
Burden is in the eye of the beholder: 
Sensitivity of yellow fever disease burden estimates to modeling assumptions 

 
T. Alex Perkins*, John H. Huber, Quan Tran Minh, Rachel J. Oidtman, 

Magdalene K. Walters, Amir S. Siraj, Sean M. Moore 
 

Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame 
Notre Dame, IN USA 

 
*Correspondence: taperkins@nd.edu 

 
ABSTRACT 
 
Geographically stratified estimates of disease burden play an important role in setting priorities 
for the management of different diseases and for targeting interventions against a single 
disease. Such estimates involve numerous assumptions, which uncertainty about is not always 
well accounted for. We developed a framework for estimating the burden of yellow fever in 
Africa and evaluated its sensitivity to assumptions about the interpretation of serological data 
and choice of regression model. We addressed the latter with an ensemble approach, and we 
found that the former resulted in a nearly twentyfold difference in burden estimates (range of 
central estimates: 8.4x10 ​4​-1.5x10 ​6​ deaths in 2021-2030). Even so, statistical uncertainty made 
even greater contributions to variance in burden estimates (87%). Combined with estimates that 
most infections go unreported (range of 95% credible intervals: 99.65-99.99%), our results 
suggest that yellow fever’s burden will remain highly uncertain without major improvements in 
surveillance. 
 
INTRODUCTION 
 
Yellow fever is a mosquito-borne viral disease that poses a risk to people throughout tropical 
areas of South America and Africa ​[1]​. The causative agent, yellow fever virus, is maintained in 
an enzootic cycle in non-human primates, and it infects humans primarily through spillover in 
communities in close proximity to sites of yellow fever epizootics in non-human primates ​[2]​. 
Once infected, people experience a spectrum of disease severity, ranging from asymptomatic 
and mild infection to severe disease and death ​[3]​. 
 
Thanks to safe and highly efficacious vaccines ​[4]​, yellow fever is vaccine-preventable in 
humans. Vaccinating the many people at risk of yellow fever on an ongoing basis is a challenge, 
however, given that areas where the virus occurs are geographically widespread and are 
inhabited by large populations with high birth rates ​[5]​. The global supply of yellow fever vaccine 
is also a limiting factor, given that outbreak response contributes to the depletion of vaccine 
stockpiles above and beyond use of the vaccine for routine immunization and supplementary 
immunization activities ​[6]​. 
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In light of this complexity, modeling is an important tool for guiding vaccination policy for yellow 
fever. Models offer the ability to extrapolate beyond known reports of yellow fever to account for 
underreporting ​[3]​, to account for the influence of vaccination coverage, demographic structure, 
and natural immunity on incidence patterns ​[7,8]​, and to leverage spatial patterns in data to 
inform geographically realistic estimates ​[9]​. After accounting for these factors to attain a model 
of disease burden, models can then be run under alternative scenarios about future vaccination 
to project its impact on the future burden of disease ​[9–12]​. 
 
Several studies have modeled the probability of yellow fever occurrence (a binary outcome) 
[13–16]​, but only a few have explicitly modeled its burden (a continuous outcome) ​[9–12,17,18]​. 
Collectively, these models span a range of assumptions, model structures, and inputs, any one 
of which can be viewed as reasonable and defensible. Uncertainty in these modeling choices 
has generally not been accounted for in burden estimates and impact projections, meaning that 
uncertainty therein may be underrepresented. Gaythorpe et al. have begun to address model 
uncertainty by taking weighted averages of models that represent alternative assumptions about 
transmission route ​[18]​ and spatial covariate data ​[12]​. Numerous other forms of model 
uncertainty remain unexplored. 
 
In this study, we explored how alternative assumptions about the interpretation of serological 
data and alternative approaches to regression modeling impact estimates of yellow fever burden 
in Africa and projections of future vaccination impact. Our modeling framework involves five 
sequential steps (Fig. 1) that first establish estimates of underreporting of cases and deaths 
informed by sites with serological data (Steps 1 & 2), next use estimates of underreporting to 
extrapolate reported cases and deaths to estimates of force of infection for all sites (Step 3), 
and then perform regression modeling of force of infection against spatial covariates to smooth 
over noise in extrapolations from reported cases and deaths (Steps 4 & 5). We considered eight 
different scenarios about the interpretation of serological data (Table 1) and eight different 
approaches to regression modeling, resulting in a total of 64 alternative models. For our final 
estimates, we distilled those 64 models down to a set of eight ensemble models: one for each 
scenario about the interpretation of serological data. Finally, we translated ensemble projections 
of force of infection into projections of deaths and deaths averted by vaccination. 
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Figure 1. Modeling framework schematic. ​ Our modeling framework involves five sequential 
steps that result in a set of eight ensemble models of the force of infection (FOI) of yellow fever 
virus, and associated deaths, in each of 477 first administrative-level units (adm1s) across 34 
countries in Africa. Each of these eight ensemble models corresponds to a different assumption 
about the interpretation of serological data in Step 1 (Table 1). Colors associated with the six 
steps are used in subsequent figures to refer to the step to which those results pertain. 
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Table 1. Eight scenarios about the interpretation of serological data. ​ The eight scenarios 
(rows) were defined based on combinations of two alternative assumptions (shading) about 
each of four issues (columns). Gray shading indicates consistency with scenario 1. 
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Serology 
scenario 

Vaccination 
status when 
reported as 

unvaccinated 

Include studies 
not reporting 
vaccination 

status 

Vaccination 
status when not 

reported 

Include studies 
as part of an 

outbreak 
investigation 

1 Unvaccinated Yes 
Vaccinated 

according to local 
coverage 

Yes 

2 
Vaccinated 

according to local 
coverage 

Yes 
Vaccinated 

according to local 
coverage 

Yes 

3 Unvaccinated No NA Yes 

4 Unvaccinated Yes Unvaccinated Yes 

5 Unvaccinated Yes 
Vaccinated 

according to local 
coverage 

No 

6 
Vaccinated 

according to local 
coverage 

Yes 
Vaccinated 

according to local 
coverage 

No 

7 Unvaccinated No NA No 

8 Unvaccinated Yes Unvaccinated No 
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RESULTS 
 
Step 1 – Estimate force of infection with serology 
 
Estimates of force of infection (FOI) based on serology varied widely (Fig. 2) across the 23 sites 
for which serological data were available (Table S1) and across the eight assumptions about the 
interpretation of serological data that we considered (Table 1). Under serology scenario 1, 
estimates of FOI ranged from a median rate of 9.4x10 ​-7​ infections per susceptible person per 
year (95% CrI: 1.3x10 ​-8​-6.8x10 ​-4​) in Rift Valley Province, Kenya (22/433 seropositive across 
multiple age groups) to a median of 0.36 (95% CrI: 0.16-0.89) in Région du Nord, Cameroon 
(17/24 seropositive among 0-13 year olds). Posterior checks of predicted seropositives were 
consistent with the data on which the estimates were based (Fig. S1). Under scenarios 2 and 6, 
estimates of FOI at many sites were much lower (Fig. 2B, 2F), because those scenarios 
assumed that participants from all studies were vaccinated at levels consistent with age-specific 
coverage in that area in that year. That assumption resulted in much of the seropositivity being 
accounted for by prior vaccination, requiring a far lower FOI to explain the data. FOI estimates 
under scenarios 3 and 7 (Fig. 2C, 2G) were identical to scenario 1, except that some sites were 
dropped from the latter due to vaccination status of study participants being unknown or having 
been part of an outbreak investigation. Scenarios 4 and 8 (Fig. 2D, 2H) differed from scenarios 
3 and 7 at only two sites, due to inclusion or exclusion of two studies in which the vaccination 
status of study participants was unknown. 
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Figure 2. Estimated force of infection based on serology. ​ The eight scenarios differ with 
respect to four assumptions about the interpretation of serological data (Table 1). Violin plots 
show the smoothed density of posterior samples obtained by Markov chain Monte Carlo. 
Country-year combinations are repeated along the x-axis for studies for which serological data 
was stratified sub-nationally. See Table S1 for more information about these studies. 
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Step 2 – Estimate underreporting 
 
Estimates of the probability that a yellow fever virus infection was reported varied several orders 
of magnitude across the 23 sites with serological data and the eight scenarios about the 
interpretation of serological data (Fig. 3). Rift Valley Province, Kenya had the highest estimated 
reporting probability (scenario 1: 95% credible interval: 0.031-0.044), and Kordofan, Sudan had 
the lowest (scenario 4: 95% CrI: 1.0x10 ​-8​-1.8x10 ​-7​) (Fig. 3A). In general, sites with large 
numbers of reported cases and deaths (large, filled circles in Fig. 3) had high estimates with 
narrow uncertainty, whereas those with zero reported cases and deaths (open circles in Fig. 3) 
had low estimates with wide uncertainty. To inform subsequent steps in our analysis, we 
calculated the average reporting probability across sites under each serology scenario. 
Scenarios 1, 2, 5, and 6 all had relatively high average reporting probabilities (highest = 
scenario 6: 2.5-3.5x10 ​-3​, 95% credible interval), and scenarios 3, 4, 7, and 8 all had relatively 
low average reporting probabilities (lowest = scenario 8: 1.3-2.3x10 ​-4​, 95% credible interval). 
This difference was due to either of two factors that differentiated these scenarios: inclusion of 
studies that did not report on the vaccination status of participants (scenarios 1 vs. 3, 5 vs. 7); or 
assumptions about the vaccination status of those study participants (scenarios 2 vs. 4, 6 vs. 8). 
Specifically, excluding studies that did not report on vaccination status of study participants or 
assuming that participants in those studies were not vaccinated led to higher estimates of force 
of infection (Fig. 2), which led to greater numbers of predicted infections and, consequently, 
lower estimates of reporting probability to explain the observed numbers of reported cases and 
deaths (Fig. 3). 
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Figure 3. Estimated reporting probabilities. ​ Dashes and line segments indicate median and 
95% credible intervals of site-specific posterior estimates of the (log ​10​) probability of a yellow 
fever virus infection being reported. Bands indicate posterior estimates of mean reporting 
probability across sites, averaged on a linear scale. The row along the top of each panel 
indicates the number of cases and deaths reported at each site during 1980-2014: open circle = 
zero; filled circle = log(reported cases + deaths); blank = not included. The eight scenarios in the 
panels and the 23 sites are the same as those in Fig. 2. See Table S1 for more information 
about these studies.  
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Step 3 – Project force of infection everywhere 
 
We estimated substantial spatial heterogeneity in FOI across the 477 first-level administrative 
units (adm1s) that we included in our analysis (Fig. 4A). Under serology scenario 1, estimates of 
force of infection (FOI) ranged from a low in Oromia, Ethiopia (95% CrI: 2.2x10 ​-8​-2.6x10 ​-6​) to a 
high in Grand Bassa County, Liberia (95% CrI: 0.25-3.9). The former has a large population 
(34 million), no vaccination coverage, and experienced zero cases or deaths during 1980-2014, 
whereas the latter has a small population (37,311), high vaccination coverage (91.8%), and 
experienced 360 cases and 9 deaths during that time frame (populations and vaccination 
coverages as of 2014, ​[8]​). These were extremes though, with 90% of adm1s having a median 
FOI between 3.9x10 ​-6​ and 2.0x10 ​-3​. In general, adm1s with a low median FOI had high 
uncertainty (Fig. 4B), with their 95% credible intervals often spanning two orders of magnitude 
(Fig. 4C). In contrast, adm1s that reported positive numbers of cases or deaths during 
1980-2014 (Fig. 4D) were associated with less uncertain estimates of FOI (Fig. 4B). This 
differential uncertainty was a consequence of the fact that there is an extremely wide range of 
values of FOI under which zero cases and deaths could be reported: i.e., low FOI with few 
infections, or high FOI with more infections but none reported. Overall, 64% of variance in FOI 
estimates was attributable to spatial heterogeneity, with the other 36% attributable to statistical 
uncertainty (see Supplemental Appendix for details of variance partitioning). Results from other 
serology scenarios had a similar spatial distribution but differed in magnitude consistent with 
differences in their estimated average reporting probabilities. 
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Figure 4. Force of infection projected from reported cases and deaths. ​ Maps in A and B 
show the spatial distribution of the median and standard deviation of adm1-specific estimates of 
force of infection (FOI). The line and band in C show the median and 95% credible intervals of 
these estimates sorted by median FOI. Adm1s with reported cases or deaths in 1980-2014 are 
colored in D. Results presented here are in reference to serology scenario 1. Other serology 
scenarios had similar results, but with magnitude varying according to differences in the 
estimated average reporting probabilities shown in Fig. 3. Thus, results from serology scenarios 
2, 5, and 6 were similar in magnitude to those presented here, whereas results from serology 
scenarios 3, 4, 7, and 8 were higher. All had a similar spatial distribution. 
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Step 4 – Regress force of infection against spatial covariates 
 
Regression of FOI projections from Step 3 against spatial covariates retained broad spatial 
patterns in FOI and brought extreme values of FOI toward the center of their range. In general, 
the regression models under serology scenario 1 resulted in median predictions of FOI across 
adm1s ranging 10 ​-6​-10 ​-3​ (Fig. 5), consistent with projections of median FOI from around 90% of 
adm1s from Step 3. These models accounted for 20-30% of variation in median values of 
projected FOI from Step 3 (Fig. S2). Markov random field models, which involve spatial 
smoothing, resulted in a somewhat narrower range of median FOI values, with the highest 
values across West and Central Africa (Fig. 5D-5F). Models that relied on more complex 
relationships among spatial covariates and FOI resulted in more spatially heterogeneous 
predictions across a wider range of median values of FOI (Fig. 5C, 5G). A linear model and 
boosted regression trees were more intermediate (Fig. 5B, 5H). As in Step 3, uncertainty around 
adm1-specific estimates of FOI was greater in adm1s with lower median values of FOI (Fig. S3). 
Results from other serology scenarios were similar but differed in magnitude consistent with 
differences in their estimated average reporting probabilities.  
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Figure 5. Spatial prediction of force of infection from eight regression models. ​ Median 
values on a log ​10​ scale are shown from serology scenario 1. Color axes for each model differ so 
as to maximize contrast within each panel. Other serology scenarios produced similar results, 
but with magnitude varying according to differences in the estimated average reporting 
probabilities shown in Fig. 3.  

12 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 6, 2021. ; https://doi.org/10.1101/2021.01.06.21249311doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.06.21249311
http://creativecommons.org/licenses/by/4.0/


Step 5 – Estimate regression model weights for ensemble model 
 
Our process for generating an ensemble model involved assessing the performance of each 
regression model in 10-fold cross-validation, holding out three to four countries from model 
fitting and assessing predictions for first-level administrative units (adm1s) in those countries 
based on models fitted elsewhere (see Fig. S4 for the partition of countries we used for this). 
Relative to the intercept-only model (Int. in Fig. 6), much lower values of negative marginal log 
likelihood (NMLL) for the seven models that made use of spatial location and/or spatial 
covariates suggest that those variables have predictive value (Fig. 6A). On an individual basis, 
the linear model with interactions (Int.+) performed best under all serology scenarios (NMLL 
range: 991-1,575). This was primarily due to its high uncertainty relative to other models (Fig. 
S3), which allowed it to better cover the wide range of projected FOI values from Step 3. The 
ensemble model (Ens.) performed markedly better than all individual models (NMLL range: 
605-673). On average across serology scenarios, the three Markov random field models 
(MRF10, MRF20, MRF10+) comprised 50% of the ensemble (range: 37-63%), boosted 
regression trees (BRT) 19% (range: 4-28%), the linear model (Lin.) 15% (range: 2-27%), and 
the intercept-only model 14% (range: 8-24%) (Fig. 6B). Despite performing well individually, the 
linear model with interactions and the random forest (RF) comprised very little of the ensemble, 
suggesting that their individual performances were bolstered by their high uncertainty rather 
than their ability to make accurate central predictions outside the data to which they were fitted. 
To enable the ensemble model to appropriately capture uncertainty in projected FOI from Step 
3, it included an additional, Normally distributed noise term with a standard deviation of 0.79 
(units: log ​10​ FOI) on average across serology scenarios (range: 0.73-0.93). 
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Figure 6. Regression model performance in cross-validation (top) and composition of the 
ensemble model (bottom). ​A) Performance in cross-validation was quantified using negative 
marginal log likelihood, with lower values indicating that the model was associated with a higher 
probability of generating the data withheld from fitting. For the purpose of this exercise, the 
“data” consisted of projected values of log ​10​ force of infection from Step 3. Cross-validation was 
done in a 10-fold manner, with data from three to four countries withheld from fitting and used to 
assess out-of-fit prediction. B) Ensemble models consisted of linear combinations of 
adm1-specific predictions of log ​10​ FOI, with the latter approximated by Normal distributions. The 
coefficients of those linear combinations (one for each serology scenario) are indicated by the 
height of the bars. In addition, the ensemble model included an additional Normal random 
variable with mean zero and standard deviation fitted as part of the process of constructing the 
ensemble.  
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Ensemble projection of force of infection and deaths 
 
The spatial distributions and ranges of median values of FOI under the ensemble models were 
broadly similar to projections arising from Step 3 (Fig. 7A). Specifically, median FOI was highest 
in West and Central Africa and ranged 5.1x10 ​-7​-3.0x10 ​-4​ under serology scenario 1. Uncertainty 
about FOI was generally lower in adm1s with high median values (Fig. 7B), although uncertainty 
was high across all adm1s due to the additional noise term in the ensemble model. On the log ​10 
scale on which we modeled FOI, 64% of variance was attributable to statistical uncertainty, 25% 
to differences among serology scenarios, and 11% to spatial heterogeneity. On a linear scale, 
these proportions changed to 98.8%, 1.0%, and 0.2%, respectively. Under serology scenario 1, 
the spatial covariates that were most strongly associated with median values of log ​10​ FOI were 
longitude (R​2​ = 0.69), one of the NDVI variables (R​2​ = 0.52), elevation (R​2​ = 0.44), one of the 
temperature variables (R​2​ = 0.36), latitude (R​2​ = 0.34), and two of the precipitation variables (R​2 
= 0.23-0.24) (Fig. S5). Due to collinearity among spatial variables, the apparent relationship 
between any given variable and FOI cannot be attributed entirely to that variable. Nonetheless, 
these associations provide an indication of the characteristics of adm1s associated with higher 
or lower forces of infection. 
 
Projections of deaths averted during 2021-2030 were highest on a per population basis in 
adm1s in which FOI and vaccination coverage were both high (Figs. 7C, S6). Under serology 
scenario 1, vaccination was projected to avert deaths in 2021-2030 totaling 27,000 in Nigeria 
(95% posterior predictive interval: 3,500-135,000), 7,700 in Burkina Faso (95% PPI: 
950-33,000), 6,900 in Côte d’Ivoire (95% PPI: 920-42,000), 5,000 in Ghana (95% PPI: 
500-40,000), and 4,800 in Democratic Republic of Congo (95% PPI: 440-42,000) (Fig. S7). 
Under serology scenario 8, these projections were a full order of magnitude greater (Fig. S7). 
Despite that, only 8% of variance in projections of deaths averted was attributable to differences 
among serology scenarios, and only 7% to spatial heterogeneity across adm1s. The remaining 
85% was attributable to statistical uncertainty. Relative to the earliest decade in our analysis 
(1980s), deaths averted by vaccination were projected to have increased by an order of 
magnitude (Fig. 8C) due to a combination of population growth (Fig. 8A) and increases in 
vaccination (Fig. 8B). 
 
Despite the large number of deaths averted by vaccination projected for 2021-2030, we 
projected a 74% chance that the number of deaths not averted will exceed the number that are 
averted in 2021-2030. The number of deaths in 2021-2030 not averted by vaccination ranged 
from 84,000 (95% CrI: 12,000-290,000) under serology scenario 6 to 1.5 million (95% CrI: 
230,000-4.8 million) under serology scenario 8. On a per population basis, deaths in 2021-2030 
were projected to occur both in adm1s with high deaths averted and in additional adm1s on the 
periphery of the most heavily vaccinated areas (Fig. 7E). Only 6% of variance in projected 
deaths in 2021-2030 was attributable to spatial heterogeneity, with 7% due to differences 
among serology scenarios and 87% attributable to statistical uncertainty.  
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Figure 7. Ensemble model projections. ​Top: force of infection; middle: deaths averted by 
vaccination for 2021-2030; and bottom: deaths not averted.​ ​Left: median values; and right: 
standard deviation. All projections displayed here derived from serology scenario 1. 
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Figure 8. Deaths projected under the eight serology scenarios for 1980-2030. ​ Deaths are 
presented: A) annually without vaccination; B) annually with vaccination; C) annually as the 
number averted by vaccination; and D) cumulatively. In A-C, projections under each serology 
scenario are presented as lines (median) and bands (95% posterior predictive interval). 
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DISCUSSION 
 
We developed a framework for making geographically stratified estimates of the burden of 
yellow fever in Africa and used it to assess the sensitivity of our estimates to two key model 
uncertainties. Our framework has similarities to another introduced by Garske et al. ​[9]​ (and 
expanded on in several ways since ​[10–12,18]​), due in large part to the nature of data available 
to estimate yellow fever’s burden (i.e., serological data from a few locations, outbreak data from 
many). One distinction of our approach is that it makes use of information on the magnitude of 
reported cases and deaths, whereas the one by Garske et al. ​[9]​ makes use of the occurrence 
of reported cases or deaths only. As a result, our framework makes use of additional information 
not leveraged by Garske et al. ​[9]​. At the same time, the accuracy of those data are 
questionable given significant challenges with yellow fever surveillance ​[19,20]​, although we 
account for underreporting and uncertainty therein in our approach. On average, differences 
arising from this choice may be limited. Under serology scenario 1, we projected 9,500 (95% 
posterior predictive interval: 1,600-31,000) deaths averted across Africa in 2018, as compared 
to 10,000 (95% credible interval: 6,000-17,000) in the most recent estimates by Gaythorpe et al. 
[12]​. The most notable difference between these projections may be, therefore, in terms of their 
uncertainty rather than their central tendency, at least under similar assumptions. 
 
A central focus of our analysis was the sensitivity of burden estimates to different assumptions 
about the interpretation of serological data. We found that the most consequential assumption 
was in regards to the vaccination status of participants in serological studies. A majority of 
serological studies that we included (21/23) reported that study participants had not been 
vaccinated. In the event that vaccination status was misreported or not recalled correctly 
[21–23]​, force of infection could have been much lower than if study participants had not been 
vaccinated, given that vaccination and natural infection are both capable of generating a 
positive serological result ​[24]​. We found that this issue, even if it affects only a small number of 
serological studies, can be highly consequential for estimates of average reporting probability. 
This sensitivity propagated throughout the steps of our analysis, resulting in an order of 
magnitude difference in our central estimates of burden. Even so, the effect of this assumption 
on uncertainty was relatively minor (6% of variance in deaths projected for 2021-2030) 
compared to the much greater influence of statistical uncertainty (87%). The spatial distribution 
of burden was also generally similar across serology scenarios. As such, different assumptions 
about the interpretation of serological data may be more consequential for decision making 
around the prioritization of investments across different vaccine-preventable diseases ​[25]​ than 
for decision making that is limited in scope to yellow fever. 
 
The other major focus of our analysis was the sensitivity of burden estimates to different 
approaches to regression modeling. We found that, individually, different regression models 
produced results in ways that were mostly predictable based on the usual tendencies of those 
methods. For example, Markov random field models produced median estimates that were 
smoother across space and associated with less uncertainty, as compared to models that 
allowed for complex effects of a set of 18 spatial covariates. We found that, collectively, an 
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ensemble model composed of predictions from Markov random field models, linear models, and 
boosted regression trees performed best in cross-validation. Ours are the first burden estimates 
for yellow fever that take into account structurally distinct regression models and do so based on 
performance in cross-validation, although Gaythorpe et al. have recently developed ensembles 
composed of models that differ with respect to assumptions about transmission route ​[18]​ and 
sets of spatial covariates ​[12]​. Our work adds to a growing set of studies that demonstrate the 
benefits of ensemble modeling for geographically stratified estimates of disease burden ​[26–30]​, 
in addition to other applications in infectious disease epidemiology ​[31–34]​. 
 
As important as the aforementioned assumptions were, their contribution to overall uncertainty 
in our estimates was relatively small compared to that of statistical uncertainty. In Step 3 of our 
analysis, considerable variance in log ​10​ force of infection was attributable to spatial 
heterogeneity (29%), serology scenario (51%), and regression model choice (12%). Two things 
diminished the amount of variance attributable to those factors in later steps in our analysis. 
First, the ensemble models required an additional noise term to perform well in cross-validation, 
which increased the proportion of variance in log ​10​ force of infection attributable to statistical 
uncertainty from 8% to 64%. Second, transforming log ​10​ force of infection to a linear scale 
disproportionately increased variance associated with statistical uncertainty, from 64% to 98.8% 
of total variance. Translation of force of infection into deaths then diminished the contribution of 
statistical uncertainty somewhat, likely due to the saturating relationship between force of 
infection and deaths. Even so, 85% of variance in deaths averted and 87% of variance in deaths 
was attributable to statistical uncertainty, which calls into question the extent to which 
geographic differences in yellow fever’s burden are predictable in the first place. 
 
Given our estimates that only one in a thousand to one in ten thousand infections were 
reported, there may be limits to the extent that improved modeling can reduce uncertainties 
about yellow fever’s burden. Increasing surveillance and diagnostic capacity—which is already 
an emphasis of efforts to prevent yellow fever epidemics ​[35]​—could help reduce underreporting 
and, thereby, uncertainty in burden estimates. Our method is well-suited to leverage any such 
future improvements in surveillance data, given that it makes use of information about numbers 
of cases and deaths as opposed to occurrence only. Additional serological data could also help 
resolve uncertainties in burden estimates. Most critically, if surveys could be conducted with 
serological assays that are capable of distinguishing between vaccine-derived and naturally 
acquired immunity (which is not currently the case ​[24]​), that would greatly reduce uncertainty 
associated with the eight serology scenarios we considered. Even in the absence of assays with 
that capability, additional serological surveys would strengthen confidence in our ability to 
extrapolate reporting probability estimates from Step 2 to region-wide projections in Step 3. 
Doing so in a manner that randomizes site selection and standardizes criteria for recruitment of 
study participants would be ideal. 
 
Our analysis addressed the extent to which two types of model assumptions influence burden 
estimates, but there are others we did not explore that could be important. First, in addition to 
infections resulting from zoonotic spillover, there is also a role of urban transmission of yellow 
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fever virus in Africa that we did not account for ​[10,36,37]​. In a recent comparison of alternative 
models premised on zoonotic spillover versus urban transmission, the former was found to 
much better explain available data from Africa ​[18]​. Second, because of the episodic nature of 
urban outbreaks in humans and epizootics in non-human primates ​[2]​, models that account for 
inter-annual variability in force of infection (e.g., ​[38]​) could better match the realities of yellow 
fever’s epidemiology. To date, other models of yellow fever’s burden have not addressed this 
issue either ​[9–12,17,18]​, and doing so could be challenging given the widespread perception 
that reporting of yellow fever outbreaks is extremely sparse ​[9,39]​. Third, we assumed a fixed 
value of lifelong protection from vaccination, which has recently been called into question based 
on waning antibody titers in vaccine recipients over time ​[40,41]​. This could be an issue to 
investigate further in future work, but long-lasting protection remains consistent with prevailing 
assumptions about yellow fever vaccines ​[42]​. There are also uncertainties about vaccination 
coverage and demography that we did not address but that could be important ​[7,17]​. 
 
CONCLUSION 
 
Although we did not consider every possible model variant imaginable, our analysis made an 
important advance in demonstrating how alternative modeling assumptions can be accounted 
for in burden estimates for yellow fever. In the future, models that make the same assumptions 
about the interpretation of data but differ in their assumptions about drivers of transmission 
could be accommodated under our approach to ensemble modeling. When models make 
different assumptions about the interpretation of data, they may not be combinable under our 
ensemble approach (if their likelihoods are not comparable), but their contribution to overall 
uncertainty can be quantified nevertheless, as we demonstrated. Doing so illustrated that, while 
advances in modeling are important, improvements in data quality will be necessary to improve 
estimates of yellow fever’s burden and projections of the impacts of vaccination thereon. 
 
METHODS 
 
Data 
 
Spatially, our analysis focused on 34 countries in Africa considered endemic or at risk for yellow 
fever, and for which necessary demographic and vaccination coverage estimates were available 
[8]​. Temporally, we focused on the period from 1980 to 2014. We made this determination 
based on the last year of data available in one of the epidemiological datasets we used. 
 
All phases of our analysis used estimates of population and vaccination coverage by Hamlet et 
al. ​[8]​ that were stratified by age, year, and first subnational administrative unit (adm1). National 
totals for population by age derived from United Nations World Population Prospects estimates 
[43]​, and spatial disaggregation thereof among adm1s was done based on LandScan 2015 
estimates ​[44]​. Vaccination coverage estimates compiled information from a variety of sources 
dating back as long ago as the 1940s on routine immunization, reactive vaccination, and 
preventive mass immunization campaigns ​[8]​. These estimates can be perused in full detail at 

20 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 6, 2021. ; https://doi.org/10.1101/2021.01.06.21249311doi: medRxiv preprint 

https://paperpile.com/c/RB2PKv/6HR1+bsHO+ZBTB
https://paperpile.com/c/RB2PKv/W9hw
https://paperpile.com/c/RB2PKv/jRvH
https://paperpile.com/c/RB2PKv/uhEf
https://paperpile.com/c/RB2PKv/dPpa+N9MG+W9hw+ZBTB+3yQC+sHDx
https://paperpile.com/c/RB2PKv/dPpa+JrN0
https://paperpile.com/c/RB2PKv/flUC+VNUq
https://paperpile.com/c/RB2PKv/d0mi
https://paperpile.com/c/RB2PKv/mwoc+N9MG
https://paperpile.com/c/RB2PKv/LEQF
https://paperpile.com/c/RB2PKv/LEQF
https://paperpile.com/c/RB2PKv/I1GI
https://paperpile.com/c/RB2PKv/XyOc
https://paperpile.com/c/RB2PKv/LEQF
https://doi.org/10.1101/2021.01.06.21249311
http://creativecommons.org/licenses/by/4.0/


https://shiny.dide.imperial.ac.uk/polici/. Average values of population and vaccination coverage 
during 2021-2030 for each adm1 are displayed in Fig. S6. 
 
The regression phase of our analysis made use of data on several spatial variables thought to 
be associated with yellow fever, each of which was based on raster data that we averaged 
across the first administrative level. These variables include normalized difference vegetation 
index (NDVI) ​[45]​, monthly precipitation ​[46]​, monthly average temperature ​[46]​, elevation ​[47]​, 
longitude, latitude, travel time to the nearest urban center ​[48]​, occurrence probability ​[17]​ and 
richness ​[49]​ of non-human primate (NHP) species known to be yellow fever virus reservoirs in 
Africa, percentage of frontier and tropical land cover ​[50]​, and forest loss ​[51]​. We also used the 
health access quality index ​[52]​ at the national level. To reduce the dimensionality of monthly 
data, we performed principal components analyses on monthly NDVI, precipitation, and 
temperature data using the prcomp function in R ​[53]​. We retained principal components 
explaining >95% of variation in total, resulting in two principal components for NDVI, four for 
precipitation, and two for temperature (see Fig. S8 for loadings). Prior to regression modeling, 
we centered and scaled all predictor variables (see Fig. S9 for maps of centered and scaled 
values of each variable). 
 
We used two types of epidemiological data in our analysis. The first was derived from 23 
published serological surveys ​[54–61]​, which captured information about past exposure to 
yellow fever virus. We recorded the number tested and number positive for each age group 
reported, and we limited our analysis to neutralization assays to maximize specificity of test 
results. Attributes of the sites where these serological surveys were conducted are detailed in 
Table S1. Second, we used data on yellow fever outbreaks compiled and shared with us by 
Garske et al. from ​[9]​. This included data on cumulative cases and deaths that were reported at 
the adm1 level over the period of our analysis. The sources of these data were the WHO 
Weekly Epidemiological Record ​[62]​ and WHO Disease Outbreak News ​[63]​. These data 
spanned 236 unique adm1-year combinations and included a total of 19,550 reported cases (of 
which 427 were confirmed) and 4,887 reported deaths (of which 37 were confirmed), which is 
fewer than the 32,731 cases reported at a national level by WHO during the study period ​[64]​. 
Without an empirical resolution to this discrepancy, we relied on serological data to combine 
with these data to inform estimates of a reporting probability that accounts for this and other 
forms of underreporting. For confirmed cases and deaths, the method of confirmation was 
indicated as an IgM enzyme-linked immunosorbent assay in most instances, sometimes in 
combination with either a reverse transcription polymerase chain reaction test or a plaque 
reduction neutralization test. For reported cases and deaths, information about clinical 
diagnostic criteria were not specified ​[62,63]​. 
 
Framework for estimating disease burden 
 
Step 1 - Estimate force of infection with serology 
 
For each administrative unit where serological data were available, we obtained a probabilistic 
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estimate of a temporally constant force of infection (FOI) for that site. For a survey conducted in 
administrative unit ​i​ in year ​y​, we calculated the likelihood of the FOI at ​i​, ​FOI ​i​, based on the 
number of individuals between ages ​a​1​ and ​a​2​ who tested positive, , among the numberP i,y,a ,a1 2

 
who were tested, . We assumed that ~ Binomial( ), where T i,y,a ,a1 2

P i,y,a ,a1 2
,T i,y,a ,a1 2
pi,y,a ,a1 2

pi,y,a ,a1 2
 

is the probability that an individual was seropositive. Our formulation accounted for the 
possibility that individuals could be seropositive due either to prior exposure to yellow fever virus 
or due to vaccination. To account for this, the probability of being seropositive was defined as 

        (1),pi,y,a =
∑
a2

α=a1
N i,y,α

V V E + (1−V V E)(1−exp(−FOI  α))∑
a2

α=a1
N i,y,α( i,y,α i,y,α i )

 

 
where ​V​i,y,a​ is vaccination coverage, ​N​i,y,a​ is population, and ​VE​ is vaccine efficacy, which we 
assumed to be 0.975 ​[4]​. We used estimates of ​V​i,y,a​ and ​N​i,y,a​ produced by Hamlet et al. ​[8]​. We 
calculated the log likelihood of each ​FOI​i​ by summing the logs of the binomial probabilities of 

 across all age groups. Using this log likelihood and a uniform prior between 10 ​-8​ and 1,P i,y,a ,a1 2
 

we sampled from the posterior distribution of each ​FOI​i​ using the BayesianTools ​[65]​ package in 
R ​[53]​. We used the default DEzs sampler, running three chains for a total of 10 ​4​ iterations and 
applying a burnin of 10 ​3​ iterations. We assessed convergence by calculating the multivariate 
potential scale reduction factor and verifying that it was near one. 
 
Step 2 - Estimate underreporting 
 
For each administrative unit where serological data were available, we estimated the extent of 
underreporting based on the discrepancy between observed cases and deaths and the number 
of infections predicted by the FOI estimates from those sites. This analysis was centered around 
the distribution of person-years across three categories: observed deaths, ​D​; observed cases, 
C​; and unobserved person-years among individuals unprotected by vaccination, ​N​. 
 
For administrative unit ​i​, the probability that a person of age ​a​ in year ​y​ who was unprotected by 
vaccination would die from yellow fever and be reported as such was 
 

        (2)(reported death, a | FOI , , ) (− OI  a) (1 (− OI )) (1 ) ρ ,Pr  i U i ρD = exp F i − exp F i − U i D  
 
where ​U​i​ is the proportion of infections that are unobserved in ​i​ and  is the proportion ofρD  
observed infections that result in death. The probability of a reported case was the same as 
eqn. 2 but with  replaced by . The probability of an unobserved person-year allowedρD 1 − ρD  
for multiple ways in which a person-year would not result in a reported death or case, including 
by having been infected previously, by never being infected, or by being infected but not being 
reported. This resulted in 
 

(unreported person year, a | FOI , )Pr  i U i =  
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        (3)1 (− OI  a)) (− OI  (a )) (− OI  a)(1 (− OI )) U .( − exp F i + exp F i + 1 + exp F i − exp F i i  
 
With these three probabilities, we were able to calculate the probability of ​D​i​, ​C ​i​, and ​N​i​ among 
Y​i​ total person-years, , using a multinomial distribution with(D , ,  | FOI , , )Pr i C i N i i,j U i ρD  
component probabilities defined by eqn. 2, substitution of ​D​ with ​C​ in eqn. 2, and eqn. 3. The 
quantity ​Y​i​ included all individuals across ages ​a​ in all applicable years who had not been 
vaccinated or, with probability 1-​VE​, those who had been vaccinated. This was used to define ​N​i 
as ​Y​i​ - ​C ​i​ - ​D ​i​. 
 
The parameters we sought to estimate based on these data were ​U​i​ for each ​i​ and a single 
value of  that was common to all ​i​. To incorporate the full posterior distribution of each ​FOI​iρD  
estimated in Step 1, we calculated the marginal probability of the data, 

        (4)  (D , ,  | U , ) (D , ,  | FOI , , ),Pr i C i N i i ρD = n
1 ∑

n

j=1
Pr i C i N i i,j U i ρD  

by averaging over uncertainty in ​FOI​i​ from its posterior distribution, the ​n ​= 10 ​3​ samples of which 
are indexed by ​j​. We calculated the log likelihood of ​U​i​ and  by summing the logs of theρD  
probabilities from eqn. 4 across all ​i​. We assumed noninformative priors between 0 and 1 for all 
U​i​ and a beta-distributed prior for  with shape parameters 2.05 and 6.85, which wereρD  
informed by previous estimates ​[3]​ (see Supplemental Appendix). We sampled from the 
posterior distributions of the parameters using the BayesianTools ​[65]​ package in R ​[53]​. We 
used the default DEzs sampler, running three chains for a total of 3x10 ​4​ iterations, applying a 
burnin of 5x10 ​3​ iterations, and thinning to retain every fifth iteration. We assessed convergence 
by calculating the multivariate potential scale reduction factor and verifying that it was near one. 
 
To allow for extrapolation of underreporting beyond the few administrative units with serological 
data, we fitted a Dirichlet distribution to posterior predictions of the proportions of infections that 
result in a reported death, a reported case, or an unreported infection. In doing so, we took an 

average across sites ​i​ for each draw ​j​ from the posterior, such that . For each drawUŪ j = ∑
n

i=1
n
1

i,j  

j​ from the posterior, these proportions were calculated as , , and1 ) ρ( − Ū j D,j 1 ) (1 )( − Ū j − ρD,j  
, and the Dirichlet parameters associated with them were , , and . We estimatedŪ j αD αC αU  

these Dirichlet parameters by maximum likelihood using the optim function in R ​[53]​, treating 
posterior predictions of the proportion of infections that result in a reported death, a reported 
case, or an unreported infection as data points drawn from the Dirichlet distribution being fitted. 
In that sense, the Dirichlet distribution was a parametric approximation of the posterior samples 
of , , and , which was more convenient to work with than1 ) ρ( − Ū j D,j 1 ) (1 )( − Ū j − ρD,j Ū j  
posterior samples in the next step of our analysis. 
 
Step 3 - Project force of infection everywhere 
 
For all administrative units, we estimated the total number of infections that occurred, ​I​i​, based 
on numbers of reported deaths and reported cases, together with the proportions of reported 
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deaths, reported cases, and unobserved infections estimated in Step 2. The first step in this 
process was to calculate the maximum number of infections, ​I​i,max​, that could have possibly 
occurred in ​i​. To do so, we calculated the number of infections that would have occurred if 
FOI ​i,max​ = 10, which is well above what we considered to be a plausible value and above which 
I​i,max​ would not have been measurably larger. Across all ages ​a​ and years ​y​, the total number of 
infections that would have resulted from ​FOI​i,max​ was 
 

        (5)(1 V E) (− OI  a) (1 (− OI )),I i,max = ∑
2014

y=1980
∑
99

a=0
N i,y,a − V i,y,a exp F i,max − exp F i,max  

 
where ​N​i,y,a​ is population. We considered the minimum number of infections, ​I​i,min​, to be the sum 
of reported deaths, ​D​i​, and reported cases, ​C​i​. Based on this, we calculated the likelihood of a 
given number of infections, 
 

,        (6)(I  | D , , , , ) (D , ,  | I  , , , )L i i C i αD αC αU = Pr i C i I i − Di − C i i αD αC αU  
 
as the Dirichlet-multinomial probability of obtaining ​D​i​ reported deaths, ​C​i​ reported cases, and  
I​i ​- ​D​i​ ​- ​C​i​ unobserved infections following ​I​i​ draws from those categories according to 
Dirichlet-distributed probabilities with parameters , , and  from Step 2. We normalizedαD αC αU  
the likelihoods from eqn. 6 across all values of ​I​i​ to obtain posterior probabilities of each ​I​i​, which 
we used to obtain a set of posterior samples of ​I​i​ by sampling with replacement from ​I​i,min​ to ​I ​i,max 
proportional to the posterior probability of each ​I​i​. 
 
For all administrative units, we translated estimates of the total number of infections, ​I​i​, into 
estimates of force of infection, ​FOI ​i​. For each sample of ​I​i​ from Step 3, we found the value of 
FOI ​i​ that minimized the absolute value of the difference between ​I​i​ and the expected number of 
infections under ​FOI​i​, which was 
 

,        (7)(1 V E) (− OI  a) (1 (− OI ))∑
2014

y=1980
∑
99

a=0
N i,y,a − V i,y,a exp F i − exp F i  

 
using the optimize function in R ​[53]​. This resulted in a set of posterior samples of ​FOI​i​ for each 
administrative unit. 
 
Step 4 - Regress force of infection against spatial covariates 
 
Although Step 3 provides probabilistic estimates of force of infection that could be used to 
quantify disease burden, these estimates were highly sensitive to numbers of reported deaths 
and cases, which are noisy signals of underlying transmission. To smooth across that noise and 
obtain a more robust description of spatial patterns of FOI, we performed regression analyses of 
log ​10​ FOI against a set of spatial variables. For each of eight regression models (the details of 
which are described later in the Methods), we performed separate regressions on each of 10 ​3 
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samples of log ​10​ ​FOI ​i​ from all administrative units. This resulted in 10 ​3​ replicate regressions and 
a set of 10 ​3​ predicted values of log ​10​ ​FOI ​i​ from each regression model. We used the point 
estimates from each regression model as predicted values, allowing uncertainty to be 
accounted for through variability across replicate regressions. This is consistent with the 
property of equivariance, which allows quantities derived from posterior samples of parameters 
to themselves be considered posterior samples ​[66]​. Thus, the set of predicted values of log ​10 
FOI ​i​ for site ​i ​ from a given regression model constituted a posterior set of point estimates 
associated with that regression model. 
 
Step 5 - Estimate regression model weights for ensemble model 
 
For each serology scenario, we generated an ensemble model projection of FOI in each adm1 
using a form of stacked generalization ​[26]​. This approach regards the eight regression models 
as being at one level and seeks to generate another model at a higher level that weights the 
predictions of the eight models into its own prediction. A model at this higher level is considered 
successful if its set of predictions, , match the set of estimates from Step 3,FOI }{ i

ensemble  
, in cross-validation. The starting point for these predictions are predictions of dataFOI }{ i

Step3  
withheld from fitting of each model ​m​, which we denote . On a log ​10​ scale, theseFOI }{ i

m,withheld  
predictions were approximated reasonably well by a normal distribution with parameters μi,m  
and , which we estimated based on maximum-likelihood. We defined our ensembleσi,m  
predictions by another Normal distribution that represents a weighted average of the separate 

model predictions and has parameters  and ,α μμi,ensemble = Σm m i,m  σi,ensemble = √Σ (α σ )m m i,m
2 + ε  

where , all , and >0. We informed estimates of the model weights, , onαΣm m = 1 αm > 0 ε α }{ m  
the basis of the marginal likelihood, 
 

,({α }, ) |{FOI }||  Σ ϕ(log (FOI ; , )L m ε = | i
Step3,withheld −1

j 10 i,j
Step3,withheld μi,ensemble σi,ensemble (8)  

 
where  denotes the Normal probability density function and ​j ​is an index of replicates over ϕ  
which the likelihood is marginalized. As indicated in the superscript,  representsFOI }{ i

Step3,withheld  
estimates of FOI from Step 3 that were withheld from model fitting. We partitioned data first for 
model fitting and then for ensemble model fitting at the country level, with ten different partitions 
of countries in which each partition used approximately 90% of administrative units for model 
fitting and approximately 10% of administrative units for cross-validation (Fig. S4). This 
partitioning was determined so as to maximize the evenness of the number of adm1s across 
partitions. To do this, the first partition took the country with the most adm1s and the two 
countries with the fewest and grouped them together. The second partition took the country with 
the second most adm1s and the two countries with the third and fourth fewest. This process 
was repeated until ten partitions of three to four countries each were obtained. To estimate 

 and , we performed a constrained optimization to identify values of  and  thatα }{ m ε α }{ m ε  
minimized a negative marginal log likelihood (NMLL) based on eqn. 8 using the constrOptim 
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function in R ​[53]​, subject to the constraints on  and  stated above.αm ε  
 
Ensemble projection of force of infection and deaths 
 
Using regression model weights, , and the additional noise term, , for the ensembleα }{ m ε  
model, we drew 10 ​3​ Monte Carlo samples of  from Normal distributions with meansFOI }{ i

ensemble  
 and standard deviations . For each value ​FOI​i,j​ from , weμi,ensemble σi,ensemble FOI }{ i

ensemble  
computed the expected number of infections at each site ​i​ in year ​y​ as 

.        (9)(1 V E) (−  a) (1 (− ))I i,y,j = ∑
99

a=0
N i,y,a − V i,y,a exp FOI i

ensemble − exp FOI i
ensemble  

To calculate associated deaths, ​D​i,y,j ​, we multiplied each ​I​i,y,j ​ by a draw from a beta distribution 
with shape parameters 2.05 and 15.5, which were informed by previous estimates ​[3]​ (see 
Supplemental Appendix). This probability of death differed from  from Steps 2 and 3,ρD  
because it pertained to all infections rather than just symptomatic infections. Deaths averted 
were calculated by taking differences between values of ​D​i,y,j ​ calculated under different 
scenarios about ​V​i,y,a​. 
 
Alternative models 
 
Interpretation of serological data 
 
There were two general aspects of the interpretation of serological data to which we evaluated 
the sensitivity of our results. Alternative choices about these assumptions resulted in a total of 
eight distinct scenarios summarized in Table 1. 
 
The first aspect of the interpretation of serological data that we considered was the vaccination 
status of study participants. Some studies were described as being performed on individuals 
with no prior vaccination against yellow fever, whereas descriptions of other studies did not 
specify this. Given that recall of vaccination status can be subject to considerable error ​[21–23]​, 
we assessed the sensitivity of our results to uncertainty that this leaves about the true 
vaccination status of study participants. Specifically, we considered four possibilities: 1) believe 
studies claiming that participants were unvaccinated and assume that participants in other 
studies were vaccinated consistent with local coverage (scenarios 1 & 5); 2) assume that 
participants from all studies were vaccinated consistent with local coverage (scenarios 2 & 6); 
3) believe studies claiming that participants were unvaccinated and exclude other studies 
(scenarios 3 & 7); or 4) assume that participants from all studies were unvaccinated (scenarios 
4 & 8). Under scenarios in which we assumed that participants were unvaccinated, this 
amounted to setting ​V​i,y,a​ = 0 in eqn. 1. 
 
The second aspect of the interpretation of serological data that we considered was whether a 
survey was conducted as part of an outbreak investigation. Such surveys were omitted in the 
analysis by Garske et al. ​[9]​ due to concern that they would not be representative of force of 
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infection at locations where no outbreak investigation had occurred. At the same time, there are 
a very limited number of serological surveys available, making any survey potentially valuable. 
To assess the sensitivity of our results to inclusion of these surveys, we crossed the four 
aforementioned scenarios about the vaccination status of serological survey participants with 
two scenarios about inclusion of surveys conducted as part of an outbreak investigation, 
resulting in a total of eight different scenarios about the interpretation of serological data. 
Specifically, those studies were included in scenarios 1-4 and excluded in scenarios 5-8. 
 
Regression models 
 
There are numerous methods for regression modeling, none of which is guaranteed to be 
optimal in any given application. To explore a range of regression models, we considered a total 
of eight that differed in terms of functional relationships between predictor and response 
variables and whether they allow for explicit spatial dependence. The first was the simplest 
possible model, in which we estimated only a single parameter describing a constant force of 
infection (FOI) across administrative units. Regardless of whether this model would perform well 
or not, we viewed it as a necessary benchmark against which other models should be 
compared. The second and third were linear regression models, one with only linear predictors 
and another with linear predictors and all possible two-way interactions thereof. The fourth and 
fifth were Markov random field models with no predictor variables but different numbers of free 
parameters (100 or 400) controlling the granularity of the spatial surface (10x10 or 20x20) that 
these models estimate. The sixth was a Markov random field model with 100 free parameters 
plus linear effects of predictors. All Markov random field models were implemented using the 
mgcv package in R ​[67]​. The seventh was a random forest model, implemented in R with the 
randomForest package ​[68]​. The eighth was a boosted regression trees model, implemented in 
R with the gbm package ​[69]​. We included the full set of predictors in every model that made 
use of predictors, and we did not perform model selection to reduce the number of predictors. 
We made this choice given that our approach was already very computationally intensive and 
our motivating interest was in comparison of models that differ in structure rather than variable 
composition. 
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SUPPLEMENTAL APPENDIX 
 
Probabilities of different infection outcomes 
 
There were two steps in our analysis for which we needed to make assumptions about the 
probabilities of different infection outcomes. In Step 2, we placed priors on the proportion of 
reported events that were cases or deaths. In the final step of translating ensemble projections 
of force of infection into deaths, we made an assumption about the proportion of infections that 
result in death. 
 
We based both of these assumptions on a re-analysis of data compiled by Johansson et al. ​[3]​. 
While we were amenable to using estimates of the probabilities of different infection outcomes 
by Johansson et al., information was only presented in that paper about marginal distributions of 
the probability of each infection outcome. We felt that it was important to make use of estimates 
for which correlation structure among the probabilities of different infection outcomes was 
accounted for. 
 
A natural distribution for representing uncertainty in multiple probabilities that together sum to 
one is a Dirichlet distribution ​[70]​. Accordingly, we used maximum likelihood to estimate 
parameters of a Dirichlet distribution describing the probabilities of the same four infection 
outcomes considered by Johansson et al.: A = asymptomatic infection; M = mild symptomatic 
infection; S = severe symptomatic infection; and F = infection resulting in a fatality. We used all 
data presented in Tables 1 and 2 of Johansson et al. in which two or more combinations of 
infection outcomes were reported in the same row. In some cases, this included sums of 
infection outcomes; namely, A+M and M+S, given ambiguity in some studies about these 
infection outcomes. To do this, we leveraged the property that the four concentration 
parameters of the Dirichlet distribution— , , , and —can be summed to obtainαA αM αS αF  
concentration parameters of a lower-dimensional Dirichlet distribution (including a beta 
distribution in the case of two outcomes) that are consistent with the higher-dimensional 
Dirichlet distribution ​[70]​. 
 
Our analysis resulted in maximum-likelihood estimates (MLE) of , , .69αA = 8 .74αM = 2 .10αS = 4
, and . This corresponds to mean estimates (and 95% credible intervals, by which we.05αF = 2  
mean the 0.025-0.975 quantile range under the MLE Dirichlet parameters) of the probability that 
an infection results in outcomes of A, M, and S+F of 0.49 (0.27-0.72), 0.16 (0.03-0.35), and 0.35 
(0.15-0.58), respectively. This compares with estimates by Johansson et al.​[3]​0.55 (0.37-0.74), 
0.33 (0.13-0.52), and 0.12 (0.05-0.26), respectively. For the probability of death given severe 
disease, we obtained a mean estimate (and 95% credible interval) of 0.33 (0.04-0.57), as 
compared to an estimate of 0.47 (0.31-0.62) by Johansson et al. Together, this meant that our 
mean estimate of the probability of death upon infection of 0.12 was twice that of Johansson et 
al. (0.05), although there was also wider uncertainty in our estimate (0.01-0.27) than that of 
Johansson et al. (0.02-0.12). The differences between our estimates could be due either to the 
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different distributions we used (Dirichlet vs. binomials) or the additional step in the analysis by 
Johansson et al. that estimated the prevalence of infection in the outbreaks from which the 
underlying data came. 

 
Variance partitioning 
 
Given our interest in evaluating the sensitivity of disease burden and vaccination impact to 
model assumptions, quantifying the proportion of variance in those measures attributable to 
different sources was an important focus of our results. To do that, we applied the law of total 
variance ​[71]​ to draws of outputs of interest—force of infection (FOI), deaths averted, and 
deaths—from their posterior distributions. 

For a given output of interest (e.g., force of infection), ​Y​, and a single explanatory factor 
(e.g., first-level administrative unit, adm1), ​X​, total variance in ​Y​ can be partitioned according to 
 

Var( ​Y​ ) = E[ Var( ​Y ​ | ​X ​ ) ] + Var( E[ ​Y ​ | ​X ​ ] ), 
 

where the first term on the right-hand side represents variance in ​Y​ not accounted for by ​X 
(which we referred to as statistical uncertainty) and the second term represents variance in ​Y 
that is accounted for by ​X​. This equation was used to calculate the proportion of variance in 
log ​10​ FOI (​Y ​) attributable to adm1 (​X​) in Step 3 and regression model (​X​) in Step 4. 

In the case of two explanatory factors, ​X​1​ and ​X​2​, the above equation can be extended to 
 

Var( ​Y​ ) = E[ Var( ​Y ​ | ​X ​1​, ​X ​2​ ) ] + E[ Var( E[ ​Y ​ | ​X ​1​, ​X ​2​ ] | ​X ​1​ ) ] + Var( E[ ​Y ​ | ​X ​1​ ] ), 
 
where the first term on the right-hand side represents variance in ​Y​ not accounted for by ​X​1​ or 
X​2​, the third term represents variance in ​Y​ accounted for by ​X​1​, and the second represents 
variance in ​Y​ accounted for by ​X​2​ conditional on ​X​1​ ​[72]​. This equation was used to calculate the 
proportion of variance in log ​10​ FOI (​Y ​), deaths averted (​Y​), and deaths (​Y​) attributable to adm1 
(​X​1​) and serology scenario (​X​2​). We selected adm1 as ​X​1​ given that spatial heterogeneity in 
yellow fever due to heterogeneity in underlying environmental drivers is considerable, making it 
logical to consider it as a primary source of variation in yellow fever’s burden.  
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SUPPLEMENTAL FIGURES AND TABLE 

 
Figure S1. Comparison of seroprevalence based on estimates of force of infection from 
Step 1 (red) and simple estimates of seropositivity based on conjugate prior 
relationships (black) under serology scenario 1. ​ The conjugate prior estimates assumed a 
flat beta prior with shape parameters equal to 1 and a binomial likelihood applied independently 
to each data point ​[66]​. Within each panel, different pairs of estimates correspond to different 
age strata. Points indicate median, thick line segments indicate 50% posterior predictive 
intervals (PPIs), and thin lines indicate 95% PPIs. See Table S1 for more information about 
these studies. Results for other serology scenarios were similar and are not shown. 
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Figure S2. Comparison of regression predictions of force of infection from Step 4 (x-axis) 
against projected values from Step 3 (y-axis).​ Green circles indicate median values, and gray 
line segments indicate 95% uncertainty intervals. The coefficients of determination, R​2​, in each 
panel were calculated based on median values. 
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Figure S3. Uncertainty in spatial prediction of force of infection from eight regression 
models.​ Standard deviations of values on a log ​10​ scale are shown from serology scenario 1. 
Color axes for each model differ so as to maximize contrast within each panel. Other serology 
scenarios produced similar results, but with magnitude varying according to differences in the 
estimated average reporting probabilities shown in Fig. 3. 
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Figure S4. Country partitioning for cross-validation. ​ Each color signifies a different set of 
countries for which data was withheld from model fitting and used to assess out-of-fit prediction. 
This partitioning was determined so as to maximize the evenness of the number of first-level 
administrative units (adm1s) across partitions. To do this, the first partition took the country with 
the most adm1s and the two countries with the fewest and grouped them together (i.e., Uganda, 
South Sudan, and Sierra Leone in purple). The second partition took the country with the 
second most adm1s and the two countries with the third and fourth fewest adm1s (i.e., Burkina 
Faso, Togo, and Equatorial Guinea in dark blue). This process was repeated until ten partitions 
of three to four countries each were obtained. Countries in white were not included in our 
analysis. 
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Figure S5. Associations between spatial covariates and log ​10​ force of infection. ​ Each dot 
corresponds to an adm1, with median values shown here and used to compute coefficients of 
determination, R​2​. All spatial covariates were centered and scaled for this and other analyses.  
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Figure S6. Population and vaccination coverage maps. ​ Both maps reflect an average across 
2021-2030. In the case of vaccination coverage, age-specific values of vaccination coverage 
were averaged proportion to population by age. All population and vaccination coverage 
estimates used in this analysis were generated by Hamlet et al. ​[8]​.  
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Figure S7. Deaths averted by country during 2021-2030.​ Results from the ensemble model 
corresponding to each serology scenario are shown in each panel. 
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Figure S8. Principal component loadings for spatial covariates with monthly values. ​ Each 
principal component results from summing the product of these loadings and the monthly values 
of a given spatial covariate for each administrative unit. For example, NDVI PC1 results from 
taking the loadings in the upper left panel, multiplying them by monthly NDVI values for each 
administrative unit, and then taking the corresponding sums. This reduces the dimensionality of 
the twelve monthly values of these three variables (a total of 36 variables) down to the eight 
represented here. The number of principal components for each of NDVI, precipitation, and 
temperature was chosen such that 95% of variation in those variables was accounted for by 
these principal components. Maps of the resulting principal components are displayed in Fig. 
S9. As can be gleaned from the loadings, many of these principal components appear to 
capture differences in seasonal climatic patterns across the study region.  
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Figure S9. Spatial covariates used in the regression analysis in Step 4. ​ All variables shown 
here have been centered and scaled, which is how they were used in the regression analysis 
and is sufficient to convey their relative spatial patterns. Rather than making inferences about 
relationships between these variables and force of infection, our goal was ensuring that we had 
variables with sufficiently diverse spatial patterns that the regression models would have 
sufficient flexibility to capture patterns in force of infection projected from Step 3.  
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Table S1. Characteristics of serological studies. ​ Columns include characteristics that: allow 
for cross-referencing with Fig. 2, Fig. S1, and Fig. 3 (country, year, order therein); are related to 
how the serology scenarios were defined (vaccination status, vaccination coverage, outbreak 
investigation); determine force of infection (seropositive, number tested); and determine 
estimates of site-specific reporting probabilities (reported cases, deaths). Note that the number 
seropositive and number tested are totals across all age groups, which varied across studies 
and are not shown in this table in the interest of space. Vaccination coverage pertains to the 
year of the study and reflects a population-weighted average across age groups in the study. 

40 

Country Year Vacc. 
status 

Vacc. 
cov. 

Outbreak 
investig. 

Sero. 
pos. 

Sero. 
tested Cases Deaths Ref. 

CAF 2008 No 0.37 No 0 18 0 0 [54] 

CAF 2008 No 0.39 No 48 339 0 0 [54] 

CAF 2008 No 0.40 No 10 80 0 0 [54] 

CAF 2008 No 0.39 No 18 112 0 0 [54] 

CAF 2008 No 0.39 No 8 211 0 0 [54] 

CAF 2008 No 0.44 No 11 64 2 0 [54] 

CAF 2008 No 0.37 No 30 164 0 0 [54] 

CMR 1984 No 0.20 Yes 10 90 3 2 [55] 

CMR 1984 No 0.36 Yes 17 24 8 2 [55] 

CMR 2000 No 0.28 No 13 55 4 0 [56] 

CMR 2000 No 0.19 No 30 59 3 0 [56] 

CMR 2000 No 0.19 No 13 85 0 0 [56] 

CMR 2000 No 0.27 No 9 27 4 1 [56] 

CMR 2000 No 0.19 No 4 30 2 0 [56] 

ETH 2014 No 0.00 No 0 64 6 0 [57] 

ETH 2014 No 0.00 No 0 135 0 0 [57] 

ETH 2014 No 0.00 No 8 1,313 0 0 [57] 

ETH 2014 No 0.00 No 2 152 0 0 [57] 

KEN 2010 Unknown 0.06 No 22 433 119 46 [58] 

KEN 2010 Unknown 0.01 No 6 36 0 0 [58] 

NGA 1986 No 0.36 Yes 37 207 1,295 564 [59] 

NGA 2008 No 0.29 No 25 310 407 46 [60] 

SDN 2005 No 0.06 Yes 3 3 0 0 [61] 
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