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ABSTRACT 

Introduction 

Long-term graft survival rates after renal transplantation are still moderate. We aimed to 

build an early predictor of an established long-term outcomes marker, the glomerular 

filtration rate (eGFR) one year post-transplant (eGFR-1y).  

Materials and Methods 

A large cohort of 376 patients was characterized for a multi-level bio-marker panel including 

gene expression, cytokines, metabolomics and antibody reactivity profiles. Almost one 

thousand samples from the pre-transplant and early post-transplant period were analysed. 

Machine learning-based predictors were built employing stacked generalization. 

Results 

Pre-transplant data led to a prediction achieving a Pearson’s correlation coefficient of r=0.39 

between measured and predicted eGFR-1y. Two weeks post-transplant, the correlation was 

improved to r=0.63, and at the third month, to r=0.76. eGFR values were remarkably stable 

throughout the first year post-transplant and were the best estimators of eGFR-1y already two 

weeks post-transplant. Several markers were associated with eGFR: The cytokine stem cell 

factor demonstrated a strong negative correlation; and a subset of 19 NMR bins of the urine 

metabolome data was shown to have potential applications in non-invasive eGFR monitoring. 

Importantly, we identified the expression of the genes TMEM176B and HMMR as potential 

prognostic markers for changes in the eGFR. 
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Discussion 

Our multi-centre, multi-level data set represents a milestone in the efforts to predict transplant 

outcome. While an acceptable predictive capacity was achieved, we are still very far from 

predicting changes in the eGFR precisely. Further studies employing further marker panels 

are needed in order to establish predictors of eGFR-1y for clinical application; herein, gene 

expression markers seem to hold the most promise. 
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INTRODUCTION 

Long-term outcomes of renal transplantation are still disappointing, with a median graft 

survival time of around ten years.[1,2] Currently, a large effort is being undertaken to 

determine new risk factors for the outcome of renal transplantation in order to improve 

therapy and organ allocation.[3–6] While a number of risk factors have been identified 

(including HLA mismatch, age of donor or cold ischemia time), they are still not sufficient 

for a precise prediction of transplant outcome.[3,4,6–8] Therefore, machine learning-based 

risk assessment models are envisaged to assist medical decision-making in patient therapy 

and eventually improve patient care.[9] 

The most commonly used end-point for risk assessment models is the incidence of acute 

rejection.[10–14] However, acute rejection occurs rather infrequently in renal transplantation 

and treatments against acute rejection are reasonably effective.[1,15–17] The estimated 

Glomerular Filtration Rate (eGFR) could therefore offer a more appropriate end-point.[6] In 

fact, the eGFR one year post-transplant (eGFR-1y) is an accepted marker of long-term 

transplant outcome.[18–20]  eGFR is an estimate of renal function calculated based on the 

concentration of serum creatinine and demographic characteristics of the patient; it results 

from the combined influence of all individual risk factors.[8,21] This is the reason why 

complex predictive markers are needed – we cannot expect that only one marker will predict 

eGFR-1y. However, to our knowledge there exists still no predictive model of eGFR with a 

sufficient predictive performance for the clinic.  

The goal of this work is to develop a predictive model for the eGFR-1y employing data 

collected in the pre-transplant and early post-transplant period. Furthermore, we aimed to 

identify and characterize potential novel markers of the renal function. For this, we have 
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acquired a multi-level biomarker panel with an eminent immunological focus. Importantly, 

the choice of markers was not based on an explorative multi-omics approach but rather on 

data known for their mechanistic connection to transplant outcome. The markers used here 

were already identified as useful in previous studies addressing immunological risk factors of 

acute transplant rejection.[22–28]  

The analysis was performed according to the following strategy: First, predictive models of 

eGFR-1y were calculated for each marker subset and visit. Second, predictive models were 

combined to provide a final prediction of eGFR-1y. Third, the individual markers of the best 

predictors were investigated in detail, especially to find out whether these markers were 

diagnostic (reflecting the renal function at the time of sampling), or prognostic (predicting 

future changes of the renal function). Finally, a second predictive model was built, using 

exclusively prognostic markers.  

MATERIALS AND METHODS 

Patient population and monitoring 

We characterized the patient cohort of the randomized, multi-centre Harmony trial (NCT 

00724022) for a biomarker panel as part of the e:KID study.[17] Inclusion criteria were the 

availability of follow-up data for eGFR-1y, and for at least one of the three study visits. The 

study was carried out in compliance with the Declaration of Helsinki and Good Clinical 

Practice. The trial was approved by the Ethics Committee of the Gustav Carus Technical 

University Dresden. 

As published before, the patients of the patient cohort were treated with a quadruple (arm A) 

or triple (arms B and C) immunosuppressive therapy.[17] Shortly, arm A received a 
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basiliximab induction therapy and maintenance therapy consisting of tacrolimus (Advagraf®, 

Astellas), mycophenolate mofetil (MMF) and corticosteroids. Arm B received the same 

induction and maintenance therapy, with corticosteroids withdrawn at day 8 post-transplant. 

Finally, induction therapy for arm C consisted of rabbit anti-thymocyte globulin (ATG), with 

the same maintenance therapy as arm B. Furthermore, based on their risk constellation 

patients received an anti-cytomegalovirus prophylaxis consisting of valganciclovir.[29]   

Patients were monitored for eGFR during the first post-transplant year, calculated using the 

CKD-EPI formula and measured in mL·min-1·1.73 m-2.[21]  eGFR was assessed at regular 

intervals: 2nd week, 1st month, 2nd month, 3rd month, 6th month, 9th month, and 12th 

month post-transplant.  

Characterization of the patient cohort by a biomarker panel 

The patients were characterized by a biomarker panel consisting of five marker subsets 

(Table 1) at three visits: pre-transplant (pre-Tx), two weeks post-transplant (2w) and three 

months post-transplant (3m). For a detailed description of the methods employed in the 

characterization, see the Supplementary Methods. 

Shortly, the cytokine concentration levels were measured by ELISA. Gene expression 

markers were selected based on their role in operational tolerance or rejection and measured 

employing TaqMan Gene Expression Assays (Thermo Fisher Scientific).[25–28] Serum 

antibodies (SAB) were screened employing HLA-1 mixed antigen bead assay; the raw mean 

fluorescence intensity for each bead was employed for prediction.[10] The urinary 

metabolomics spectrum was determined employing nuclear magnetic resonance (NMR), 

which was binned and normalized to facilitate the analysis. Finally, while viral loads were 

monitored by qPCR as described before, other clinical data were measured de-centrally and 

provided by the transplantation centres.[30]  
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Sample type Marker type Markers No. of 

markers 

Name of subset 

Serum Cytokine 

concentration 

Interleukin 19 (IL-19), Interleukin 

22 (IL-22), stem cell factor (SCF), 

soluble suppression of 

tumorigenicity 2 (sST2), Beta-

defensin 2 (BD2), angiogenin and 

endostatin 

7 Cytokines 

Whole blood Gene expression of 

tolerance and 

rejection markers 

CD79B, CD200, CD247, CD274, 

CXCL10, FCRL1, FCRL2, FOXP3, 

HMMR, HS3ST1, LAG3, 

MAN1A1, MS4A1, NAV3, PNOC, 

SH2D1B, SLC8A1, TCL1A, TLR5 

and TMEM176B 

20 Gene expression 

Urine Metabolomic 

parameters (given as 

intensities) 

Spectral regions 377 Metabolome 

Serum Single antigen 

reactivity profile 

A subset of HLA-1 allotypes 97 SAB 

Various Demographic and 

clinical characteristics 

Demographics of recipient (age, 

weight, sex, BMI and underlying 

renal disease), donor characteristics 

(donor age, last measured creatinine, 

donor type and expanded criteria 

donor), panel reactive antibodies, 

previous transplants, cold ischemia 

56 Clinical  
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time, anti-HLA mismatch (A, B and 

DR), cytomegalovirus and Epstein-

Barr virus mismatch, physical 

examination values (blood pressure, 

pulse and temperature). 

Therapeutic strategy Therapy arm, valganciclovir 

prophylactic therapy, tacrolimus 

concentration/dose ratio at 2w, MMF 

dose at 2w 

Lab values eGFR, blood viral load (BK virus, 

cytomegalovirus and Epstein-Barr 

virus), anti-BK virus IgG antibodies, 

blood values (white blood cells, red 

blood cells, platelets, haematocrit, 

haemoglobin, alanine transaminase, 

aspartate transaminase, alkaline 

phosphatase, c reactive protein, 

glucose, calcium, phosphate, 

triglycerides, cholesterol, total 

protein and albumin).  

Table 1. Description of the five subsets of the biomarker panel of the e:KID study. The 

number and list of the markers corresponds to those with a data availability such that they 

could be employed for prediction for at least one visit (for more details see Statistical 

analysis: Prediction of eGFR). For the definition of the gene expression subset abbreviations, 

see the Supplementary Methods. 

Statistical analysis: Descriptive statistics 

Categorical variables are summarised here as numbers and frequencies; quantitative variables 

are reported as median and interquartile range (IQR). Box plots depict the median, first and 
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third quartile of a variable; the maximum length of the whiskers corresponds to 1.5 times the 

IQR. Correlations of two continuous variables were calculated employing Pearson’s 

correlation coefficient r. For the visual representation of linear relationships between 

variables, the regression line and the confidence interval were calculated employing Deming 

regression; the 95% confidence interval is shown as a shaded grey area. 

All statistical and modelling analyses were performed employing R (Version 3.6.1).[31]  

Statistical analysis: Prediction of eGFR 

Prediction of eGFR-1y was performed employing the method of stacked generalization, 

which aims to combine several weak predictors to produce a precise final predictive 

model.[32] Reason for this was the differences in data availability patterns between the single 

subsets, as few patients had available data for all subsets for a given time point. Thus, a 

predictor was created for each visit and each one of the five marker subsets.  

The marker subsets were employed for the prediction as follows: For each visit and marker 

subset, only markers with <20% missing values were taken into account. This percentage was 

calculated considering only the patients (partially) characterized for the marker subset at 

hand, not the entire cohort. Missing values were imputed employing the R package mice 

(Version 3.8.0) with the method “classification and regression trees” for multiple imputation 

with 5 multiple imputations and 50 iterations.[33] 

Prediction of eGFR-1y was performed employing elastic net regression (R package glmnet, 

Version 3.0-2) with cross-validation.[34] The elastic net regression was performed with 

eGFR-1y as the dependent variable and the marker subset (as defined above) as independent 

variables. Importantly, elastic net regression performs variable based on its parameters alpha 

and lambda, so that only part of the measured markers are employed for prediction. To avoid 
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overfitting, the elastic net regression was nested in a leave-p-out cross validation (p=5); thus, 

each iteration of the elastic net regression was optimized on a training set of n-5 patients 

(where n is the number of the patients in the subset) and calculated for 5 patients. The values 

of the elastic net parameters alpha and lambda were optimized for each training set 

employing the function cva.glmnet (R package glmnetUtils, Version 1.1.5), with 10 cross-

validation folds.[35] The vector of possible values for alpha was defined as the cubic potency 

of an arithmetic progression between 0 and 1, with a common difference of 0.1. The value of 

the parameters for each training set was set to the combination of alpha and lambda achieving 

the minimum cross-validated mean error in the training set (alpha.min and lambda.min). The 

resulting model for each training set was employed for the prediction of eGFR-1y of the 

corresponding test set. The performance of the predictor was assessed employing the 

Pearson’s r of the correlation between measured and predicted eGFR-1y. 

The final prediction of eGFR-1y for each visit was estimated considering all predictors that 

achieved r>0.15. This final prediction was calculated for each individual patient as a 

weighted mean of all the available predictions; the weighs were defined as the estimated 

Pearson’s correlation coefficient r for each predictor. Importantly, no imputation was 

performed in this step, so that for each single patient only available predictors were 

employed. The quality of the final prediction for each of the visits was likewise assessed 

employing Pearson’s correlation coefficient r. 

Statistical analysis: Selection of important markers and 

identification of prognostic markers 

The selection of markers important for the eGFR-1y prediction from each marker subset was 

based on the internal variable selection of elastic net regression. In the case of the 
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metabolome prediction, due to the high number of markers, variable selection was performed 

with a different optimization of lambda. Thus, the value of lambda leading to the most 

regularized model within one standard error of the minimum cross-validated mean error 

(lambda.1se) was employed for variable selection of the metabolome predictor (but not for 

calculation of eGFR-1y). The importance of a marker was defined as the percentage of cross-

validation iterations for which the marker was selected in the regression. A predictor 

achieving an importance of 100% was considered to be important for the prediction.  

To compare the performance of two different predictors of eGFR, the differences in the 

absolute error of each prediction were tested employing the paired samples Wilcoxon signed 

rank test. 

To determine whether a set of markers was prognostic – i.e. associated with eGFR-1y 

independently of the eGFR at the time of sampling – a multiple linear regression analysis was 

employed. Thus, the regression model incorporated eGFR-1y as dependent variable and the 

variable(s) of interest and the eGFR at the time of sampling (eGFR-2w or eGFR-3m) as 

independent variables. The P values for the independent variables of the regression model 

were calculated employing the t test. Variables achieving a P value below 0.050 were 

considered to be prognostic for eGFR-1y independently from eGFR at the time of sampling, 

therefore providing an added value for the prediction of eGFR-1y. 

RESULTS 

Characteristics of the patient cohort  

Out of 540 patients, a total of 376 (69.6%) patients from 14 transplant centres were 

characterized. A total of 958 samples were measured. The characteristics of the patient cohort 
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are presented in Table 2; eGFR dynamics during the follow-up are depicted in Figure 1. An 

overview of the samples characterized for each marker subset is provided in Table 3. 

Importantly, the patient cohort (N=376) had significantly higher eGFR at 2w than the 

Harmony patients lost to follow-up (N=164) (35.5 [19.9-47.6] vs. 25.6 [12.2-39.8] mL·min-

1·1.73m-2; P<0.001). 

Variable Variable type Cohort (N=376) 

Sex: Female Categorical 130 (34.6%) 

Age at pre-Tx (years) Quantitative 55 [44-62] 

Weight at pre-Tx (kg) Quantitative 77.3 [68.2-88.8] 

BMI at pre-Tx (kg·m-2) Quantitative 25.8 [23.1-28.8] 

Patient with no previous 

transplant 

Categorical 361 (96%) 

Living donor Categorical 55 (14.6%) 

Age of donor (years) Quantitative 53 [44-63] 
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Expanded criteria donor* Categorical 150 (39.9%) 

Total HLA mismatches Quantitative 3 [2-4] 

Cold ischemia time (min) Quantitative 616 [413-840] 

Immunosup

pression 

therapy arm 

Arm A 

(basiliximab 

+ MMF + 

tacrolimus + 

corticosteroid

s) 

 

Categorical 139 (37.0%) 

Arm B 

(basiliximab 

+ MMF + 

tacrolimus) 

Categorical 125 (33.2%) 

Arm C (ATG 

+ MMF + 

tacrolimus) 

Categorical 112 (29.8%) 
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Usage of anti-

cytomegalovirus 

prophylaxis 

Categorical 216 (57.4%) 

Incidence of acute rejection Categorical 38 (10.1%) 

Incidence of severe BK virus 

viremia (>10,000 copies·mL-

1) 

Categorical 47 (12.5%) 

Incidence of severe 

cytomegalovirus viremia 

(>10,000 copies·mL-1) 

Categorical 17 (4.5%) 

GFR-2w (mL·min-1·1.73m-2) Quantitative 34.5 [19.9-47.6] 

GFR-1y (mL·min-1·1.73m-2) Quantitative 47.6 [35.0-60.8] 

Table 2. Characteristics of the patient cohort, including demographics, treatment and 

transplant outcome. Categorical variables are shown as count (% frequency), continuous 

variables as median [IQR]. *The expanded criteria comprise a donor age greater than 60 

years, or an age greater than 50 years combined with at least two of the following factors: 
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cerebrovascular accident as the cause of death, hypertension, or a serum creatinine level of 

more than 1.5 mg·dL-1.[17] 

 

Figure 1. eGFR dynamics in the patient cohort. 

Visits 
Number of samples for prediction 

Cytokines Gene expression Metabolome SAB Clinical Final prediction 

pre-Tx 155 126 35 41 259 273 

2w 163 132 246 42 305 317 

3m 169 141 270 34 323 335 

Table 3. Number of samples employed for the prediction of eGFR-1y for every visit and 

marker subset, including the final prediction. For the size and composition of the marker 

subsets, see Table 1.The low number of pre-Tx metabolome samples is due to the low 

availability of pre-Tx urine samples. 
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Prediction of eGFR-1y with pre-transplant markers was poor, 

while post-transplant panels achieved an acceptable performance 

Due to different data availability patterns, a predictor was generated for each of the five 

marker subsets (Table 1); the final prediction was generated through stacked generalization 

without imputation, using all predictors achieving a Pearson’s correlation coefficient of r > 

0.15 between measured and predicted eGFR-1y. The predicted values of the final model at 

pre-Tx, 2w and 3m are shown in Figure 2A. Figure 2B summarizes the results achieved for 

each marker subset. A detailed representation of the results for each individual marker subset 

is shown in Figure S1. Importantly, accuracy of prediction increases with time: While the 

correlation of measured eGFR-1y and predicted eGFR-1y employing pre-Tx markers was 

poor (r=0.39), already at 2w r was 0.63 and at 3m, r=0.76. The improvement in the prediction 

associated with time was important, achieving a significantly lower absolute error of the 

prediction (pre-Tx vs. 2w: P=0.004; 2w vs. 3m: P<0.001).  

For most marker subsets, no accurate prediction could be achieved. While the clinical subset 

had the highest performance of all predictors, only gene expression at pre-Tx, cytokines at 2w 

and metabolome at 3m achieved a sufficient quality of prediction to be considered in the final 

model (see dashed boxes in Figure 2B). To better understand which individual markers are 

most important for prediction of eGFR-1y, we performed elastic net-based variable selection 

for these best-performing six predictors. The results are shown in Table S1. 
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Figure 2. Summary of the prediction of eGFR-1y. (A) Predicted values of the pre-Tx, 2w and 

3m stacked models against the experimental eGFR-1y values. (B) Summary of the correlation 

achieved between the predicted and measure eGFR-1y by each predictor at the three visits. 

The numeric value indicates the value of the Pearson correlation coefficient r between the 

predicted and the measured eGFR-1y. Predictors achieving an r>0.15 were employed for the 

final prediction; these are highlighted with a dashed line. Note that no prediction was 

performed based on metabolome data pre-Tx due to the low data availability. 
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The pre-transplant immunological state was prognostic of eGFR-

1y 

We first investigated the two predictors employing pre-transplant (pre-Tx) data: the clinical 

and the gene expression subsets (see Table S1). For the latter, we identified a complex 

signature of nine genes as important markers for prediction: CD200, MAN1A1, HS3ST1, 

NAV3, Foxp3, TCL1A, HMMR, PNOC, and TMEM176B. For the first, we identified eight 

important clinical markers, comprising: age of donor and recipient, body mass index of 

recipient, HLA (A, B and DR) donor-recipient-mismatch, cytomegalovirus (CMV) risk 

constellation and, remarkably, the use of anti-CMV prophylactic strategy. 

Already at the second post-transplant week, eGFR was a highly 

precise marker for eGFR-1y 

We further investigated the prediction of eGFR based on 2w and 3m data. For both visits, 

eGFR was an important marker for eGFR-1y (Figure 3).  

At 2w, we also identified the recipient age, donor age and donor CMV serostatus as 

important markers, while for 3m, BMI and donor age were identified.  

eGFR demonstrated a remarkable stability, achieving alone similar results as the complete 

clinical marker subset. We thus investigated whether the demographic factors provide an 

added value for the prediction of eGFR-1y, compared to eGFR alone. Indeed, a multi-

parameter regression revealed that recipient age, donor age and donor CMV serostatus at 2w 

were independently associated with eGFR-1y (recipient age: P=0.045; donor age: P<0.001; 

donor CMV serostatus: P=0.004; eGFR-2w: P<0.001). Likewise, the association of donor age 
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and BMI at 3m with eGFR-1y was independent from eGFR-3m (donor age: P<0.001; BMI: 

P=0.008; eGFR-3m: P<0.001). We therefore considered these factors to be prognostic. 

 

 

Figure 3. Correlation of eGFR-2w and eGFR-3m with eGFR-1y. The strong correlation of 

eGFR-2w and eGFR-3m with eGFR-1y demonstrates a high degree of stability of eGFR. 

Serum concentration of the stem cell factor (SCF) was negatively 

correlated with renal function 

We examined the cytokine predictor at 2w. Only one cytokine was detected as an important 

marker by variable selection, the stem cell factor (SCF). SCF at 2w had a negative correlation 

with eGFR-1y (r=-0.33, P<0.001; Figure 4).  

We further evaluated whether SCF is prognostic for eGFR. As SCF-2w correlated with 

eGFR-2w stronger than with eGFR-1y (r=-0.62, P<0.001; Figure 4), a prognostic quality of 

this marker seems unlikely. Furthermore, a bivariate linear regression analysis did not reveal 

a contribution of the cytokine on the prediction of eGFR-1y (SCF-2w: P=0.612; eGFR-2w: 
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P<0.001). Interestingly, a correlation between SCF and eGFR was observed also at 3m (r=-

0.49, P<0.001), suggesting a stable diagnostic accuracy for eGFR. 

 

 

Figure 4. Correlation of eGFR with SCF-2w. Importantly, the correlation with eGFR-2w was 

stronger than with eGFR-1y. 

eGFR was associated with a urine metabolome signature  

Regarding the prediction of eGFR-1y based on the metabolome subset, a complex signature 

of 19 NMR bins was identified (Table S1). These NMR bins represent up to 35 metabolites, 

with a median of 2 [1.5-5] candidate metabolites per bin (Table S2). Interestingly, among 

these candidates, products of amino acid metabolism and creatinine could be found (Table 

S2).  

The presence of creatinine suggests that the urine signature was diagnostic for eGFR-3m, 

rather than prognostic for eGFR-1y. As expected, a significantly improved prediction 

(P<0.001) was achieved for eGFR-3m (see Figure 5), compared to the eGFR-1y prediction. 
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We furthermore analysed whether a predictive advantage for eGFR-1y could be achieved 

employing together eGFR-3m and metabolome markers at 3m. However, a bivariate linear 

regression analysis revealed no clear added value of the metabolome predictor, while the 

effect of eGFR-3m remained highly significant (Metabolome signature: P=0.097; eGFR-3m: 

P<0.001).  

 

 

Figure 5. Prediction of eGFR employing the metabolome at 3m. As it can be seen, the 

quality of prediction achieved for eGFR-3m was higher than for eGFR-1y. 

TMEM176B and HMMR expression at the second post-

transplant week was prognostic for changes in eGFR 

We further investigated whether any additional prognostic markers can be found in our 

biomarker panel. With this goal, we repeated the analysis incorporating the eGFR at the 

sampling point as a variable to the cytokines, gene expression, metabolome and SAB subsets 
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(Figure 6). While no clear improvement of the prediction capacity was achieved in 

comparison to the main analysis – except perhaps for the gene expression predictor – we 

identified two potential prognostic markers for eGFR-1y: the expression of the genes HMMR 

and TMEM176B. 

  

Figure 6. Summary of the analysis for prognostic eGFR-1y models. The figure depicts the 

correlation achieved between the predicted and measure eGFR-1y by each predictor at the 

three visits. Each predictor incorporates the eGFR at the time of screening as a factor; all 

predictors were employed for the final prediction. 

High levels of HMMR and TMEM176B were associated with eGFR-1y, independently from 

eGFR-2w (HMMR: P=0.048; TMEM176B: P<0.001; eGFR-2w: P<0.001; Figure 7). This 

means that the expression of HMMR and TMEM176B is associated with changes of eGFR 

between 2w and 1y (see Figure 7). The observed association was not due to a potential 

correlation with eGFR-2w: None of the two genes showed a significant association with 
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eGFR-2w employing multivariate regression analysis (HMMR: P=0.825; TMEM176B: 

P=0.057).  

Figure 7. HMMR and TMEM176B as potential prognostic markers of eGFR. The left panel 

shows the prediction of eGFR-1y employing eGFR-2w, HMMR and TMEM176B. Note that 

the achieved correlation is higher than employing eGFR-2w alone (r=0.55, see Figure 5). The 

right panel shows the prediction of eGFR change between 1y and 2w (eGFR-1y – eGFR-2w) 

employing only the expression of HMMR and TMEM176B. The prediction shown in this 

figure was calculated by linear regression without cross-validation, due to the low number of 

predictors.  

DISCUSSION 

In this work, we have performed an in-depth characterization of a large renal transplant 

cohort in the pre- and early post-transplant period, with the goal of predicting transplant 

outcome. We have analysed the cohort of the multi-centre Harmony study at three time points 

using a multi-level biomarker panel, ranging from gene expression to the urine 
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metabolome.[17] Employing these data, we have determined predictive models for the eGFR-

1y, identifying potential prognostic and diagnostic markers of the renal function: 

• Employing pre-transplant data, the predicted value of eGFR-1y had a correlation of 

r=0.39 with the measured eGFR-1y. In the post-transplant period, the quality of 

prediction increased to r=0.63 (two weeks post-transplant) and r=0.76 (three months).  

• eGFR demonstrated a remarkable stability in the first post-transplant year: Post-

transplant prediction was highly dependent on the value of eGFR at the corresponding 

time points. 

• The gene expression marker subset holds eGFR-1y prognostic value. Especially the 

genes HMMR and TMEM176B anticipated changes in eGFR after the second post-

transplant week.  

• Age of donor and recipient, body mass index of recipient, donor-recipient HLA 

mismatch, CMV mismatch and the use of anti-CMV prophylactic strategy also 

demonstrated a prognostic character for eGFR-1y. 

• The serum concentration of the cytokine SCF had a strong correlation with eGFR at 

all measured time points, but no prognostic value. 

• A complex signature of the urine metabolome with potential applications for the 

monitoring of eGFR but no prognostic value was identified. 

The data of our bio-marker panel represent a milestone in the literature of early assessment of 

transplant outcomes, as there exists to our knowledge no other study with a comparably 

profound characterization in a large patient cohort. We have achieved an acceptable 

predictive capacity employing data from the early post-transplant period. Our results 

highlight, however, the major challenge of anticipating changes in the renal function: In spite 
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of the large number of markers and samples characterized, we are still far from being able to 

predict eGFR-1y with an accuracy sufficient for clinical care. 

In our results, the eGFR in the early post-transplant period was by far the most precise 

marker for eGFR-1y. Part of this stability of eGFR can be explained by the nature of our 

transplant cohort, with low immunological risk and reduced adverse events.[17] This stability 

is in line with the literature from the last two decades, highlighting that the challenge of post-

transplant risk assessment is to anticipate the rare negative changes in eGFR.[36–38] 

Here, the most promising markers for eGFR changes belong to the gene expression panel. In 

the second post-transplant week, the expression of the genes HMMR and TMEM176B 

anticipated significantly eGFR drops. This observation is coherent with the literature:  

HMMR is upregulated in lymphocytes during acute rejection in rat.[26] In humans, a study 

on psoriasis has found a significant association between HMMR and response to 

immunosuppression.[24] On the other hand, the expression of TMEM176B in peripheral 

blood is known to be associated with acute rejection in humans.[27] Based on this evidence, 

we hypothesize that increased expression levels of the genes are a symptom of insufficient 

immunosuppression, leading to graft inflammation and decrease of eGFR. 

Regarding further prognostic markers, the results of our pre-transplant clinical predictor are 

in basic agreement with the previous work by Lasserre et al.[6] Their work supports the 

generalizability of our results, as all of the markers identified as important for our predictor 

were employed in their work for prediction.[6]  

We found evidence of an association of eGFR with the cytokine SCF and the urine 

metabolomic profile. While these associations did not have a prognostic character, i.e. they 

are markers of eGFR at the time of monitoring, they might still be of interest for achieving a 

more profound understanding and improved monitoring of eGFR. Thus, there was a strong 
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negative correlation of SCF serum levels with eGFR. An association between SCF and renal 

function has been observed repeatedly in other contexts.[39–42] Experiments in rat offer a 

potential cause, suggesting an association of SCF expression with renal fibrosis.[43] 

Regarding the urine metabolomic profile, our study is a step within current efforts towards a 

non-invasive monitoring of renal function.[22,44–46] Our preliminary analysis suggests a 

role of urinary creatinine and amino acid metabolism in the prediction. This is in agreement 

with the results of Posada-Ayala et al. on markers for chronic kidney disease.[46] 

Importantly, further research is needed for a reduction of the number of candidate metabolites 

of our signature, to develop a non-invasive renal function monitoring assay. 

Our study has some limitations. Firstly, eGFR is only an approximation of the renal 

function.[21] Ideally, the end-point of a predictive model should be measured directly, 

employing a gold standard method.[47] Secondly, the composition of the cohort is not 

representative for the clinical reality, as only patients with low immunological risk were 

admitted into the study.[17] Thirdly, the study design makes it especially sensitive to survivor 

bias, as only patients with a (at least partially) functional graft one year post-transplant are 

evaluated. This is important, since the characterized patients had significantly higher renal 

function two weeks post-transplant than those lost to follow-up. Finally, not all patients could 

be characterized for each marker subset, due to issues of sample availability. While the 

employed modelling approach works well with the different data availabilities for each 

marker subset, an increased data availability could have allowed for a more accurate 

modelling of eGFR-1y and identification of potential markers. 

In summary, we present the results of an unprecedented characterization of a large renal 

transplant cohort during the pre-transplant and early post-transplant period, with the goal of 

predicting the outcome eGFR-1y. Our results highlight the stability of renal function and the 
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difficulty of predicting abrupt changes. They provide two novel candidates for prognostic 

markers – the expression of the genes HMMR and TMEM176B. Furthermore, we have 

provided new evidence on the association between renal function and the cytokine SCF and 

identified a metabolomic signature in urine with potential applications in non-invasive 

monitoring. Finally, we have achieved an acceptable accuracy in the prediction of transplant 

outcome, although our capacity to predict abrupt changes in the eGFR still insufficient for a 

direct application in the clinical context. 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 5, 2021. ; https://doi.org/10.1101/2021.01.04.20248473doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.04.20248473


 28

CONFLICT OF INTEREST STATEMENT 

The authors have no conflicts of interest to disclose 

FUNDING AND ACKNOWLEDGEMENTS 

This work was funded by the German Federal Ministry of Education and Research (BMBF), 

project e:KID (01ZX1312). The funders had no role in data collection, data analysis, data 

interpretation, writing of the manuscript, or manuscript submission. 

 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 5, 2021. ; https://doi.org/10.1101/2021.01.04.20248473doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.04.20248473


 29

 

REFERENCES 

1.  Hart A, Smith JM, Skeans MA, et al. OPTN / SRTR 2016 Annual Data Report Kidney. 

Am J Transplant. 2018;(Suppl 1):18-113. doi:10.1111/ajt.14557 

2.  Wekerle T, Segev D, Lechler R, Oberbauer R. Strategies for long-term preservation of 

kidney graft function. Lancet. 2017;389:2152-2162. doi:10.1016/S0140-

6736(17)31283-7 

3.  Dunn TB, Noreen H, Gillingham K, et al. Revisiting traditional risk factors for rejection 

and graft loss after kidney transplantation. Am J Transplant. 2011;11:2132-2143. 

doi:10.1111/j.1600-6143.2011.03640.x 

4.  Moore J, He X, Shabir S, et al. Development and evaluation of a composite risk score 

to predict kidney transplant failure. Am J Kidney Dis. 2011;57(5):744-751. 

doi:10.1053/j.ajkd.2010.12.017 

5.  Elbadri A, Traynor C, Veitch JT, et al. Factors affecting eGFR 5-year post-deceased 

donor renal transplant: Analysis and predictive model. Ren Fail. 2015;37(3):417-423. 

doi:10.3109/0886022X.2014.1001304 

6.  Lasserre J, Arnold S, Vingron M, Reinke P, Hinrichs C. Predicting the outcome of 

renal transplantation. J Am Med Informatics Assoc. 2012;19(2):255-262. 

doi:10.1136/amiajnl-2010-000004 

7.  Ahmed K, Ahmad N, Khan MS, et al. Influence of Number of Retransplants on Renal 

Graft Outcome. Transplant Proc. 2008;40(5):1349-1352. 

doi:10.1016/j.transproceed.2008.03.144 

8.  Legendre C, Canaud G, Martinez F. Factors influencing long-term outcome after 

kidney transplantation. Transpl Int. 2014;27(1):19-27. doi:10.1111/tri.12217 

9.  Senanayake S, White N, Graves N, Healy H, Baboolal K, Kularatna S. Machine 

learning in predicting graft failure following kidney transplantation: A systematic review 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 5, 2021. ; https://doi.org/10.1101/2021.01.04.20248473doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.04.20248473


 30

of published predictive models. Int J Med Inform. 2019;130(March):103957. 

doi:10.1016/j.ijmedinf.2019.103957 

10.  Wittenbrink N, Herrmann S, Blazquez-Navarro A, et al. A novel approach reveals that 

HLA class 1 single antigen bead-signatures provide a means of high-accuracy pre-

transplant risk assessment of acute cellular rejection. BMC Immunol. 2019;20:11. 

doi:https://doi.org/10.1186/s12865-019-0291-2 

11.  Mancebo E, Castro MJ, Allende LM, et al. High proportion of CD95+ and CD38+ in 

cultured CD8+ T cells predicts acute rejection and infection, respectively, in kidney 

recipients. Transpl Immunol. 2016;34:33-41. doi:10.1016/j.trim.2016.01.001 

12.  Malheiro J, Tafulo S, Dias L, et al. Analysis of preformed donor-specific anti-HLA 

antibodies characteristics for prediction of antibody-mediated rejection in kidney 

transplantation. Transpl Immunol. 2015;32:66-71. doi:10.1016/j.trim.2015.01.002 

13.  Salvadé I, Aubert V, Venetz JP, et al. Clinically-relevant threshold of preformed donor-

specific anti-HLA antibodies in kidney transplantation. Hum Immunol. 2016;77:483-

489. doi:10.1016/j.humimm.2016.04.010 

14.  Shaikhina T, Lowe D, Daga S, Briggs D, Higgins R, Khovanova N. Decision tree and 

random forest models for outcome prediction in antibody incompatible kidney 

transplantation. Biomed Signal Process Control. 2017. 

doi:10.1016/j.bspc.2017.01.012 

15.  Becker LE, Morath C, Suesal C. Immune mechanisms of acute and chronic rejection. 

Clin Biochem. 2016;49:320-323. doi:10.1016/j.clinbiochem.2016.02.001 

16.  Suthanthiran M, Schwartz JE, Ding R, et al. Urinary-Cell mRNA Profile and Acute 

Cellular Rejection in Kidney Allografts. N Engl J Med. 2013;369(1):20-31. 

doi:10.1056/NEJMoa1215555 

17.  Thomusch O, Wiesener M, Opgenoorth M, et al. Rabbit-ATG or basiliximab induction 

for rapid steroid withdrawal after renal transplantation (Harmony): an open-label, 

multicentre, randomised controlled trial. Lancet. 2016;388:3006-3016. 

doi:10.1016/S0140-6736(16)32187-0 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 5, 2021. ; https://doi.org/10.1101/2021.01.04.20248473doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.04.20248473


 31

18.  Salvadori M, Rosati A, Bock A, et al. Estimated one-year glomerular filtration rate is 

the best predictor of long-term graft function following renal transplant. 

Transplantation. 2006;81(2):202-206. doi:10.1097/01.tp.0000188135.04259.2e 

19.  Faddoul G, Nadkarni GN, Bridges ND, et al. Analysis of biomarkers within the initial 2 

years posttransplant and 5-year kidney transplant outcomes: Results from clinical 

trials in organ transplantation-17. Transplantation. 2018;102(4):673-680. 

doi:10.1097/TP.0000000000002026 

20.  Resende L, Guerra J, Santana A, Mil-Homens C, Abreu F, da Costa AG. First Year 

Renal Function as a Predictor of Kidney Allograft Outcome. Transplant Proc. 

2009;41(3):846-848. doi:10.1016/j.transproceed.2009.01.066 

21.  Levey AS, Stevens LA, Schmid CH, et al. A new equation to estimate glomerular 

filtration rate. Ann Intern Med. 2009;150(9):604-612. doi:10.7326/0003-4819-150-9-

200905050-00006 

22.  Banas M, Neumann S, Eiglsperger J, et al. Identification of a urine metabolite 

constellation characteristic for kidney allograft rejection. Metabolomics. 2018;14:116. 

doi:10.1007/s11306-018-1419-8 

23.  Sawitzki B, Schlickeiser S, Reinke P, Volk H-D. Monitoring tolerance and rejection in 

organ transplant recipients. Biomarkers. 2011;16(sup1):S42-S50. 

doi:10.3109/1354750X.2011.578754 

24.  Keeren K, Friedrich M, Gebuhr I, et al. Expression of Tolerance Associated Gene-1, a 

Mitochondrial Protein Inhibiting T Cell Activation, Can Be Used to Predict Response to 

Immune Modulating Therapies. J Immunol. 2009;183(6):4077-4087. 

doi:10.4049/jimmunol.0804351 

25.  Sagoo P, Perucha E, Sawitzki B, et al. Development of a cross-platform biomarker 

signature to detect renal transplant tolerance in humans. J Clin Invest. 

2010;120(6):1848-1861. doi:10.1172/JCI39922 

26.  Sawitzki B, Bushell A, Steger U, et al. Identification of gene markers for the prediction 

of allograft rejection or permanent acceptance. Am J Transplant. 2007;7(5):1091-

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 5, 2021. ; https://doi.org/10.1101/2021.01.04.20248473doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.04.20248473


 32

1102. doi:10.1111/j.1600-6143.2007.01768.x 

27.  Viklicky O, Krystufkova E, Brabcova I, et al. B-cell-related biomarkers of tolerance are 

up-regulated in rejection-free kidney transplant recipients. Transplantation. 

2013;95(1):148-154. doi:10.1097/TP.0b013e3182789a24 

28.  Krepsova E, Tycova I, Sekerkova A, et al. Effect of induction therapy on the 

expression of molecular markers associated with rejection and tolerance. BMC 

Nephrol. 2015;16(1):1-9. doi:10.1186/s12882-015-0141-2 

29.  Blazquez-Navarro A, Dang-Heine C, Bauer C, et al. Sex-associated differences in 

cytomegalovirus prevention: Prophylactic strategy is potentially associated with a 

strong kidney function impairment in female renal transplant patients. Front 

Pharmacol. 2020. doi:10.3389/fphar.2020.534681 

30.  Blazquez-Navarro A, Dang-Heine C, Wittenbrink N, et al. BKV, CMV, and EBV 

Interactions and their Effect on Graft Function One Year Post-Renal Transplantation: 

Results from a Large Multi-Centre Study. EBioMedicine. 2018;34:113-121. 

doi:10.1016/j.ebiom.2018.07.017 

31.  R Core Team, R Development Core Team. R: A language and environment for 

statistical computing. 2019. http://www.r-project.org/. 

32.  Ghaemi MS, DiGiulio DB, Contrepois K, et al. Multiomics modeling of the immunome, 

transcriptome, microbiome, proteome and metabolome adaptations during human 

pregnancy. Bioinformatics. 2019;35(1):95-103. doi:10.1093/bioinformatics/bty537 

33.  van Buuren S, Groothuis-Oudshoorn K. {mice}: Multivariate Imputation by Chained 

Equations in R. J Stat Softw. 2011;45(3):1-67. https://www.jstatsoft.org/v45/i03/. 

34.  Friedman J, Hastie T, Tibshirani R. Regularization Paths for Generalized Linear 

Models via Coordinate Descent. J Stat Softw. 2010;33(1):1-22. 

doi:10.1016/j.expneurol.2008.01.011 

35.  Microsoft, Ooi H. glmnetUtils: Utilities for “Glmnet.” 2020. https://cran.r-

project.org/package=glmnetUtils. 

36.  Gourishankar S, Hunsicker LG, Jhangri GS, Cockfield SM, Halloran PF. The stability 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 5, 2021. ; https://doi.org/10.1101/2021.01.04.20248473doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.04.20248473


 33

of the glomerular filtration rate after renal transplantation is improving. J Am Soc 

Nephrol. 2003;14(9):2387-2394. doi:10.1097/01.ASN.0000085019.95339.F0 

37.  Clayton PA, Lim WH, Wong G, Chadban SJ. Relationship between eGFR decline and 

hard outcomes after kidney transplants. J Am Soc Nephrol. 2016;27(11):3440-3446. 

doi:10.1681/ASN.2015050524 

38.  Atay FF, Taskapan H, Berktas B, Yildirim O, Dogan M, Piskin T. Factors Affecting 

eGFR Slope of Renal Transplant Patients During the First 2 Years. Transplant Proc. 

2019;51(7):2318-2320. doi:https://doi.org/10.1016/j.transproceed.2019.01.165 

39.  Kitoh T, Ishikawa H, Ishii T, Nakagawa S. Elevated SCF levels in the serum of 

patients with chronic renal failure. Br J Haematol. 1998;102(5):1151-1156. 

doi:10.1046/j.1365-2141.1998.00902.x 

40.  Zhang W, Jia L, Liu DLX, et al. Serum Stem Cell Factor Level Predicts Decline in 

Kidney Function in Healthy Aging Adults. J Nutr Heal Aging. 2019;23(9):813-820. 

doi:10.1007/s12603-019-1253-3 

41.  Alachkar N, Ugarte R, Huang E, et al. Stem cell factor, interleukin-16, and interleukin-

2 receptor alpha are predictive biomarkers for delayed and slow graft function. 

Transplant Proc. 2010;42(9):3399-3405. doi:10.1016/j.transproceed.2010.06.013 

42.  El Kossi MMH, El Nahas AM. Stem cell factor and crescentic glomerulonephritis. Am J 

Kidney Dis. 2003;41(4):785-795. doi:https://doi.org/10.1016/S0272-6386(03)00026-X 

43.  Li Y, Zhou L, Liu F, et al. Mast cell infiltration is involved in renal interstitial fibrosis in a 

rat model of protein-overload nephropathy. Kidney Blood Press Res. 2010;33(3):240-

248. doi:10.1159/000317102 

44.  Nkuipou-Kenfack E, Duranton F, Gayrard N, et al. Assessment of metabolomic and 

proteomic biomarkers in detection and prognosis of progression of renal function in 

chronic kidney disease. PLoS One. 2014;9(5). doi:10.1371/journal.pone.0096955 

45.  Ng DPK, Salim A, Liu Y, et al. A metabolomic study of low estimated GFR in non-

proteinuric type 2 diabetes mellitus. Diabetologia. 2012;55(2):499-508. 

doi:10.1007/s00125-011-2339-6 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 5, 2021. ; https://doi.org/10.1101/2021.01.04.20248473doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.04.20248473


 34

46.  Posada-Ayala M, Zubiri I, Martin-Lorenzo M, et al. Identification of a urine 

metabolomic signature in patients with advanced-stage chronic kidney disease. 

Kidney Int. 2014;85(1):103-111. doi:10.1038/ki.2013.328 

47.  Michels WM, Grootendorst DC, Verduijn M, Elliott EG, Dekker FW, Krediet RT. 

Performance of the Cockcroft-Gault, MDRD, and new CKD-EPI formulas in relation to 

GFR, age, and body size. Clin J Am Soc Nephrol. 2010;5:1003-1009. 

doi:10.2215/CJN.06870909 

 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 5, 2021. ; https://doi.org/10.1101/2021.01.04.20248473doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.04.20248473


 35

SUPPLEMENTARY MATERIALS 

 

Supplementary Methods. 

 

Table S1: Results of the variable selection for all subsets achieving a prediction with r>0.15. 

The table shows the name of all markers selected through variable selection, as well as the 

subset and visit they belong to, their importance in the prediction and the nature of their 

association with eGFR-1y. The importance is calculated as the percentage of cross-validation 

iterations for which the marker was considered in the regression. Only markers achieving an 

importance over 20% are listed here. 

 

Table S2: Description of the bins (metabolome at 3m) important for the prediction of eGFR-

1y and identification of the candidate molecules for these bins. 

Figure S1: Detailed results of the prediction of eGFR-1y for every marker subset and visit. 

The correlation achieved between the predicted and measure eGFR-1y by each predictor is 

shown. The numeric value indicates the value of the Pearson correlation for the predicted and 

the measured eGFR-1y.  
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