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Klepac2,@, Kévin Jean1,3,4,@, Tini Garske1,$, Neil M. Ferguson1,$, and Katy A. M.
Gaythorpe1,*,$

1MRC Centre for Global Infectious Disease Analysis; and the Abdul Latif Jameel Institute for Disease and
Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London, W2 1PG, UK
2Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, WC1E
7HT, UK
3Laboratoire MESuRS, Conservatoire national des Arts et Métiers, Paris, France
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ABSTRACT

Deaths due to vaccine preventable diseases cause a notable proportion of mortality worldwide. To quantify the importance of
vaccination, it is necessary to estimate the burden averted through vaccination. The Vaccine Impact Modelling Consortium
(VIMC) was established to estimate the health impact of vaccination. We describe the methods implemented by the VIMC to
estimate impact by calendar year, birth year and year of vaccination (YoV). The calendar and birth year methods estimate
impact in a particular year and over the lifetime of a particular birth cohort, respectively. The YoV method estimates the
impact of a particular year’s vaccination activities through the use of impact ratios which have no stratification and stratification
by activity type and/or birth cohort. Furthermore, we detail an impact extrapolation (IE) method for use between coverage
scenarios. We compare the methods, focusing on YoV for hepatitis B, measles and yellow fever. We find that the YoV methods
estimate similar impact with routine vaccinations but have greater yearly variation when campaigns occur with the birth cohort
stratification. The IE performs well for the YoV methods, providing a time-efficient mechanism for updates to impact estimates.
These methods provide a robust set of approaches to quantify vaccination impact.

Introduction1

Vaccination is one of the most effective interventions against infectious diseases and is estimated to prevent 2-3 million deaths2

annually, with an additional 1.5 million deaths could be averted with improvements in global vaccination coverage1. Vaccines3

can provide cost-effective, long-term protection and have resulted in the eradication of two major pathogens, rinderpest and4

smallpox, as well as the local elimination of others, such as measles2, 3. Most vaccines have been shown to be safer than5

therapeutic medicines and are deemed second only to safe drinking water in terms of public health benefit4–6.6

Of the burden that does occur due to vaccine preventable diseases, the majority is in Low and Middle Income Countries7

(LMICs)7. In many countries, the lack of reliable surveillance data and the inability to observe the burden that would have8

occurred without vaccination makes it difficult to directly calculate the mortality and morbidity prevented by vaccination.9

Hence, mathematical models are crucial for providing estimates of the burden averted by immunisation as they can project a no10

vaccination (counterfactual) scenario and scenarios with vaccination8. The Vaccine Impact Modelling Consortium (VIMC)9
11

was established in 2016, formally bringing together several modelling groups and a secretariat with a history of working12

together to estimate the impact of vaccines against ten pathogens, namely, Haemophilus influenzae type b (Hib), hepatitis B13

(HepB), human papillomavirus (HPV), Japanese encephalitis, measles, Neisseria meningitidis serogroup A (Meningitis A),14

rotavirus, rubella, Streptococcus pneumoniae and yellow fever (YF). Estimating the impact of vaccination is important as this15

reveals the effectiveness of current global vaccination strategies and whether any changes are needed.16

Calculating vaccine impact is complex as for some pathogens, such as HepB and HPV, the consequences due to disease17
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are not seen until long after infection. Thus, any vaccine impact is not immediately evident, but is still substantial leading to18

questions around how to appropriately attribute the impact of vaccination activities in order to inform the public and policy19

makers of their value. Vaccination activities also face a paradox as “vaccines are victims of their own success”10. For example,20

when the transmission of a fatal disease from an outbreak is prevented by vaccination, political and public support is assured.21

However, when vaccination is successful and the formerly-feared disease starts disappearing, the benefits of vaccination become22

less clear whilst the costs remain visible. As a consequence, public and political support may begin to decline. The benefits of23

the success of vaccination and control of diseases become less obvious with time, no longer being viewed with the same sense24

of urgency.25

Through mathematical modelling of vaccination scenarios, we can explore the impact of vaccination activities stratified by26

characteristics such as birth cohort. Mathematical modelling, such as that carried out by the VIMC, is able to provide estimates27

of disease burden in terms of the number of cases, deaths and/or disability adjusted life years (DALYs). DALYs measure the28

years of healthy life lost due to disability from the disease and premature death. Comparing burden estimates in scenarios with29

and without vaccination can then quantify the burden averted by vaccination. However, impact may be attributed in different30

ways, some of which may be more appropriate in some settings than others. For example, one may be interested in the effect31

of vaccination on a particular birth cohort, so the impact of vaccination activities over the lifespan of that cohort needs to be32

aggregated. In contrast, for advocacy, planning and financing, it is valuable to ascertain the impact attributable to a particular33

year’s vaccination activities.34

The VIMC uses vaccine coverage estimates from the World Health Organization (WHO), United Nations Children’s Fund35

(UNICEF) and Gavi, the Vaccine Alliance11–13. Due to changes and uncertainties in data on vaccination coverage, estimates of36

coverage are constantly refined and updated12, requiring estimates of vaccine impact to be recalculated accordingly. Whilst37

mathematical modelling of vaccine impact is vital to the process of the VIMC and ascertaining the effect of vaccination, it is38

not always feasible to conduct full model runs each time coverage is updated. As such, the VIMC secretariat has developed an39

impact extrapolation (IE) method whereby the impact ratio (impact per fully vaccinated person) from one modelling exercise40

can be applied to a new coverage scenario in order to extrapolate the impact calculation to the latest coverage estimates.41

In this paper, we describe the methods that have been implemented by the VIMC to calculate the vaccination impact by42

calendar year, birth year and year of vaccination (YoV). To show how these methods perform, we use examples from HepB,43

measles and YF. Further, we describe an IE method which facilitates the estimation of impact from new vaccination coverage44

scenarios without full model runs. This is an approximation of the model projections which, whilst informative, is not a45

replacement for full model estimation. The IE does, however, allow for new approximate estimates to be produced very quickly46

and we detail a number of approaches each with their strengths and weaknesses.47

Methods48

We detail a range of methods for calculating the impact of vaccination (D) defined as the burden averted for a given disease,49

country, year and, in some cases, birth cohort. Each method is used to address a specific point of interest, such as the number of50

lives saved by vaccination in a particular year (calendar year method), the number of individuals born in a particular year that51

will be saved due to vaccination (birth year method), and the number of individuals that will be saved due to a particular year’s52

vaccination activities (YoV methods). These usually involve the comparison of a focal scenario, the vaccination scenario we53

wish to assess, to a counterfactual or baseline scenario, which is the vaccination scenario we wish to compare against. We54

also detail the IE process and the scenarios carried out. All parameters and variables are defined in Table 1. A summary of the55

impact methods is shown in Table 3 and the impact ratios in Table 2.56

Parameter Definition Variable Definition
y Year Bb Burden in baseline/counterfactual scenario
Yv Years of vaccination B f Burden in focal scenario
Ym Years evaluated Db− f Difference or impact between baseline and focal scenarios (Bb−B f )
a Age FV P The number of fully vaccinated persons
Av Age at routine vaccination ρ Impact ratio (impact per FVP)
Am Ages modelled D Vaccine impact
c Country
v Vaccine
k Birth cohort

Table 1. Parameter and variable definitions
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Impact by calendar year (cross-sectional impact)57

The calendar year method calculates the impact accrued over all ages for a specific year. It is generally the most intuitive58

and frequently used method to calculate the impact of vaccination. In this case, the vaccine impact, Db− f (a,c,y), for age59

a, country c in year y is defined as the difference in disease burden between baseline and focal scenarios for a given year,60

Db− f (a,c,y) = Bb(a,c,y)−B f (a,c,y). Here, the baseline scenario can have no vaccination or different coverage to the61

focal scenario. Aggregating the impact over all ages modelled (Am) means the impact for a country c in year y is given by62

D(c,y) = ∑a∈Am Db− f (a,c,y). This does not account for the future disease burden averted through current vaccine activities.63

Impact by birth year (lifetime impact)64

The birth year method accounts for the long-term impact accrued over the lifetime of a particular birth cohort k. For country c,65

this is given by D(c,k) = ∑y−a=k Db− f (a,c,y), where y ∈ Ym and a ∈ Am. The duration of modelling needs to be appropriate to66

the pathogen of interest as in some cases, such as HepB, disease occurs later in life. For example, if we model vaccination for67

birth cohorts born from 2000 to 2030 and model disease burden until 2100, we do not account for the vaccine impact for those68

born in 2030 once they are over 70 years old. The method also does not specifically account for the impact of vaccinating a69

cohort outside the cohort vaccinated (e.g. because of herd protection).70

Impact by year of vaccination71

The YoV methods are vital for determining the long-term impact of vaccination due to activities carried out in a particular72

year. We obtain the impact ratio, ρ , as the impact attributable per fully vaccinated person (FVP) calculated as the coverage ×73

cohort size. This ratio can be stratified by different characteristics, such as birth cohort in order to catch temporal changes in74

transmission or healthcare or by activity type to capture the differing effects of routine and campaign vaccination (RV and75

CV, respectively); see Table 2 for details. The impact ratio allows effects due to a particular year’s worth of vaccination to be76

attributed to that year. Additionally, the impact ratio can then be projected with the IE method by updating the impact with a77

new estimate of FVPs; see impact extrapolation section for further details.78

No stratification: Vaccine impact does not vary between
vaccination activities or birth cohorts in a population.

Stratification by activity type: Vaccine impact varies be-
tween RV and CV but does not vary across birth cohorts.

ρ =
DR +DC

FVPR +FVPC
RV: ρR =

DR

FVPR
and CV: ρC =

DC

FVPC
Stratification by birth cohort: Vaccine impact varies across
birth cohorts in a population but does not vary between vacci-
nation activities.

Stratification by activity type and birth cohort: Vaccine
impact varies between vaccination activities and birth cohorts.

ρ(k) =
D(k)

FVP(k)
RV: ρR(k) =

DR(k)
FVPR(k)

and CV: ρC(k) =
DC(k)

FVPC(k)

Table 2. Stratifications of the impact ratios (ρ). Here, FVPR and FVPC denote fully vaccinated persons (FVPs) due to routine
(RV) or campaign vaccination activities (CV) only; DR and DC denote impact due to RV or CV only, D denotes impact from
both routine and campaign vaccinations, and k denotes a particular birth cohort.

Impact by year of vaccination: unstratified impact ratio79

The simplest approach to calculate the impact by YoV is with an unstratified impact ratio which assumes that the effect of a
vaccine is invariant over time and activity type. As such, the impact ratio, ρ , for a country, c, is the attributable vaccine impact
divided by the number of FVPs:

ρ(c) =
∑y−a∈Yv−Av DR(a,c,y)+∑y∈Ym ∑a∈Am DS(a,c,y)

∑y∈Yv FVPR(c,y)+∑y∈Yv FVPS(c,y)
, (1)

where Yv−Av refers to cohorts vaccinated in Yv through RV.80

Thus, the impact attributed to a year of vaccination is given by:

D(c,y) = ρ(c)×FVP(c,y). (2)

This method does not take into account any changes in treatment or transmission over time, nor the differing effects of81

vaccination through RV or CV.82
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Impact by year of vaccination: impact ratio stratified by activity type83

To calculate the impact by YoV using impact ratios stratified by activity type, we assume that RV and CV, which target multiple84

age groups, have different effects; for example due to dosage clustering. Hence, this method produces multiple, activity-specific85

impact ratios which can then be multiplied by the number of FVPs to calculate impact.86

For RV, the impact ratio is defined as the impact for all cohorts who are vaccinated over time period Yv per the additional
FVPs between the baseline and focal scenarios. The impact for RI, DR, is given by DbR− fR , where bR and fR are the baseline
and focal RI scenarios, respectively. Here, the impact ratio for RV is:

ρR(c) =
∑y−a∈Yv−Av DR(a,c,y)

∑y∈Yv FVPR(c,y)
, (3)

where Yv−Av are cohorts receiving vaccinations in years Yv. The impact by year of vaccination is then:

DR(c,y) = ρR(c)×FVPR(c,y), (4)

where FVPR are FVPs vaccinated through RV. This does not account for the impact generated by indirect effects from and to87

cohorts not eligible for routine vaccination in Yv, nor does it account for interactions between RV and CV that may occur during88

or before years Y − v.89

For CV, the impact ratio is averaged evenly over all ages across the entire time period (Ym). This is because we do not
attempt to predict future CV coverage after the final year of credible campaign schedules. Therefore, the only impact due
to CV comes from CV years Yv and all campaign impact for birth cohorts born after this period can be attributed back to
these vaccination years. The impact of CV, DC, is given by DbC− fC , where bC and fC are the baseline and focal CV scenarios,
respectively. The impact ratio is given by the following:

ρC(c) =
∑y∈Ym ∑a∈Am DC(a,c,y)

∑y∈Yv FVPC(c,y)
. (5)

The impact by year of vaccination is then given by the following:

DC(c,y) = ρC(c)×FVPC(c,y), (6)

where FVPC are FVPs vaccinated through CV.90

Again, this does not account for interactions with the level of routine coverage across or before the same years.91

The aggregated impact by YoV for both activities is the sum of the impact from RV and CV, i.e. sum of equations 4 and 6.92

Impact by year of vaccination: impact ratio stratified by birth cohort93

In this method the impact ratio is invariant to vaccination activity type. However, vaccine effect is assumed to vary over time
through birth cohorts. This means that rather than averaging the effect of vaccination over time, we account for the variation in
transmission and health of the population. This influences how one year’s vaccination may work compared to another. For
example, if therapeutic treatments for a disease improve over time, we may expect the impact of vaccination in 2050 to be less
than that now as the population is generally healthier. In this case, the impact ratio is cohort specific, given by the following
equations:

ρ(c,k) =
Db− f (c,k)
FVP(c,k)

, (7)

where k is the cohort defined by k = y−a and a ∈ Am. In order to find the impact attributed to one year of vaccination, all
cohort specific impacts for those cohorts vaccinated in the year of interest must be aggregated. The impact by YoV is then
given as follows:

D(c,y) = ∑
k

ρ(c,k)×FVP(c,k,y), (8)

Impact by year of vaccination: impact ratio stratified by both activity type and birth cohort94

In the above methods, we illustrate the potential ways the impact ratio could change between birth cohorts or by vaccination
activity. However, it is likely that in reality the impact varies with respect to both of these aspects. In the following method, we
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use the approach of the activity stratification over birth cohort to arrive at an impact ratio per birth cohort and activity. The
impact ratios by activity (R for RV; C for CV) are thus the following:

ρR(c,k) =
DR(c,k)

FVPR(c,k)
, (9)

ρC(c,k) =
DC(c,k)

FVPC(c,k)
. (10)

Therefore the impact by YoV is provided by the sum of the activity and cohort-specific components:

D(c,y) = DR(c,y)+DC(c,y)

= ∑
k

ρR(c,k)×FV PR(c,k,y)+∑
k

ρC(c,k)×FV PC(c,k,y). (11)

Note that in the above method the numerator may also be affected by vaccination activities experienced by cohorts around95

them, so not captured in the denominator. Hence the impact ratio could potentially be infinite.96

Summary of impact methods97

We summarise the key features of each vaccine impact method in Table 3.98

Method Definition Advantages Limitations
Calendar year Impact for a particular

year
Intuitive. Does not account for the long-term

impact of vaccination on individual
disease risk and cannot be linked to
specific vaccination activities.

Birth year Impact for a particular
birth cohort

Captures the long-term effects of vacci-
nation in protecting those vaccinated.

Duration of modelling needs to be
pathogen-appropriate, e.g. the ef-
fects of HepB require a longer mod-
elling time frame. Does not account
for inter-cohort effects (e.g. herd
protection).

Year of vacci-
nation (YoV)

Impact attributed to year
in which vaccination oc-
curred

Possible to assess the effects of a spe-
cific year’s activities and thus provide
a direct comparison of the number of
doses provided and their effect. This is
useful for planning and economic pur-
poses.

An impact ratio is required
which can be affected by the
years/activities or birth cohorts
included, see Table 2 for details.
Does not account for inter-cohort
effects (e.g. herd protection).

Table 3. Summary of methods used by the VIMC for calculating the impact of vaccination (refer to Tables 1–2 for parameter
values and for stratifications of the year of vaccination method, respectively).

Impact extrapolation99

As coverage estimates are frequently updated within the WHO/UNICEF Estimates of National Immunization Coverage100

(WUENIC) and Gavi’s Operational Forecast (OP)11–13, one of the vital VIMC tasks is to provide updated impact estimates to101

inform future RV and CV. Translating these coverage estimates into tangible estimates of vaccine impact in terms of mortality102

and morbidity averted is crucial. However, given the regular updates of vaccination coverage and due to the effort and time103

required for full model updates across the VIMC, a simplified process, the IE, has been developed to update past rounds of104

impact estimates with new coverage data.105

The IE is primarily a linear interpolation of current vaccine impact estimates with new coverage estimates assuming constant
country- and delivery strategy specific rates of mortality and morbidity averted per dose of vaccine. It can be applied to the
YoV methods as these provide us with an impact ratio (ρ in Table 2). Hence, when coverage is updated, the updated number
of FVPs can be calculated by multiplying the new coverage with the target population. The updated FVPs (FVP∗) are then
multiplied by the previously calculated ρ to calculate the updated impact (D∗):

D∗(c) = ρ(c)×FVP∗(c). (12)
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Models and vaccination scenarios106

As the burden in each vaccination scenario is calculated using mathematical models of pathogen transmission dynamics107

and implementation of vaccination activities, the impact of vaccination will vary depending on the underlying model being108

used. The models within the VIMC vary from being static, whereby the direct effects of vaccination on FVPs are modelled109

assuming that pathogen transmission intensity is not modified by vaccination coverage, to dynamic, whereby infectious disease110

transmission dynamics, direct effects of vaccination on FVPs and herd effects are modelled. Herd effects account for any111

indirect effects of immunity (both natural and/or from vaccination activities) due to a reduction in transmission. For example,112

an increase in FVPs offers indirect protection as it reduces the risk of a non-vaccinated individual coming into contact with the113

disease. Herd effects will not arise for all vaccine preventable diseases, for example, Japanese Encephalitis is vector-borne (i.e.114

not transmitted person-to-person) and the majority of cases are due to spillover events14. Hence in this case, FVPs will not115

provide protection to others.116

In this analysis, we focus on calculating impact estimates for HepB (dynamic model with long-term outcomes and herd117

effects), measles (dynamic model with short-term outcomes and herd effects) and YF (static model without herd effects)15–18.118

We use anonymised countries for each of the pathogens, denoted by Country A for HepB, Country B for measles and Country119

C for YF, with a focus on the years 2000–2017. Standardised demographic data (live births per year, death rates) are based on120

the 2017 United Nations World Population Prospects (UNWPP)19. Immunisation coverage from 1980 to 2016 corresponds to121

the WUENIC estimates of National Immunization Coverage as published in July 201712, and 2017–2030 coverage corresponds122

to Gavi’s October 2017 Operational forecast (OP)13, 15. Using each of the vaccine impact methods, we calculate the number of123

deaths averted due to vaccination over the years 2000–2017. Though we only show this for 2000–2017, we are taking into124

account the impact of vaccination activities from 2000 to 2030.125

We also investigate the performance of the IE under the YoV methods with no stratification, stratification by activity and126

cohort separately and in combination by applying it to HepB, measles and YF in Countries A, B and C with updated coverage127

data. More specifically, for each of these pathogens, we update RI coverage from 1980 to 2017 based on WUENIC estimates128

published in July 201812, and 2018–2030 routine and campaign coverage is updated to Gavi’s October 2018 OP13. Changing129

coverage of activities alters the number of FVPs (population demography and models remain the same). We then re-run the130

models with this updated coverage scenario and compare to the IE projections in order to determine the reliability of the IE.131

All of the analyses were carried out in R and the impact methods are available through the R package vimpact on github132

(https://github.com/vimc/vimpact)20.133

Results134

Estimates of the impact of vaccination135

From 2000 to 2017, HepB, measles and YF have different vaccination activities in each of the countries. We analyse the136

impact calculation methods for RV alone and in combination with CV. We find that the estimated impact of vaccination varies137

depending on the method used.138

There are only RV for HepB which are given as a birth dose (soon after birth) and as infant doses (<1 year old) (Fig.1A). As139

HepB-attributable mortality primarily affects those over 40 years of age, we find that the birth year method captures a greater140

impact as it accrues the long-term benefits of vaccination over the lifetime of birth cohorts. With the calendar year method141

accruing the impact for all ages over a particular year, this long-term impact is not captured (Fig.1B). Prior to 2013, YF has142

routine infant dose vaccinations (<1 year old) only with the calendar year method capturing slightly more impact (relative to143

HepB) as yellow fever largely affects those under 30 due to natural immunity acquired with age in older adults (Fig. 1A–1B).144

For measles from 2000–2017 in Country B, CV occur alongside RV. RV provides the first dose of a measles vaccine to145

those aged 1 or under (Fig.1A). As FVPs accumulate, the birth year and calendar year methods show an increasing number of146

deaths averted over time. In comparison to HepB where it is vital that the long-term benefits are captured, the calendar year147

method shows a high impact as measles-related mortality is focused in the under-5s (Fig.1B).148

The impact of vaccination estimated by the YoV methods varies over time with the activity stratification showing an149

averaged impact and the birth cohort stratification capturing gradual improvements in population health, particularly when herd150

effects are modelled. Hence, the activity stratification initially shows a higher number of deaths averted than the birth cohort151

stratification. Accordingly with RV only for HepB and prior to 2013 for YF, we see that the impact calculated by the activity152

stratification is greater as it is averaging the impact over all FVPs. The impact for the birth cohort stratification does not surpass153

the activity stratification within the time frame of this analysis for these two pathogens (Fig.1C). Notably for HepB, with RV154

occurring in the first year of life, the impact by year of vaccination and impact by birth year methods show a similar impact.155

For YF, there is one CV in 2013 which results in a peak in the deaths averted with the largest impact seen with the activity156

stratification. The birth cohort stratification shows a lower impact as this is the first campaign (Fig.1C). For measles, we see the157

same pattern for the first campaign but for subsequent campaigns we see a higher impact with the birth cohort stratification158

because it is capturing the overall improvement in population health. Furthermore, herd effects are modelled for measles which159
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Figure 1. Fully vaccinated persons (FVPs) and mean estimates of deaths averted for Hepatitis B (HepB) in Country A,
measles in Country B and yellow fever (YF) in Country C from 2000 to 2017. (A) FVPs for HepB birth dose (BD routine) and
infant dose (routine) routine vaccination activities. FVPs for first routine dose of a measles containing vaccine and measles
campaign activities. FVPs for YF routine and campaign activities. (B) Impact by calendar and birth year methods. (C) Impact
by year of vaccination (YoV) with impact ratio stratified by activity type and birth cohort.

contribute to the birth cohort stratification impact increasing as herd effects builds up reducing transmission in the population160

(Fig.1C).161

Performance of the impact extrapolation method with updated coverage compared to model estimates162

We explore the IE under the YoV methods with impact ratios stratified as per Table 2 for scenarios where vaccination coverage163

is updated from 2017 estimates to those published in 2018 (as described in Methods; change in FVPs shown in Figures 2A164

and 3A). The accuracy of the IE projections is determined by comparing to model estimates given the same updated coverage.165

Vaccine impact, i.e. deaths averted, by year of vaccination and by year of birth are visualised in Fig. 2 and Fig. 3, respectively,166

for Countries A, B and C over the years 2000–2017. The total relative difference in deaths averted over 2000–2017 between167

the IE and model estimates are shown in Table 4. We find that the accuracy of the IE varies depending on the impact ratio168

stratification method, underlying model dynamics and pathogen characteristics.169

Using impact ratios without stratification, the IE performs relatively well for HepB in comparison to measles and YF (Table170

4). As HepB only has RV, the activity type does not need to be taken into account. Furthermore, as this is given as a birth or171

infant dose, unstratified impact ratios would not capture variation in effect but this change would likely occur subtly over long172

time periods. Both RV and CV occur for measles and YF for which the IE with unstratified impact ratios underestimates the173

deaths averted due to the drop in coverage/FVPs in the 2018 coverage scenario prior to 2020 (Figs. 2A,B and 3A,B).174

The IE with impact ratios stratified by activity does not perform well for HepB relative to measles and YF as it overestimates175
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the impact associated with a change in coverage (Table 4; Figs. 2C and 3C). In the updated coverage scenario, HepB coverage176

improves over the years 2017–2022 creating more FVPs. With the activity stratification, this coverage improvement is being177

averaged over the whole time period. As such, earlier RV are artificially inflated. Additionally, as HepB-attributed disease178

occurs later in life, vaccinating more people born in later years will produce herd protection for those born over 2000–2017.179

For measles, the activity stratification viewed by year of vaccination performs well (Table 4; Figs. 2C and 3C). Similar180

to HepB, measles coverage for RV improves greatly post-2020 with the 2018 coverage scenario. However, the IE does not181

overestimate the impact of this in the same way as it did for HepB because measles is focused in the under-5s so creating more182

FVPs later on does not produce herd effects for the 2000–2017 birth cohorts.183

Using the activity stratification for YF, with changes to coverage, the IE works well with only a small underestimation of184

deaths averted (0.84%) by year of vaccination over 2000–2017 compared to model estimates (Fig. 2C) as it is a static model185

with no herd protection. However, there is larger underestimation of deaths averted (7.41%) by year of birth (Fig. 3C) as the186

FVPs vaccinated in the 2000–2017 birth cohorts is lower in the 2018 coverage scenario (Fig. 3A). Furthermore, compared187

to the unstratified impact ratio, the impact ratio for CV specifically is smaller and more sensitive to a reduction in FVPs. In188

contrast, the impact ratio for RV is larger than unstratified which accounts for the fact that RV will almost always be given to189

unvaccinated infants, as opposed to CV which, as dose distribution is assumed to be random, may revaccinate individuals who190

are already immune.191

Using the birth cohort stratification, the IE performs well for HepB but underestimates the number of deaths averted by year192

of vaccination and birth year under the updated coverage scenarios for measles and YF (Table 4; Figs. 2D and 3D). Although193

the 2018 coverage scenarios generally have higher coverage post-2020, the coverage drops prior to 2020 for measles and YF194

but for HepB it improves slightly (Figs. 2A and 3A). As the birth cohort stratification captures greater yearly variation, it does195

well for the smaller change in HepB coverage and shows a corresponding decline in impact for measles and YF as it is more196

sensitive to changes in coverage than the activity stratification. This captures a limitation of the birth cohort stratification as it197

assumes the impact from RV and CV will be similar when they could be distinctively affected by dose wastage i.e. a RV will198

almost always be given to a susceptible child whereas campaigns may vaccinate individuals who have already been vaccinated,199

thus non-intuitively having a smaller impact.200

Implementing the IE when stratifying by both activity and birth cohort results in the IE being sensitive to a combination201

of factors that affect the activity and birth cohort stratifications, such as the type of activities occurring, underlying model202

dynamics and yearly coverage changes. For measles and YF, this stratification captures a decline in coverage prior to 2020203

which does not occur for HepB. Additionally it captures any herd protection arising from post-2020 coverage improvements to204

varying extents (seen more for HepB than measles because of differing age dynamics; Table 4; Figs. 2E and 3E).205

When determining the accuracy of the IE, it is useful to look at both the relative total difference in deaths averted over206

2000–2017 between the IE and model estimates (Table 4), and the difference across each year (Fig. 2 and Fig. 3). Some of the207

under- and over-estimation of the IE that is seen across the years can cancel out when looking at the aggregated difference over208

the whole time period. As such, the IE performs well when looking at the total difference for no stratification viewed by year of209

birth for measles, the activity stratification viewed by year of birth for HepB and the birth cohort stratification viewed by year210

of vaccination for measles (Table 4). However, when focusing on the difference in a specific year, the IE is seen to under- and211

over-estimate in certain years (Fig. 3B, Fig. 3C and Fig. 2D).212

Overall, in our examples, we have shown that the IE works well and is an effective tool to update vaccine impacts. Notably,213

the activity stratification is accurate for static models with dose dependency but may overestimate the impact of coverage214

improvements when dynamic herd protection comes into play. The birth cohort stratification may underestimate impact if215

coverage declines before improving in later years.216

Caution needs to be taken when deciding the appropriateness of implementing an IE. In cases where coverage is reduced217

more drastically or an activity is delayed, if the pathogen poses a risk of outbreaks and the model is dynamic, the IE may not be218

accurate as it may miss capturing the impact of any outbreaks that may occur during this period. With larger delays to activities,219

the risks of the IE not capturing such outbreaks would rise. Additionally, if a follow-up activity cannot reach the individuals220

missed, using the IE may not be accurate. In such cases, new model runs would be required to provide updated estimates of221

vaccine impact.222
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Figure 2. Model estimates and impact extrapolation showing deaths averted by year of vaccination per year for hepatitis B
(HepB) in Country A, measles in Country B and yellow fever (YF) in Country C from 2000 to 2017 using 2017 coverage (2017
model), 2018 coverage with corresponding model estimates (2018 model), and 2018 coverage with the impact extrapolation
(2017–2018 IE). (A) Fully vaccinated persons (FVPs) in 2017 and 2018. (B) Impact by year of vaccination with unstratified
impact ratio. (C) Impact by year of vaccination with impact ratio stratified by activity type. (D) Impact by year of vaccination
with impact ratio stratified by birth cohort. (E) Impact by year of vaccination with impact ratio stratified by activity type and
birth cohort.
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Figure 3. Model estimates and impact extrapolation showing deaths averted by year of vaccination per birth year for hepatitis
B (HepB) in Country A, measles in Country B and yellow fever (YF) in Country C from 2000 to 2017 using 2017 coverage
(2017 model), 2018 coverage with corresponding model estimates (2018 model), and 2018 coverage with the impact
extrapolation (2017–2018 IE). (A) Fully vaccinated persons (FVPs) in 2017 and 2018. (B) Impact by year of birth with
unstratified impact ratio. (C) Impact by year of birth with impact ratio stratified by activity type. (D) Impact by year of birth
with impact ratio stratified by birth cohort. (E) Impact by year of birth with impact ratio stratified by activity type and birth
cohort.
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Disease and deaths
averted by YoV/YoB

No stratification Activity type stratifi-
cation

Birth cohort stratifica-
tion

Activity type and
birth cohort stratifica-
tion

HepB- YoV -0.86 7.24 0.40 0.30
HepB- YoB -4.12 -0.35 0.40 0.04
Measles- YoV -8.90 -0.76 -0.02 -0.81
Measles- YoB -0.51 -4.04 -4.34 -4.10
YF- YoV -12.16 -0.84 -8.80 -0.67
YF- YoB -10.37 -7.41 -8.62 -4.66

Table 4. Relative total difference of impact extrapolation (IE) to model estimates for deaths averted over 2000–2017 (%) by
year of vaccination (YoV) and year of birth (YoB) due to vaccination activities for hepatitis B (HepB) in Country A, measles in
Country B and yellow fever (YF) in Country C. Impact estimated by the year of vaccination stratification methods as shown in
Figures 2-3. Negative numbers correspond to the IE underestimating and positive numbers correspond to the IE overestimating
the number of deaths averted over 2000–2017.

Discussion223

We have presented the main methods used by VIMC to estimate vaccine impact (summarised in Table 3). We also have shown224

how these methods perform when providing an IE. Each of the methods differ and the appropriate method will depend on the225

perspective of interest.226

The vaccine impact methods primarily differ by how they attribute impact. The calendar year method attributes impact to227

the year examined irrespective of which age groups are targeted and when the vaccination occurred. In contrast, impact by birth228

year attributes impact to the birth cohorts of interest, irrespective of when the vaccination occurred over their lifespan. When229

only RIs occur in the first year of life, the impact by YoV and impact by birth year will be similar. However, when vaccination230

activities vary in who is targeted and when, the estimation of impact becomes complex.231

The two impact by YoV methods differ not in when they attribute impact but in the assumptions around how the effect of232

vaccination may change over time or by delivery method. The birth cohort stratification accounts for changes in transmission233

and healthcare over time, allowing the impact of vaccination to be adjusted given improvements in other interventions such as234

treatment or the effects of climate change on vector-borne diseases as seen for YF21, 22. The issue with this method is that it235

may be sensitive to the introduction of RIs or SIAs as these dictate the vaccination experience of cohorts to come, for example,236

a birth cohort born the year after a mass vaccination campaign should be well protected by the population vaccinated in that237

campaign. This characteristic is a strength in that it accounts for herd effects. However, the denominator for this method does238

not include vaccinations given to birth cohorts vaccinated outside the year of interest that might have an indirect (herd) effect239

on the birth cohort of interest. Furthermore, as the vaccination coverage, implementation and, arguably, demography are all240

subject to high degrees of uncertainty, this characteristic will also exacerbate any inaccuracies.241

The most accurate way to capture herd effects would be to repeatedly run the underlying mathematical models incrementally,242

i.e. starting with the baseline and adding vaccination of a single birth cohort, year and activity type with each iteration. This has243

the advantage of correctly attributing the full indirect impact of each additional set of vaccinations to the whole population. The244

disadvantage of this method is that it is computationally expensive.245

For computational and time efficiency, the IE is used by the VIMC to approximate the impact of vaccination given a new246

scenario around FVPs relative to the one modelled. This means that uncertainties in the modelling process are propagated into247

the IE. The update was developed in order to provide estimates on a short timescale given the latest available demographic and248

vaccination data. We show that impact by YoV methods perform well in many situations and given updates in coverage, each249

stratification would be appropriate for their related insights. However, there are limitations to the IE, particularly for diseases250

that pose a risk of outbreaks and that are modelled dynamically, if there are drastic changes to activities (e.g. coverage drops or251

delays to activities) as the IE may not account for rises in case numbers during such periods.252

The methods shown are not a complete set, and as further research questions develop, new methods for calculating vaccine253

impact will need to be incorporated. Though the YoV methods capture changes over time due to healthcare or transmission254

variation and the different effects of vaccination activity, they do not capture issues around vaccination and healthcare clustering255

which has been shown to be influential3, 23. An extension would be to account for the potential of re-vaccinating the same256

individuals each time, a method that could highlight and identify groups of zero-dose children and health equity24. Similarly,257

the current activity stratification allows us to further explore questions around vaccine delivery and health access. Finally,258

the results shown are presented nationally, whereas RIs and SIAs may be delivered sub-nationally, as well as the disease259

transmission and health access being spatially heterogeneous especially for large countries. As such, the next steps will be to260
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examine the sensitivity to these national assumptions and account for the spatial heterogeneity in vaccine impact.261

Whilst vaccination is one of the most effective interventions against infectious diseases, the specific implementation of262

vaccination requires substantial planning, support and financing. Calculating the public health impact of vaccination and263

understanding the different methods for doing so is vital. We have presented multiple methods to express the complex effects of264

vaccination which will continue to be developed for ever increasing questions around optimal vaccine use.265
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