missing data 9 D;V 
Describe how missing data were handled (e.g., complete-case analysis, single imputation, multiple 

imputation) with details of any imputation method.  
14-15 

Statistical 

analysis 

methods 

10a D Describe how predictors were handled in the analyses.  15 

10b D 
Specify type of model, all model-building procedures (including any predictor selection), and method for 

internal validation. 

3, 15-

16 

10c V For validation, describe how the predictions were calculated.  16 

10d D;V Specify all measures used to assess model performance and, if relevant, to compare multiple models.  16-17 

10e V Describe any model updating (e.g., recalibration) arising from the validation, if done. 17 

Risk groups 11 D;V Provide details on how risk groups were created, if done.  N/A 

Development vs. 

validation 
12 V 

For validation, identify any differences from the development data in setting, eligibility criteria, outcome, 

and predictors.  
17 

Results 

Participants 

13a D;V 
Describe the flow of participants through the study, including the number of participants with and without 

the outcome and, if applicable, a summary of the follow-up time. A diagram may be helpful.  
3, 29 

13b D;V 
Describe the characteristics of the participants (basic demographics, clinical features, available 

predictors), including the number of participants with missing data for predictors and outcome.  

18, 25-

26 

13c V 
For validation, show a comparison with the development data of the distribution of important variables 

(demographics, predictors and outcome).  
27-28 

Model 

development  

14a D Specify the number of participants and outcome events in each analysis.  3, 13 

14b D If done, report the unadjusted association between each candidate predictor and outcome. N/A 

Model 

specification 

15a D 
Present the full prediction model to allow predictions for individuals (i.e., all regression coefficients, and 

model intercept or baseline survival at a given time point). 
10 

15b D Explain how to the use the prediction model. 16-17 

Model 

performance 
16 D;V Report performance measures (with CIs) for the prediction model. 8 

Model-updating 17 V If done, report the results from any model updating (i.e., model specification, model performance). N/A 

Discussion 

Limitations 18 D;V 
Discuss any limitations of the study (such as nonrepresentative sample, few events per predictor, 

missing data).  
17 

Interpretation 

19a V 
For validation, discuss the results with reference to performance in the development data, and any other 

validation data.  
19-20 

19b D;V 
Give an overall interpretation of the results, considering objectives, limitations, results from similar 

studies, and other relevant evidence.  

3-4, 

19-20 

Implications 20 D;V Discuss the potential clinical use of the model and implications for future research.  3-4 

Other information 

Supplementary 

information 
21 D;V 

Provide information about the availability of supplementary resources, such as study protocol, Web 

calculator, and data sets.  
12-33 

Funding 22 D;V Give the source of funding and the role of the funders for the present study.  4 
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Supplementary Table S1. TRIPOD Checklist for development and validation of a multi-variable prognostic model. 

Category Clinical Data Inputs 

Demographics (6) Age, gender, weight, height, body mass index, race  

Comorbidities (30) Current smoker, history of smoking, chronic pulmonary disease, diabetes mellitus with 

complications, diabetes mellitus without complications, lymphoma, valvular disease, psychosis, 

peripheral vascular disorder, pulmonary circulation disorders, hypothyroidism, alcohol abuse, 

neurological disorders, deficiency anemia, renal failure, liver disease, rheumatoid 

arthritis/collagen, solid tumor without metastasis, metastatic cancer, drug abuse, depression, 

HIV/AIDS, hypertension with complications, hypertension without complications, obesity, 

coagulopathy, peptic ulcer disease, congestive heart failure, paralysis, fluid and electrolyte 

disorders 

Vital signs (6) Pulse, systolic blood pressure, diastolic blood pressure, respiratory rate, temperature, pulse 

oxygen saturation  

Lab tests (39) NT-pro-brain natriuretic peptide (ProBNP), white blood cell count, absolute lymphocyte count, D-

dimer, lymphocytes %, heparin (anti-Xa), interleukin-6 (IL-6) serum, C-reactive protein, ferritin, 

fibrinogen, troponin I, troponin T, bands, creatinine serum, creatinine plasma, blood urea 

nitrogen (BUN), BUN/creatinine ratio, sodium, potassium, hematocrit, glomerular filtration rate, 

glucose, chloride, carbon dioxide, calcium, procalcitonin, magnesium, alanine aminotransferase, 

aspartate aminotransferase, bilirubin, lactate whole blood, erythrocyte sedimentation rate, 

lactate dehydrogenase, platelet count, mean platelet volume, activated partial thromboplastin 

time, prothrombin time, anion gap, mean corpuscular volume 

ECG measurements 

(9) 

PR interval, QRS duration, QT interval, QTc interval, P axis, QRS axis, T axis, ventricular rate, atrial 

rate 

Heart rhythm 

indicators (16) 

Atrial fibrillation, atrial flutter, sinus arrhythmia, ectopy, heart block, sinus tachycardia, sinus 

bradycardia, junctional rhythm, ventricular tachycardia, asystole, ventricular paced rhythm, 

normal sinus rhythm, atrial paced rhythm, A-V sequential paced rhythm, supraventricular 

tachycardia, agonal  

Supplementary Table S2: Complete list of clinical data from which features were derived.  These are discussed in further 

detail in Methods. Comorbidities are defined using ICD-10 codes according to the Elixhauser comorbidity definitions.31 
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  Cardiac Arrest  Thromboembolic Event 

   Missing Overall No Outcome Outcome 
P-

Value  Missing Overall No Outcome Outcome 
P-

Value 

n     2178 1901 277       1601 1569 32   

Demographics 

Age (y) 0 59.5 (18.6) 57.5 (18.3) 73.7 (13.6) <0.001   0 61.8 (17.9) 61.8 (17.9) 61.4 (12.5) 0.857 

Sex, n (%) Male 0 1136 (52.2) 983 (51.7) 153 (55.2) 0.302   0 861 (53.8) 840 (53.5) 21 (65.6) 0.239 

Race, n (%) 
Black 

0 
807 (37.1) 703 (37.0) 104 (37.5) 

<0.001 
  

0 
595 (37.2) 582 (37.1) 13 (40.6) 

0.446 

White 647 (29.7) 530 (27.9) 117 (42.2)   512 (32.0) 505 (32.2) 7 (21.9) 

Other 724 (33.2) 668 (35.1) 56 (20.2)   494 (30.9) 482 (30.7) 12 (37.5) 

BMI (kg/m2) 606 29.6 (7.6) 29.9 (7.4) 28.1 (8.7) 0.005   424 29.7 (7.8) 29.7 (7.8) 27.8 (4.3) 0.042 

Number of 
admissions, 
n (%) 

1 0 2128 (97.7) 1858 (97.7) 270 (97.5) 0.88   0 1564 (97.7) 1533 (97.7) 31 (96.9) 0.935 

2 49 (2.2) 42 (2.2) 7 (2.5)   36 (2.2) 35 (2.2) 1 (3.1) 

3 1 (0.0) 1 (0.1)     1 (0.1) 1 (0.1)   

Total length of 
admission(s) (h) 0 243.2 (312.1) 229.2 (285.2) 338.9 (444.9) <0.001   0 309.7 (327.7) 297.0 (307.3) 933.0 (596.2) <0.001 

Comorbidities 

Chronic pulmonary 
disease, n (%) 6 427 (19.7) 361 (19.1) 66 (23.8) 0.074   5 322 (20.2) 317 (20.3) 5 (15.6) 0.67 

Diabetes mellitus 
w/o complications, n 
(%) 6 736 (33.9) 628 (33.1) 108 (39.0) 0.064   5 592 (37.1) 581 (37.1) 11 (34.4) 0.891 

Diabetes mellitus w/ 
complications, n (%) 6 377 (17.4) 320 (16.9) 57 (20.6) 0.153   5 310 (19.4) 302 (19.3) 8 (25.0) 0.562 

Valvular disease, n 
(%) 6 123 (5.7) 96 (5.1) 27 (9.7) 0.003   5 107 (6.7) 103 (6.6) 4 (12.5) 0.162 

Peripheral vascular 
disorders, n (%) 6 195 (9.0) 156 (8.2) 39 (14.1) 0.002   5 159 (10.0) 155 (9.9) 4 (12.5) 0.552 

Pulmonary 
circulation disorders, 
n (%) 6 123 (5.7) 106 (5.6) 17 (6.1) 0.821   5 96 (6.0) 83 (5.3) 13 (40.6) <0.001 

Other neurological 
disorders, n (%) 6 458 (21.1) 350 (18.5) 108 (39.0) <0.001   5 379 (23.7) 369 (23.6) 10 (31.2) 0.425 

Deficiency anemia, n 
(%) 6 498 (22.9) 414 (21.8) 84 (30.3) 0.002   5 384 (24.1) 374 (23.9) 10 (31.2) 0.452 

Rheumatoid 
arthritis/collagen 
vascular diseases, n 
(%) 6 76 (3.5) 64 (3.4) 12 (4.3) 0.527   5 59 (3.7) 58 (3.7) 1 (3.1) 1 

Hypertension w/o 
complications, n (%) 6 1244 (57.3) 1050 (55.4) 194 (70.0) <0.001   5 960 (60.2) 940 (60.1) 20 (62.5) 0.927 

Hypertension w/ 
complications, n (%) 6 133 (6.1) 114 (6.0) 19 (6.9) 0.68   5 111 (7.0) 108 (6.9) 3 (9.4) 0.484 

Obesity, n (%) 6 362 (16.7) 325 (17.2) 37 (13.4) 0.135   5 274 (17.2) 270 (17.3) 4 (12.5) 0.638 

Coagulopathy, n (%) 6 106 (4.9) 89 (4.7) 17 (6.1) 0.373   5 85 (5.3) 83 (5.3) 2 (6.2) 0.687 

Congestive heart 
failure, n (%) 6 346 (15.9) 271 (14.3) 75 (27.1) <0.001   5 299 (18.7) 288 (18.4) 11 (34.4) 0.039 

Fluid and electrolyte 
disorders, n (%) 6 562 (25.9) 457 (24.1) 105 (37.9) <0.001   5 457 (28.6) 448 (28.6) 9 (28.1) 0.894 

Current smoker, n 
(%) 0 71 (3.3) 59 (3.1) 12 (4.3) 0.371   0 55 (3.4) 54 (3.4) 1 (3.1) 1 

History of smoking, n 
(%) 0 333 (15.3) 277 (14.6) 56 (20.2) 0.019   0 262 (16.4) 255 (16.3) 7 (21.9) 0.542 

Laboratory Values 

ProBNP (pg/mL) 930 
2113.3 

(6184.4) 
1607.7 

(5130.6) 
5055.9 

(9897.7) <0.001   586 
2201.8 

(6236.0) 
2207.2 

(6236.9) 
1968.6 

(6333.7) 0.86 

White blood cell 
count (K/uL) 19 8.0 (4.5) 7.8 (4.4) 9.5 (5.4) <0.001   4 8.1 (4.7) 8.1 (4.7) 9.1 (4.4) 0.213 

Absolute lymphocyte 
count (K/uL) 1214 1.1 (1.3) 1.1 (1.3) 0.9 (1.0) 0.024   773 1.1 (1.3) 1.1 (1.3) 0.7 (0.5) 0.002 

D-Dimer (nmol/L) 276 2.3 (4.6) 1.9 (3.8) 4.5 (7.6) <0.001   127 2.3 (4.4) 2.2 (4.1) 6.3 (10.0) 0.026 

Interleukin-6, Serum 
(pg/mL) 1263 252.9 (1513.5) 

185.0 
(1144.1) 724.9 (2989.1) 0.058   856 

300.0 
(1673.5) 

295.0 
(1689.8) 512.0 (663.2) 0.222 

C-reactive protein 
(mg/L) 250 30.1 (53.9) 25.2 (48.1) 63.0 (75.4) <0.001   110 33.9 (56.9) 33.8 (56.8) 40.6 (60.5) 0.531 

Ferritin (mcg/L) 313 
1012.0 

(1558.4) 
949.3 

(1506.4) 
1442.7 

(1823.4) <0.001   147 
1082.7 

(1573.7) 
1067.1 

(1531.2) 
1774.8 

(2846.2) 0.171 

Fibrinogen (mg/dL) 1168 532.0 (173.0) 530.6 (169.0) 540.5 (196.2) 0.569   775 543.0 (172.1) 542.6 (171.6) 554.9 (191.3) 0.764 
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Troponin I (ng/mL) 1108 0.105 (0.468) 0.074 (0.263) 0.370 (1.180) 0.008   772 0.122 (0.528) 0.118 (0.520) 0.238 (0.727) 0.393 

ECG Parameters 

PR interval (ms) 517 154.4 (27.8) 154.5 (27.4) 153.4 (30.4) 0.618   281 154.5 (28.6) 154.5 (28.5) 152.9 (29.9) 0.765 

QRS duration (ms) 364 91.2 (19.1) 90.8 (18.7) 93.5 (21.5) 0.056   155 91.5 (19.5) 91.6 (19.6) 86.3 (12.0) 0.021 

QT interval (ms) 365 368.4 (46.7) 368.8 (45.4) 366.1 (53.7) 0.456   157 367.6 (46.7) 367.6 (46.8) 367.2 (43.0) 0.958 

QTc interval (ms) 367 446.3 (36.3) 443.8 (34.0) 462.0 (44.9) <0.001   159 447.0 (36.3) 446.9 (36.1) 448.1 (41.9) 0.88 

P axis (degrees) 546 47.1 (22.6) 46.9 (22.3) 48.4 (24.2) 0.422   304 46.7 (22.6) 46.7 (22.8) 46.8 (15.2) 0.986 

QRS axis (degrees) 361 23.4 (53.5) 23.7 (51.3) 21.5 (65.1) 0.618   153 22.5 (53.6) 22.4 (53.8) 24.0 (44.7) 0.846 

T axis (degrees) 361 43.6 (50.3) 41.4 (47.9) 57.3 (61.3) <0.001   153 44.3 (51.1) 44.3 (51.3) 45.1 (38.0) 0.913 

Ventricular rate 
(bpm)  362 91.3 (20.0) 89.9 (19.1) 99.8 (22.9) <0.001   154 91.9 (19.5) 91.8 (19.6) 91.9 (18.3) 0.978 

Atrial rate (bpm) 384 91.8 (22.5) 90.5 (21.6) 100.0 (25.9) <0.001   170 92.7 (22.5) 92.7 (22.5) 91.9 (18.3) 0.816 

Supplementary Table S3: Characteristics of entire dataset for each outcome. ECG parameters and lab values are reported 

as the first result value during the patient’s admission. Comorbidities are defined according to diagnosis codes in the 

Elixhauser comorbidity table.31 Values are reported mean (standard deviation) unless otherwise indicated. P-values 

represent comparison between patients that did and did not experience each outcome and were calculated using the two-

sample T-test or chi-squared test as appropriate. This table was generated using the python package tableone with the 

Bonferroni correction applied for multiple hypothesis testing.30  
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  Cardiac Arrest  Thromboembolic Event 

    Missing Overall Test Train 
P-

Value  Missing Overall Test Train 
P-

Value 

n   2178 436 1742       1601 321 1280   

Experienced Outcome, n (%)   277 (12.7) 55 (12.6) 222 (12.7) 0.994     32 (2.0) 6 (1.9) 26 (2.0) 0.97 

Demographics 

Age (y) 0 59.5 (18.6) 58.4 (18.0) 59.8 (18.8) 0.163   0 61.8 (17.9) 60.3 (18.6) 62.1 (17.7) 0.114 

Sex, n (%) Male 0 1136 (52.2) 207 (47.5) 929 (53.3) 0.033   0 861 (53.8) 180 (56.1) 681 (53.2) 0.39 

Race, n (%) Black 0 807 (37.1) 173 (39.7) 634 (36.4) 0.144   0 595 (37.2) 118 (36.8) 477 (37.3) 0.601 

White 647 (29.7) 113 (25.9) 534 (30.7)   512 (32.0) 97 (30.2) 415 (32.4) 

Other 724 (33.2) 150 (34.4) 574 (33.0)   494 (30.9) 106 (33.0) 388 (30.3) 

Body mass index (kg/m2)  606 29.6 (7.6) 30.0 (8.0) 29.6 (7.5) 0.446   424 29.7 (7.8) 29.2 (7.3) 29.8 (7.9) 0.266 

Number of 
admissions, n (%) 

1 
0 

2128 (97.7) 427 (97.9) 1701 (97.6) 
0.11 

  
0 

1564 (97.7) 313 (97.5) 1251 (97.7) 
0.836 

2 49 (2.2) 8 (1.8) 41 (2.4)   36 (2.2) 8 (2.5) 28 (2.2) 

3 1 (0.0) 1 (0.2)     1 (0.1)   1 (0.1) 

Total length of admission(s) 
(h)  0 243.2 (312.1) 236.6 (290.8) 244.8 (317.3) 0.602   0 309.7 (327.7) 300.6 (312.7) 312.0 (331.4) 0.566 

Comorbidities 

Chronic pulmonary disease, n 
(%) 6 427 (19.7) 83 (19.0) 344 (19.8) 0.765   5 322 (20.2) 58 (18.2) 264 (20.7) 0.377 

Diabetes mellitus w/o 
complications, n (%) 6 736 (33.9) 169 (38.8) 567 (32.7) 0.019   5 592 (37.1) 111 (34.9) 481 (37.6) 0.402 

Diabetes mellitus w/ 
complications, n (%) 6 377 (17.4) 74 (17.0) 303 (17.5) 0.868   5 310 (19.4) 59 (18.6) 251 (19.6) 0.72 

Valvular disease, n (%) 6 123 (5.7) 17 (3.9) 106 (6.1) 0.096   5 107 (6.7) 24 (7.5) 83 (6.5) 0.585 

Peripheral vascular disorders, 
n (%) 6 195 (9.0) 37 (8.5) 158 (9.1) 0.758   5 159 (10.0) 36 (11.3) 123 (9.6) 0.424 

Pulmonary circulation 
disorders, n (%) 6 123 (5.7) 27 (6.2) 96 (5.5) 0.675   5 96 (6.0) 20 (6.3) 76 (5.9) 0.922 

Other neurological disorders, 
n (%) 6 458 (21.1) 75 (17.2) 383 (22.1) 0.031   5 379 (23.7) 77 (24.2) 302 (23.6) 0.885 

Deficiency anemia, n (%) 6 498 (22.9) 90 (20.6) 408 (23.5) 0.228   5 384 (24.1) 85 (26.7) 299 (23.4) 0.242 

Rheumatoid arthritis/collagen 
vascular diseases, n (%) 6 76 (3.5) 15 (3.4) 61 (3.5) 0.943   5 59 (3.7) 9 (2.8) 50 (3.9) 0.454 

Hypertension w/o 
complications, n (%) 6 1244 (57.3) 238 (54.6) 1006 (57.9) 0.225   5 960 (60.2) 187 (58.8) 773 (60.5) 0.629 

Hypertension w/ 
complications, n (%) 6 133 (6.1) 21 (4.8) 112 (6.5) 0.245   5 111 (7.0) 28 (8.8) 83 (6.5) 0.185 

Obesity, n (%) 6 362 (16.7) 79 (18.1) 283 (16.3) 0.402   5 274 (17.2) 51 (16.0) 223 (17.4) 0.607 

Coagulopathy, n (%) 6 106 (4.9) 21 (4.8) 85 (4.9) 0.956   5 85 (5.3) 19 (6.0) 66 (5.2) 0.663 

Congestive heart failure, n (%) 6 346 (15.9) 58 (13.3) 288 (16.6) 0.109   5 299 (18.7) 54 (17.0) 245 (19.2) 0.415 

Fluid and electrolyte 
disorders, n (%) 6 562 (25.9) 128 (29.4) 434 (25.0) 0.072   5 457 (28.6) 93 (29.2) 364 (28.5) 0.841 

Current smoker, n (%) 0 71 (3.3) 12 (2.8) 59 (3.4) 0.605   0 55 (3.4) 11 (3.4) 44 (3.4) 0.871 

History of smoking, n (%) 0 333 (15.3) 64 (14.7) 269 (15.4) 0.748   0 262 (16.4) 56 (17.4) 206 (16.1) 0.616 

Laboratory Values  

ProBNP (pg/mL) 930 
2113.3 

(6184.4) 
1830.1 

(5624.9) 
2187.5 

(6323.4) 0.376   586 
2201.8 

(6236.0) 
2065.2 

(6466.1) 
2235.1 

(6182.2) 0.738 

White blood cell count (K/uL) 19 8.0 (4.5) 7.9 (4.3) 8.0 (4.6) 0.727   4 8.1 (4.7) 8.3 (5.2) 8.1 (4.6) 0.462 

Absolute lymphocyte count 
(K/uL) 1214 1.1 (1.3) 1.0 (0.8) 1.1 (1.4) 0.044   773 1.1 (1.3) 1.0 (1.1) 1.1 (1.3) 0.651 

D-Dimer, (nmol/L) 276 2.3 (4.6) 2.2 (4.9) 2.3 (4.5) 0.811   127 2.3 (4.4) 2.0 (3.7) 2.4 (4.6) 0.148 

Interleukin-6, Serum (pg/mL) 1263 
252.9 

(1513.5) 209.8 (752.9) 
264.2 

(1656.3) 0.509   856 
300.0 

(1673.5) 187.6 (687.0) 
327.8 

(1837.4) 0.136 

C-reactive protein (mg/L) 250 30.1 (53.9) 30.0 (52.7) 30.1 (54.2) 0.974   110 33.9 (56.9) 34.1 (60.4) 33.9 (56.0) 0.954 

Ferritin (mcg/L) 313 
1012.0 

(1558.4) 
898.9 

(1289.1) 
1039.9 

(1617.1) 0.075   147 
1082.7 

(1573.7) 
1063.0 

(1536.7) 
1087.6 

(1583.3) 0.809 

Fibrinogen (mg/dL) 1168 532.0 (173.0) 546.3 (172.8) 528.5 (173.0) 0.195   775 543.0 (172.1) 544.1 (161.9) 542.7 (174.6) 0.919 

Troponin I (ng/mL) 1108 0.105 (0.468) 0.096 (0.344) 0.108 (0.494) 0.691   772 0.122 (0.528) 0.095 (0.390) 0.129 (0.557) 0.371 

ECG Parameters  

PR interval (ms) 517 154.4 (27.8) 153.2 (27.7) 154.7 (27.8) 0.389   281 154.5 (28.6) 154.6 (32.2) 154.5 (27.6) 0.959 
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QRS duration (ms) 364 91.2 (19.1) 90.5 (18.4) 91.3 (19.3) 0.422   155 91.5 (19.5) 91.6 (20.1) 91.5 (19.3) 0.928 

QT interval (ms) 365 368.4 (46.7) 364.7 (47.1) 369.3 (46.5) 0.102   157 367.6 (46.7) 364.4 (47.1) 368.3 (46.6) 0.218 

QTc interval (ms) 367 446.3 (36.3) 442.4 (34.2) 447.3 (36.7) 0.02   159 447.0 (36.3) 444.1 (37.2) 447.6 (36.0) 0.157 

P axis (degrees) 546 47.1 (22.6) 47.4 (25.1) 47.0 (21.9) 0.8   304 46.7 (22.6) 46.1 (22.0) 46.9 (22.8) 0.602 

QRS axis (degrees)  361 23.4 (53.5) 27.1 (57.0) 22.5 (52.5) 0.169   153 22.5 (53.6) 25.4 (52.9) 21.8 (53.7) 0.311 

T axis (degrees) 361 43.6 (50.3) 41.8 (49.8) 44.0 (50.4) 0.458   153 44.3 (51.1) 41.2 (48.0) 45.1 (51.8) 0.243 

Ventricular rate (bpm) 362 91.3 (20.0) 91.5 (18.3) 91.2 (20.4) 0.777   154 91.9 (19.5) 92.4 (21.0) 91.7 (19.2) 0.615 

Atrial rate (bpm)  384 91.8 (22.5) 92.1 (21.7) 91.8 (22.6) 0.774   170 92.7 (22.5) 92.6 (23.1) 92.7 (22.3) 0.966 

Supplementary Table S4: Characteristics of the training and test sets for each outcome. ECG parameters and lab values are 

reported as the first result value during the patient’s admission. Comorbidities are defined according to diagnosis codes in 

the Elixhauser comorbidity table.31 Values are reported as mean (standard deviation) unless otherwise indicated. P-values 

represent comparison between patients in the training and test sets for each outcome and were calculated using the two-

sample T-test or chi-squared test as appropriate. This table was generated using the python package tableone with the 

Bonferroni correction applied for multiple hypothesis testing.30 
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Supplementary Figure S1: Participant flow diagram for retrospective study of using COVID-HEART to predict cardiac arrest 

and thromboembolic events continuously over time.  
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Supplementary Figure S2: COVID-HEART cross-validation and testing results for outcome windows of different duration in 

predicting each CV outcome using the optimal classifier. Results for 5-fold stratified patient-based cross-validation (purple) 

and separate test set (orange) for prediction of cardiac arrest (top) and thromboembolic events (bottom) within a given 

outcome window using the optimal classifier configuration from Fig.2. Short feature window is 2 hours for prediction of 

cardiac arrest and 24 hours for prediction of thromboembolic events. Note comparable validation and test results, which 

indicates strong generalizability. Results shown are for the original development and validation sets (Supplementary Table 

S2). 
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Supplementary Figure S3: Two examples of “true negative” predictions for two patients, one from the cardiac arrest test 

set and one from the thromboembolic event test set, using the COVID-HEART predictor. 

(A) Clinical time-series inputs (top 7 rows) from which the features with the largest coefficients were derived for prediction 

of cardiac arrest and time-series risk score (bottom row) for a patient who did not experience cardiac arrest during their 

hospitalization, and for whom the classifier’s prediction was correct. The features derived from these inputs are listed in 

Table 1. A new prediction is generated every hour. The risk score is below 0.1% for the entire duration of the patient’s 

admission. The date refers to the days of admission relative to midnight on the first full day of admission. Units for each 

predictor are as follows: Pulse (beats/minutes), WBC (cells/ mm3), Fibrinogen (mg/dL), Pulse O2 saturation (%), DBP (mmHg), 

SBP (mmHg), GFR (mL/min) 

(B) Clinical time-series inputs (top 3 rows) from which the 3 selected features were derived for prediction of 

thromboembolic events, and time-series risk score (bottom row) for a patient who did not experience a thromboembolic 

event during their hospitalization. The features derived from these inputs are listed in Table 1. A new prediction is generated 

every 24 hours. The risk score is low for the entire duration of the patient’s admission. The date refers to the days of 

admission relative to midnight on the first full day of admission. Units for each predictor are as follows: QRS duration (ms), 

platelet count (cells*10-3/uL), aPTT (seconds).  

 Abbreviations: white blood cell count (WBC), diastolic blood pressure (DBP), systolic blood pressure (SBP), glomerular 

filtration rate (GFR), activated partial thromboplastin time (aPTT) 
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Supplementary Figure S4: Investigation of incorrect predictions by the COVID-HEART predictor for two patients, one from 

the cardiac arrest test set and one from the thromboembolic event test set.  

(A) Clinical time-series inputs (top 7 rows) from which the features with the largest coefficients were derived for prediction 

of cardiac arrest and time-series risk score (bottom row) for a patient who experienced cardiac arrest during their 

hospitalization, and for whom the classifier’s prediction was correct prior to the cardiac arrest. The features derived from 

these inputs are listed in Table 1. A new prediction is generated every hour. The risk score is low with slight fluctuations for 

most of the patient’s hospitalization, then spikes on day 8, then drops but remains above the positivity threshold, which is 

very low. The patient experienced cardiac arrest on day 11, 3 days after the peak in risk score. The date refers to the days 

of admission relative to midnight on the first full day of admission. Units for each predictor are as follows: Pulse 

(beats/minutes), WBC (cells/ mm3), Fibrinogen (mg/dL), Pulse O2 saturation (%), DBP (mmHg), SBP (mmHg), GFR (mL/min) 

(B) Clinical time-series inputs (top 3 rows) from which the 3 selected features were derived for prediction of 

thromboembolic events, and time-series risk score (bottom row) for a patient who experienced a thromboembolic event 

during their hospitalization. The features derived from these inputs are listed in Table 1. A new prediction is generated 

every 24 hours. The risk score peaks early in the patient’s hospitalization but steadily decreases leading up to the day on 

which they experienced an imaging-confirmed thromboembolic event; this is discussed in Supplementary Results. The date 

refers to the days of admission relative to midnight on the first full day of admission. Units for each predictor are as follows: 

QRS duration (ms), platelet count (cells*10-3/uL), aPTT (seconds).  

 Abbreviations: white blood cell count (WBC), diastolic blood pressure (DBP), systolic blood pressure (SBP), glomerular 

filtration rate (GFR), activated partial thromboplastin time (aPTT) 
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Supplementary Figure S5: More time windows are predicted positive for patients that eventually experience each outcome 

than patients who do not. Proportion of time windows predicted positive (risk probability greater than the binary risk 

threshold determined by the development data) for patients in 5-fold patient-based cross-validation (purple) and the 

separate test set (orange) that do (solid line) and do not (dashed line) eventually experience cardiac arrest (top) and 

thromboembolic events (bottom). Results shown are for the original development and validation sets (Supplementary Table 

S2).  
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