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Abstract

Causal mediation analysis aims to investigate the mechanism linking an exposure and an
outcome. Dealing with the impact of unobserved confounders among the exposure, mediator
and outcome has always been an issue of great concern. Moreover, when multiple mediators
exigt, this causal pathway intertwines with other causal pathways, making it more difficult to
estimate of path-specific effects (PSES). In this article, we propose a method (PSE-MR) to
identify and estimate PSEs of an exposure on an outcome through multiple causally ordered
and non-ordered mediators using Mendelian Randomization, when there are unmeasured
confounders among the exposure, mediators and outcome. Additionally, PSE-MR can be used
when pleiotropy exists, and can be implemented using only summarized genetic data. We also
conducted ssimulations to evaluate the finite sample performances of our proposed estimators
in different scenarios. The results show that the causal estimates of PSES are almost unbiased
with good coverage and Type | error properties. We illustrate the utility of our method
through a study of exploring the mediation effects of lipids in the causal pathways from body
mass index to cardiovascular disease.

Key wor ds. mediation analysis, multiple mediators, causally ordered mediators, causally

non-ordered mediators, Mendelian randomization, summarized genetic data
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Author summary

A new method (PSE-MR) is proposed to identify and estimate PSEs of an exposure on an
outcome through multiple causally ordered and non-ordered mediators using summarized
genetic data, when there are unmeasured confounders among the exposure, mediators and
outcome. Lipids play important roles in the causal pathways from body mass index to

cardiovascular disease
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1 Introduction

Mediation analyses help to uncover the mechanisms underlying causal relationships between
an exposure and an outcome by using mediator variables [1]. In mediation analyses, the total
effect of an exposure on an outcome is partitioned into indirect and direct effects. Indirect
effects act through mediators of interest, whereas direct effects are determined by fixing the
mediator at a specified level. Estimating direct and indirect effects via existing methods
typically requires a stringent sequential ignorability assumption [2] that no unmeasured
confounders exist among the exposure, mediators and outcome [3]. However, this assumption
may not hold in practice and omitting important confounders will necessarily bias results [4].
When multiple intermediate variables (M; and M,) are involved in a study, three types of
mediators with respect to M; and M, may arise, as shown in Figure 1. In Figure 1A, M; is
conditionally independent of M, given the treatment (X) and measured covariates [5]. In
Figure 1B, M; and M, are not causally ordered because they are independent of each other,
conditional upon the treatment (X) and measured covariates [6]. In Figure 1C, mediators are
causally ordered, and M; is treated as a mediator-outcome confounder affected by the
treatment. If we are interested in the mediator M,, we get a two-way decomposition into an
indirect effect through M, and a direct effect (not through M,). Imai and Yamamoto [7]
proposed an approach for all the three types of mediators under a linear structural equation
model. Daniel et al. [8] consdered the finest possible decomposition of the total effect when

there are two causally ordered mediators, and evaluated each path-specific effect (PSE) under
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86 the counterfactual framework. Additionally, VanderWeele and Vansteelandt [9] regarded the
87 multiple mediators simultaneously as joint mediators, and defined the “joint” natural direct
88 and indirect effects as extensions of the usual two-way decomposition of the total effect using
89 regression-based approach and weighting approach. Several methods [10-16] have been
90 developed to relax the sequential ignorability assumption. However, none of them allowed for
91 the smultaneous existence of unmeasured confounders among the exposure, mediators and
92 theoutcome.
93 Menddian randomization (MR) analyses [17] using summarized data have recently
94  become popular due to the increase in public availability of suitable data in large sample sizes
95  from recently published genome-wide association studies[18]. For instance, Tikkanen E et al.
96  (2019) performed a two-sample MR to evaluate independent causal roles of body components
97  (fat-free mass and fat mass) on atrial fibrillation (AF) [19]. Firstly, univariate MR was used to
98 estimate the causal effect of fat-free mass on AF by leveraging genetic variants (instrumental
99 variables). Some genetic variants may be associated with both fat-free mass and fat mass,
100  which is problematic because fat mass is also associated with AF. These genetic variants are
101  invalid because they violate the assumption of exclusion restriction, since — they unlock the
102 pathway from genetic variants to AF not via fat-free mass. This phenomenon is called
103  horizontal pleiotropy, and fat mass is considered a pleiotropic trait [20]. In order to eliminate
104 the effect of pleiotropy on causal estimation, multivariable MR [21] was performed to

105 evauate the causal role of fat-free mass on AF independent of fat mass. Similarly, we can


https://doi.org/10.1101/2021.01.07.21249415
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2021.01.07.21249415; this version posted January 8, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

106  obtain the causal effect of fat mass on AF independent of fat-free mass.

107 Risk factors associated with genetic variants may not always be pleiotropic traits, rather
108  they may be mediators in the causal pathway from the exposure to the outcome (Figure 1D).
109 In this case, these genetic variants are still valid instruments and MR can be used for
110 mediation analysis. Burgess S et al. (2017) showed that total and direct effects in a single
111  mediator setting can be estimated by univariate and multivariable MR analyses, respectively
112 [22]. We will review thisin Section 2.1. In Section 2.2, we extend the analysis from a single
113  mediator setting to a multiple mediators setting (PSE-MR) for both causally ordered and
114  non-ordered mediators. Then in Section 3, we apply our method to estimate PSEs from body
115 massindex (BMI) to cardiovascular disease (CVD) through lipids mediators. In Section 4, we
116  conduct simulations to compare the performance of PSE-MR in different scenarios. Finally,
117 we discuss the methods and results of this study and its potential for application. R package
118 PSEMR for implementing PSE-MR IS provided in Github
119  (https://github.com/hhoulei/PSEMR).

120 2 Methods

121 Throughout, we let X, Y, M and G denote the exposure, outcome, mediator and genetic
122 variant, respectively. U denotes a set of baseline covariates and potential confounders of the
123  mediators, exposure and outcome relationships. We also let 6y, a1 and 61 denote the effect of
124 XonY,XonMandM onY, respectively. The subscript j (j = 1,..., J), denotes the j-th genetic

125 variant. Increasingly, MR analyses are implemented using summarized data on the
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126  associations of each genetic variant with the exposure, mediator and outcome, obtained from
127  linear regressions on non-overlapping data consortia. This included the beta-coefficients ( ,ij ,
128 B, By) and their standard errors (s( By, ), S&(f,,), S&( By, ))- If the exposure X or the
129  outcome Y is binary, then these summarized association estimates may be replaced with
130  association estimates (log(OR)) obtained from logistic regression.

131 Initially, we consider the indirect (through M) and direct (not through the above
132 mediators) effects of an exposure X on an outcome Y using genetic variants G. Then we
133  declare several assumptions. We assume all genetic variants are uncorrelated (not in linkage
134 disequilibrium). We also assume all variables are continuous, and relationships between
135  variables (the genetic associations with the exposure X, mediator M, and outcome Y, and the
136  causal effects of X and M on Y as well as X on the M) are linear with homogeneity across the
137  population. In other words, interactions between the exposure (X) and mediator (M) are not
138  alowed unless individual data is available. We also assume that the consistency and
139  composition assumptions in causal mediation analyses hold [24] (see S1 Appendix, Section
140 1). Note that we relax the assumption of no unmeasured confounders among the exposure X,
141  mediator M, and outcome'Y, which isrequired in most studies.

142 2.1 PSE-MR in one mediator setting

143 In a single mediator setting (Figure 1D), a vaid instrumental variable G; must satisfy the
144 following three assumptions:

145 Assumption I. For each j(j=1,..,,J), the instrumental variable G; is associated with the
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146  exposure X.

147 This assumption requires that G; should be strongly associated with X, otherwise,
148  weak instrumental variable bias will exist [25]. The “rule of thumb” advocates that the F
149  statistic of each instrumental variable should be at least 10 to avoid this bias [26-27] (see S1
150 Appendix, Section 2.3).

151 Assumption Il. For each j(j=1..,J), G, LU, and these three unmeasured confounders

152  satisfy the following criteria:

153 1) Thereisno additive X —U interactionon M and Y.

154 2) Thereisno additive M —U interactionon'Y.

155 3) Thereisno confounders of M-Y relationship induced by X..

156 In this assumption, we posit that there is no confounders of M-Y relationship induced by

157 X, nor any interactions between X (or M) and these confounders [17]. When the interactions
158 between M and U exigt, the direct effect of X on Y can be identified (see S1 Appendix,

159  Section 4). Swanson S and VanderWeele T [28] suggested that the E-value can be used to

160  examinethe independence between G, and U, that is, to evaluate the sensitivity of estimates
161  to confounders between G; and Y (see S1 Appendix, Section 5).

162 Assumption Ill. Foreach j(j=1..,J), G, LY [(X,U),G, LM [(X,U).

163 This assumption means that there is no pleiotropy. In other words, G; must affect Y
164 through X, and the pathways G, >M —Y or G; —»Y (not via X) are not allowed. We

165 examine and relax thisassumption in Section 2.1.2.
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166 2.1.1 PSE-MR based on IVW (PSE-1VW)

167 For each j(j=1..,J), we do not alow for direct effects between G, and M (,,=0) as
168 well as G, and Y (,=0) (Figure 1D). Based on above three assumptions, the
169  inverse-variance weighting method (IVW) can provide an estimate of thetotal effect & of
170  XonY by the following weighted regression with the intercept set to zero

171 By =6:B +y, & ~N(0,5(5,)*). 1)
172 The total effect 6, between X and Y can be decomposed into a direct effect
173 (6,=6, +6, =0, x 6, +6,) and an indirect effect via M.

174 Under the framework of multivariable MR, the weighted regression model can be
175  expanded by including genetic associations with the mediator

176 By = 0By + 06,8y + &0, €6~ N(0,58(5,)) @
177 where éo provides an estimate of the direct effect 6, . The indirect effect 6, of exposure
178  on the outcome can be calculated as 6,=6; —6, (difference indirect effect). It is equivalent
179  to 6,=o;xd, (product indirect effect), where &, can be estimated by equation (2) and ¢
180  can be estimated by the following weighted regression with the intercept set to zero

181 IBMj :alBXj T Em T N (0’ Se('BMJ)Z)' @)

182 The standard error of the difference and product indirect el ects are presented in S1 Appendix,

183 Section 5. The total effect can also be estimated from individual-level data using the
184 two-stage least squares (2SLS) method. The direct effect can also be estimated using 2SLS by
185

regressing the outcome on fitted values of the exposure, and further on fitted values of the

10
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18 mediator [22].

187 2.1.2 PSE-MR of asingle mediator based on MR-Egger (PSE-Egger)

188 The method proposed by Burgess et al. (2017) has some limitations. This method cannot
189  beused if Assumption Il is violated, that is, direct effects of G, on M (M simultaneously
190  playsthe role of a pleiotropic trait) or G; on Y (pleiotropic pathway) exist. Thus, we relax
191 the Assumption Il by allowing for direct effects between G; and M (3;; #0) as well as
192 G, and Y (3, #0) (Figure 1D). Without the limitation of intercept set to zero, the causal
193  effect of X on Y can be obtained by MR-Egger regression. To satisfy the InSIDE assumption
194  [23] for MR-Egger, we require

195 By L %oy L7y (4)
196  Thetotal effect 8, can be estimated by the following weighted linear regression

197 By=re +6 By + ey, £5 ~N(0.se(4,)?). (5)
198 & can also be decomposed into the direct effect 6, =6, and the product indirect effect 6,
199 where 6, can be obtained by multivariable MR-Egger regression:

200 By =Ty + OBy + 6By + €0y, €5 ~N(O, Se(/;’vj)z)_ ©
201  Theintercept term %, that differsfrom zeroisan indicator of direct effect between G, and
202 Y, whichiscalled directional pleiotropy. For product indirect effect 6, &, can be estimated
203 by above equation (6), and o; can also be obtained by the following multivariable
204 MR-Egger regression:

205 Bu=ry+fy +€y, &y ~N(0.58(5,)) (7

11


https://doi.org/10.1101/2021.01.07.21249415
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2021.01.07.21249415; this version posted January 8, 2021. The copyright holder for this preprint

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

It is made available under a CC-BY-NC-ND 4.0 International license .

where 7, that differs from zero is an indicator of direct effect between G, and M. The
estimation of standard error for difference and product indirect effect is presented in the S1
Appendix.
2.2 Extending PSE-MR to multiple mediators setting
In this section, we extend the PSE-MR method to a multiple mediators setting. If there are n
mediators M;,M,,...,M, in the causal pathway from X to Y, PSEs can be identified. In the
multiple mediators setting, we consider two relationships among mediators. causally
non-ordered and causally ordered, respectively. In both cases, a valid instrumental variable
must satisfy Assumption | mentioned in Section 2.1, and the following Assumption II" and
III", which extend from the Assumption 1l and III.
Assumption II'. For each i, j(i=1,..,n,j=1..,J), G, LU.

1) Thereisno additive X —-U interaction on M; and Y.

2) Thereisno additive M, —U interactiononY.

3) Thereisno confoundersof M, —-Y relationship induced by X.
Assumption III". Foreach i,j(i=1...nj=1..,J), G, LY [(X,U),G, LM, [(X,U).
The illustrations and examinations for Assumptions Il and Il can also be extended to the
multiple mediators setting.
2.2.1 PSE-MR for causally non-ordered mediator s
Firstly, we consider causally non-ordered mediators (Figure 2A, B), where n mediators are

independent of each other, conditional on X. Total effect €. can aso be estimated by

12
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226 equation (1). The direct effect (6,=6,) and product indirect effect 9|p=2045i can be

i=1

227  estimated by the following weighted regressions with the intercept set to zero:

228 B=YA+e, £~N(0,3), X=diag(se(B,)’ se(By,)" 5By ;)?) ®
Yl re a6 ] | P] el
B, o 0 0 0 P &,

229  where B= ,BMZJ. WY=la, 0 O 0|, A= ,BMJ_ ,€=| &, |. These estimations can
'BMnj L& 00 - 0] _,anj_ &0

230  also be obtained from individual-level datausing 2SL S method.

231 Similarly, we relax Assumption [lI" by alowing for the direct effect between the

232 ingtrumental variable G; and mediators M (%, %5, ---» %), aswell as G, and Y (%, #0)
233 (Figure 2B). Under the InSIDE assumption B, L7, L7, L...Ly,; L7, the total effect
234 @ can aso be estimated by equation (5). The direct effect (6,=6,) and product indirect
235  effect (6) can aso be estimated by the following linear regression equations:

236 B=y+¥A+e, £~N(0,T), ==diag(se(B,)* se(B,,)% (B, )2 (9
237 where y=|% % Yy v Yy T. Intercept terms 3, and % (i=1..,n) that differ
238 from zero are indicators of direct effect between G, and Y, as well as G, and M,,
239  respectively. Detailed theoretical derivations are presented in S1 Appendix, section 3.

240 2.2.2PSE-MR for causally ordered mediators

241 When all the mediators are causally ordered (Figure 2C, D), we let r,, denote the direct

242 effectof M on M,,p,qe(12,..,n),p#q. Thetota effect & can also be estimated by

13
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243 equation (5). The direct effect (6,=6,) and product indirect effect

oan (10)

+"'+.Z Z O 4 RN o (PR o)

245  can be estimated by the weighted regressions in equation (8) and (9) by substituting ¥* for

246 Y, where

b o O S,

o 0 0 0
247 WY=|g, 1, 0 - O

_an r In r 2n O |

248 Thecausal effect r, from M to M, p,de(12,..,n),p#q canbeidentified. Details of
249  theoretical derivation are presented in S1 Appendix, section 3. In practice, we can use
250 Menddian randomization to justify the causal direction of any two mediators. Then we
251  combine the results of causal relationships of any two mediators to obtain the ordering of
252 multiple mediators.

253 3 Application

254  We attempted to reveal the causal mechanism from body mass index (BM1) to cardiovascular
255  disease (CVD) as anillustrative example. CV D, which includes coronary heart disease, stroke
256  and heart failure, is the leading cause of death worldwide [29]. High BMI is an important risk
257  factor of CVD [30]. Furthermore, dyslipidaemia in obesity is characterized by increased
258 levels of very low density lipoprotein (VLDL) cholesteral, triacylglycerols (TG) and total

259 cholesterol (TC), and lower high density lipoprotein (HDL) cholesterol levels levels [31].
14
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260  Previous studies suggested that a variety of alterationsin cardiac structure and function occur
261 intheindividual as adipose tissue accumulates excessively [32]. However, Van Gaal LF et al.
262 found little evidence that LDL cholesterol is enhanced in obesity [31]. Hence, we aim to
263  examine whether BMI affects CVD through itsinfluence on HDL and TG.

264 Genetic associations with BMI in 694,649 participants from European were obtained
265  from the Genetic Investigation of ANthropometric Traits (GIANT) [33]. Genetic associations
266 with TG and HDL in 188,577 participants were obtained from the Global Lipids Genetics
267  Consortium (GLGC) [34]. Genetic associations with CVD risk in 22,233 cases and 64,762
268  controls of European descent were obtained from the CARDIOGRAMplusC4D Consortium
269 [35]. We identified 285 single-nucleotide polymorphisms (SNPs) associated with BMI as a
270  genetic instrument with F statistics greater than 10 (explaining 2.89% of exposure variance),
271 by extracting the effect sizes for SNP associated with BMI (P <5x107°) from summary
272  datistics. As the extracted SNPs for BMI might be correlated with each other, we pruned the
273 variants by linkage disequilibrium (LD) (r? <0.01, clumping window = 10000 kbp). Then
274  we tested whether these SNPs violate the exclusion restriction assumption. Firstly we plotted
275  funnel plot (Figure 3) and found three SNPs were outliers. After removing them, the funnel
276  plots were more symmetric. The Egger test revealed no significant effects of the mediators,
277 HDL (P = 0.204), TG (P = 0.349) and the outcome CVD (P = 0.071). These results indicate
278  the absence of directional pleiotropy. Details of the SNPs are listed in S1 Appendix.

279 Firstly, we performed a single mediator analysis for the mediators (HDL and TG) via
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280 PSE-MR. Table 1 suggests TG and HDL are mediators in the causal pathway from BMI to
281  CVD. Then we performed PSE-MR analysis with multiple mediators to test whether BMI has
282  indirect effects on CVD risk through HDL and TG. Although a higher BMI increase the risk
283 of CVD, no significant direct effect was obtained after adjusting for genetic associations with
284 TG and HDL. Indirect effects through TG and HDL explained a large proportion of causal
285  effect from BMI to CVD, and their total mediation proportion (MP) is 93.44%. In conclusion,
286  three pathways exist from BMI to CVD: BMI-HDL-CVD (MP: 27.1% [17.1, 38.2]), BMI-
287 TG-CVD (MP: 24.9% [16.3, 34.7]) and BMI-TG~HDL—~CVD (MP; 23.7% [2.5, 49.3)).
288  These results (Figure 4) are consistent with results from a pooled analysis of 97 prospective
289  cohorts with 1.8 million participants [37] and previously described biological mechanisms
200  [36, 39].

201 4 Simulation

292 4.1 Settings

293  To validate the utility of the PSE-MR method for estimating PSEs, we designed six scenarios:
294  when Assumption Il is satisfied (PSE-IVW) or violated (PSE-Egger) for settings with one
295 mediator (ssmulations A, B), multiple causally non-ordered (smulation C, D) and multiple
296  causally ordered mediators (smulation E, F).

297 We generated data on 25 genetic variants, an exposure (X), mediators (M), and outcome
208 () for 20,000 individuals. Briefly, we specified different values of the parameters 6, (the

299  direct effect of X on Y) and 6, (the indirect effect of X on M) to observe performances of
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300 our methods. According to the specification of 8, and 6, , smulationsfrom A to F included
301 four settings. no direct effect, no indirect effect, a direct effect along with a directionally
302  concordant indirect effect, and a direct effect and a directionally discordant indirect effect.
303 For PSE-Egger, the data were simulated to consider the following three cases:

304 Case (a): Balanced pleiotropy, INSIDE assumption satisfied;

305 Case(b): Directional pleiotropy, InSIDE assumption satisfied;

306 Case (c): Directional pleiotropy, InSIDE assumption not satisfied.

307 We also performed additional simulations for sensitivity analyses, where bidirectional
308 causal effects between the exposure and mediators, population homogeneity assumption is
309 violated, the causal order is misspecified and one of the mediatorsis missing. In addition, we
310 also consider the performance of PSE-MR when the exposure and outcome are time varying.
311  We aso find the optima number of genetic variants when we consider multiple mediators.
312  Details of the smulation are presented in S2 Appendix.

313 We used the following metrics to evaluate performance of our methods. mean bias,
314  standard errors (SE), mean square error (MSE), type | error rate for a null causal effect and
315 empirical power to detect a non-null effect (i.e., the proportion of confidence intervals
316  excluding zero).

317 4.2 Results

318  We varied the sample size, the number of instrumental variables, and simulated four scenarios

319 for different sets of parameter values. We found that causal estimates of direct and indirect
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320 effects were unbiased with good Type | error properties. As the sample size increased, bias
321 and standard errors decreased, while power improved. Higher power and lower bias were
322  observed as the number of instrumental variables increased (see S2 Appendix, Section 1, 3
323 andb).

324 For two non-ordered mediators, PSE-1VW showed good performance of in standard MR
325  when estimating the total, direct and indirect effects as well as three PSEs (Table 2). As the
326 sample size and the number of genetic variants increased, the bias was smaller and the type |
327  error was more stable at approximately 0.05 (see S2 Appendix, Section 3). The performance
328 of PSE-MR based on IVW and MR-Egger with two non-ordered mediators in Case (a) and
329 (b), arelisted in eTables 9 to12 (see S2 Appendix, section 4). In Case (a), we observed that
330 thebiaswas closeto zero and Type | error rates was around 0.05 in PSE-MR. PSE-Egger had
331 less bias and more stable Type | error rates than IVW when directional pleiotropy existed in
332 at least one pathway from G to Y (Case (b)). MR-Egger performed better than IVW in term of
333 bias, even when the InSIDE assumption was not satisfied (Case (c)). When the pleiotropic
334  effects through confounders (violating the INSIDE assumption) were 2.5 times larger than the
335 direct pleiotropic effects (satisfying INnSIDE), estimates from PSE-Egger were much less
336 biased and rgjection rates of the causal null hypothesis were much closer to the nominal 5%
337 rate than those from PSE-IVW were. In all cases, PSE-Egger had smaller MSE and more
338 stable Type | error rates (0.05) than PSE-1VW when the PSE was zero. Estimators of indirect

339 effects based on product method had more stable Type | error rates (0.05) than those based on
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340 thedifference method. Results for the two ordered multiple mediators were similar to those of
341 two non-ordered mediators (Table 3 and eTables 17-24 in S2 Appendix, section 6). In
342 addition, the magnitude of r,, does not influence the performances of PSE-MR. Details are
343  presented in eTable 15 (see S2 Appendix, section 5).

344 The estimation of direct effect is unbiased regardless of whether bidirectional causal
345  effects between exposure and mediators exist, or the causal order is misspecified, though the
346  estimation of PSEs is biased. Heterogeneous populations sometimes introduce bias of causal
347 estimation for non-ordered and ordered mediators. Note that if we are missing upstream
348  mediators (e.g. M), M; isthe confounder of M, and Y and it is affected by X (i.e. X—induced
349  unmeasured confounder of M, and Y). Thus the assumption of cross-world independence is
350 violated. In addition, if we can obtain the information in each time points, PSE-MR can be
351 applied into time varying exposure and mediators and it can also deal with the bi-directional
352 relationship between exposure and mediators (see S1 Appendix, section 7-13). Performance
353  of PSE-MR with different number of SNPs and mediators are listed in the eTable 41-42 and
354  eFigure9-10.

355 5 Discussion

356 In this paper, we develop a method PSE-MR to identify and estimate PSES from an exposure
357 on an outcome through the mediator(s) using MR when there are unmeasured confounders
358 among the exposure, mediators and the outcome. We extend PSE-MR from a single mediator

359  setting to the multiple mediator setting for both causally ordered and non-ordered mediators,
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360 and outline the assumptions required to obtain causal effect. PSE-IVW can be used to explore
361 therole of multiple mediatorsin the causal pathways between the exposure and outcome. The
362 PSE-Egger can be viewed as a sensitivity analysis to provide robustness against both
363 measured and unmeasured pleiotropy and to strengthen the evidence from the PSE-IVW
364 analyss.

365 PSE-MR can estimate the direct effects between the exposure and outcome and indirect
366 effects through mediators when the sequential ignorability assumption [39] in mediation
367 analyses is relaxed. We compared the assumptions of PSE-MR with traditional mediation
368 analysis methods in Table 4. Our method requires other independent assumptions. While
369 Assumptions | and Il aretestable, thereis no accepted method to test for the Assumption |l.
370  Severa sensitivity analyses can be performed to examine this assumption, such as the
371 E-value [28] and heterogeneity test. The validity of multiple mediators PSE-Egger and its
372 ability to estimate consistent causal effects rely on the InSIDE assumption [21] being
373  satisfied. When the direct genetic associations with the exposure are independent of the direct
374  genetic associations with mediators and outcome, the InSIDE assumption is satisfied.
375  Whereas the InSIDE assumption is plausible in some cases, it sometimes will not always be
376  valid. For example, heterogeneous populations and misspecification of the multiple mediators
377 would bias the mediation effect estimation. When %, is not independent from each other or
378  7,; is not independent with %, for k = 1,..,n (eg. we are mising one of multiple
379 mediators), the direct effect is downward-biased and the indirect effect is upward-biased.

20


https://doi.org/10.1101/2021.01.07.21249415
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2021.01.07.21249415; this version posted January 8, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

380  According to our smulation, we find that PSE-1IVW is more robust in estimating causal effect
381 than PSE-Egger for heterogeneous populations and misspecified multiple mediators.
382  However, PSE-Egger can be applied to test directional pleiotropy, and it can give less biased
383  estimates when the InSIDE assumption is violated.

384 For the multiple causally ordered mediator settings, PSE-MR can be widely used in
385 time-varying exposure and mediators. Labrecque and Swanson (2019) [40] suggested that if
386 the genetic associations of the exposure and mediators were time-varying, the lifetime effect
387 estimate could be biased if we obtained the information of the exposure and mediators only at
388  one time point. However, if we can obtain the information of the exposure and mediators at
389 different time points, PSE-MR can provide unbiased estimates of the lifetime effects of the
390 exposure and mediators on the outcome and other PSEs (see S2 Appendix, section 9). Thus
391 PSE-MR can estimate each PSEs, including the causal relationships (which may potentially
392  bebi-directional) in a non-experimental setting.

393 In conclusion, we propose a method of causal mediation analysis with causally ordered
394  and non-ordered mediators based on summarized genetic data and provides a new perspective

395 for mediation analysis.
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Table 1. Causal effect of each pathway between BMI and CVD

VW MR-Egger
OR[95% ClI] Power OR[95% ClI] Power
Total effect 1.216[1.034,1.431] 1 1.772[1.208,2.600] 1
Direct effect 1.013[0.850,1.208] - 1.391[0.945,2.048] -
BMI-HDL-CVD 1.054[1.034,1.101] 0.97 1.097[1.040,1.125] 1
BMI-TG-CVD 1.050[1.033,1.096] 0.97 1.068[1.027,1.137] 1
BMI-TG-HDL-CVD  1.047[1.005,1.101] 0.7 1.052[1.000,1.125] 0.8

BMI: body mass index; CVD: cardiovascular disease; TG: triacylglycerols; HDL: high density lipoprotein; LDL: low density lipoprotein.
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Table 2. Simulation of PSE-IVW with two non-ordered mediators in standard MR g%

True Estimates MSE Power/Type | error 3-;
TE DE IE IE1 IE2| TE DE IEd IEp IEl IE2 | TE DE IEd IEp IEl IE2| TE DE IEd IEp IEL 1(gg_lEz
16 08 08 05 03|161 075 08 08 053 032|000 000 001 001 000 000|100 100 100 1.00 1.0@ §1.00
06 08 -02 -05 03|060 075 -015 -015 -047 032|000 000 001 00l 000 000|100 100 026 0.29 1.00331.00
07 05 02 05 -03|070 045 025 025 054 -029|000 000 001 001 000 000|100 100 074 0.75 1.0@ %‘1.00
-03 05 -08 -05 -03|-030 046 -076 -0.76 -047 -028 | 000 000 001 001 O0.00 000|100 100 100 1.00 1.0@ 51.00
0O -08 08 05 03|001 -08 08 08 053 032 |00l 000 001 001 000 000|007 100 1.00 1.00 1,9(8 %1.00
-16 -08 -08 -05 -03|-160 -08 -076 -0.76 -047 -029 | 000 000 001 001 O0.00 000|100 100 100 1.00 1.;8@- 51.00
0.8 0 08 05 03|08 -004 08 08 053 032|000 000 001 001 000 000|100 000 100 100 1.§OU; §l 00
13 08 05 05 131 075 055 055 054 002|000 000 00L 001 000 000|100 1.00 1.00 1.00 1.?@0? go.oo
13 08 05 05 131 077 054 054 054 000|000 000 001 001 000 000|100 100 100 1.00 1?@ :‘ED.O7
08 0.8 0 0 0 08 075 005 005 003 002|000 000 000 000 000 000|100 100 O0.00 0.02 Oéé Z‘.:D.Ol

25

TE: total effect; DE: direct effect; |E: indirect effect; IEL: X—>M1-Y; IE2: X=>My-Y; |E d:

method.
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Table 3. Simulation of PSE-IVW with two ordered mediators in standard MR = Z
True Estimates MSE g-EPowerﬂ' ypel error
TE DE |IE IE1 IE2 IE3| TE DE IEd IEp IE1 IE2 1E3 TE DE IEd IEp IE1l IE2 |IE3 | TE DEg'(g;D_E_d IEp IE1 IE2 |IE3
18 08 1 05 03 02|18 075 106 106 052 028 025 |00L 000 001 001 000 002 002|100 1002 g 00 100 097 064 062
08 08 0O -05 03 02|08 075 005 005 -048 029 024 | 000 000 001 001 000 0.02 0.02] 1.00 1.00%_?.01 0.00 1.00 0.70 0.60
12 08 04 05 -03 02120 075 045 045 054 -026 016 |0.01 OO0 001 001 001 0.01 0.01] 1.00 1.00% S%.98 072 100 069 041
02 08 -06 -05 -03 02| 020 076 -056 -056 -046 -025 016 |000 000 001 001 000 001 0.01]|o0.97 1.00§ S;‘l.OO 100 100 0.68 0.38
02 -08 1 05 03 02022 -084 105 106 052 029 025|001 000 001 001 000 002 0.02]|071 1.6_6_)% %.OO 100 100 0.67 0.62
-18 -08 -1 -05 -03 -02|-18 -08 -09% -09 -048 -025 -023|001 000 001 001 000 0.02 0.01] 1.00 1.%- E‘LOO 100 100 0.66 0.64
1 0 1 05 03 02| 100 -005 105 105 052 029 025|001 000 001 0.01 0.00 002 0.02]| 100 O.@O% §.00 100 099 0.67 061
13 08 05 0 03 02| 131 075 05 05 002 029 025|000 000 001 001 0.00 002 0.02]| 100 1.@3% 5..00 0.89 0.00 0.67 0.62
15 08 07 05 0 02| 151 077 074 074 052 -003 025|001 000 001 001 000 0.02 0.02] 100 1.@0% :5..00 097 099 007 061
1 08 02 0 0 02 | 101 077 024 024 002 -003 025|000 000 001 001 000 002 0.02]|1.00 1.@02-\1 @.41 0.01 0.00 0.08 0.61
0 -1 1 05 03 02| 001 -105 106 106 052 029 025|001 000 001 001 0.00 002 0.02|0.05 1@)% g.OO 100 100 0.69 0.62
O
TE: total effect; DE: direct effect; 1E: indirect effect; IEL: X->M1-Y; IE2: X->My-Y; IE3: X->M;—»My-Y; IE_d: indirect effect cdculated%%%ifference method; 1E_p: indirect effect

calculated by product method.
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3
Table 4. Comparison of the assumption in PSE-MR and typical causal mediation analysis g%
Methods PSE-MR Typical causal mediation analysis Solution for \ééaﬂ ng assumptions
(1) Consistency assumption: M(x)=M and Y(X)=Y if X=x; Y(x,m)=Y if X=x, M=m. éé
(2) Composition assumption: Y(X)=Y(x,M(x)) if X=x. ;g
Common | (3) A cross-world independence assumption: Y (x,m) L M (x*)|C for all (x, x*, m). [10] [44] [45]%%1]
(4) Thereis no additive interaction of the exposure and the mediators on the outcome (Y). [10] [46] [4§]§ :9]
(5) Linearity. [10] [47] éég
(1) The IV q is associated with the | (1) No-unmeasured confounders of the X-Y | [10] [15] %;ég
exposure X but independent of all the relation, thatis, Y(x,m) L X |C foral (x,m). g%%
unmeasured confounders. ?ﬁgg
(2) The Exclusion restriction assumption | (2) No-unmeasured confounders of the M-Y | [10] [11] [1@]%[@3] [14] [15][16]
or the InSIDE assumption. relation, that is, Y(x,m)LM(x)|X =x,C %;IE
for al (x,m). g%%
Different (3) There is no additive interaction of the | (3) No-unmeasured confounders of the X-M | [10] [15] 5%%
exposure or the mediators and confounders | relation, that is, M (x) L X |C foral x. %%
on the mediator (M) and the outcome (Y). 58%
(4) Data for exposure, mediators and | (4) Data for exposure, mediators and outcome §§§
outcome can from different datasets with | must from the same dataset. f?_,g
homogeneous popul ation. E%
(5) Exposure, mediators and confounders not | [51] [52] [53]%%
vary with time. é %
33 éé
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Figurelegends

Figure 1. Three types of settings with two mediators, M; and M, are shown in (A) where M,
is independent of My; (B) where M is related to My, but not causally; and (C) where M is
causally related to M, (causally-ordered mediators). Graphical diagrams for PSE-MR are
given in settings with one mediator (D), two non-ordered mediators (E), and two ordered
mediators (F). X: the exposure, M; and My two mediators, Y: outcome, G: instrumental
variables (genetic variants).

Figure 2. Graphical diagrams of relationships between the exposure (X), causaly
non-ordered mediators (M, ..., M,), outcome (Y), and instrumental variables (G), which
omits the confounders among X, M and Y, are shown as analyzed with (A) PSE-IVW and (B)
PSE-Egger. Graphical diagrams of relationships between exposure (X), causally ordered
mediators (Mi, ..., My), outcome (Y), and instrumental variables (G), which omits the
confounders (U) among X, My, ..., M, and Y are shown, as analyzed with (C) PSE-IVW and
(D) PSE-Egger.

Figure 3. Funnel plots before (A-D) and after (E-H) removing outliers.

Figure 4. Diagrams of the causal pathway from BMI to CVD. BMI, body mass index; CVD,
cardiovascular disease; TG, triacylglycerol; HDL, high-density lipoprotein.
Supplementary Digital Content

S1 Appendix. Supplemental methods.

S2 Appendix. Supplemental simulations.
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16 BMI->HDL-—CVD
OR: 1.054[1.034,1.101]
MP: 27.1% [17.1, 38.2])

BMI—-TG—CVD
HDI OR: 1.050[1.033,1.096]
MP: 24.9% [16.3, 34.7]

BMI—-1TG—HDL—CVD

¢ : i ) OR: 1.047[1.005,1.101]
BMI(X) — CVD(Y) | ™P:23.7%[2.5, 49.3]
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