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Summary 44 

Background 45 

Ageing varies substantially, thus an accurate quantification of ageing is important. We 46 

developed a deep learning (DL) model that predicted age from fundus images (retinal 47 

age). We investigated the association between retinal age gap (retinal 48 

age-chronological age) and mortality risk in a population-based sample of 49 

middle-aged and elderly adults. 50 

Methods 51 

The DL model was trained, validated and tested on 46,834, 15,612 and 8,212 fundus 52 

images respectively from participants of the UK Biobank study alive on 28th February 53 

2018. Retinal age gap was calculated for participants in the test (n=8,212) and death 54 

(n=1,117) datasets. Cox regression models were used to assess association between 55 

retinal age gap and mortality risk. A restricted cubic spline analyses was conducted to 56 

investigate possible non-linear association between retinal age gap and mortality risk. 57 

Findings 58 

The DL model achieved a strong correlation of 0·83 (P<0·001) between retinal age 59 

and chronological age, and an overall mean absolute error of 3·50 years. Cox 60 

regression models showed that each one-year increase in the retinal age gap was 61 

associated with a 2% increase in mortality risk (hazard ratio=1·02, 95% confidence 62 

interval:1·00-1·04, P=0·021). Restricted cubic spline analyses showed a non-linear 63 

relationship between retinal age gap and mortality (Pnon-linear=0·001). Higher retinal 64 

age gaps were associated with substantially increased risks of mortality, but only if 65 

the gap exceeded 3·71 years. 66 

Interpretation 67 

Our findings indicate that retinal age gap is a robust biomarker of ageing that is 68 

closely related to risk of mortality. 69 

Funding 70 

National Health and Medical Research Council Investigator Grant, Science and 71 

Technology Program of Guangzhou. 72 
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Research in context 75 

Evidence before this study 76 

Ageing at an individual level is heterogeneous. An accurate quantification of the 77 

biological ageing process is significant for risk stratification and delivery of tailored 78 

interventions. To date, cell-, molecular-, and imaging-based biomarkers have been 79 

developed, such as epigenetic clock, brain age and facial age. While the invasiveness 80 

of cellular and molecular ageing biomarkers, high cost and time-consuming nature of 81 

neuroimaging and facial ages, as well as ethical and privacy concerns of facial 82 

imaging, have limited their utilities. The retina is considered a window to the whole 83 

body, implying that the retina could provide clues for ageing. 84 

 85 

Added value of this study 86 

We developed a deep learning (DL) model that can detect footprints of aging in 87 

fundus images and predict age with high accuracy for the UK population between 40 88 

and 69 years old. Further, we have been the first to demonstrate that each one-year 89 

increase in retinal age gap (retinal age-chronological age) was significantly associated 90 

with a 2% increase in mortality risk. Evidence of a non-linear association between 91 

retinal age gap and mortality risk was observed. Higher retinal age gaps were 92 

associated with substantially increased risks of mortality, but only if the retinal age 93 

gap exceeded 3·71 years. 94 

 95 

Implications of all the available evidence 96 

This is the first study to link the retinal age gap and mortality risk, implying that 97 

retinal age is a clinically significant biomarker of ageing. Our findings show the 98 

potential of retinal images as a screening tool for risk stratification and delivery of 99 

tailored interventions. Further, the capability to use fundus imaging in predicting 100 

ageing may improve the potential health benefits of eye disease screening, beyond the 101 

detection of sight-threatening eye diseases.102 
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Introduction 103 

Globally, the population aged 60 and over is estimated to reach 2·1 billion in 2050.1 104 

Ageing populations place tremendous pressure on health-care systems.2 The rate of 105 

ageing at an individual level is heterogeneous. An accurate quantification of the 106 

biological ageing process is significant for risk stratification and the delivery of 107 

tailored interventions.3 108 

 109 

To date, several tissue-, cell-, molecular-, and imaging-based biomarkers have been 110 

developed, such as DNA-methylation status, brain age and three dimensional (3D) 111 

facial age.4-7 While the invasiveness of cellular and molecular ageing biomarkers, 112 

high cost and time-consuming nature of neuroimaging and facial ages, and ethical and 113 

privacy concerns of facial imaging, have limited their utilities. 114 

 115 

The retina is considered a window to the whole body.8-12 In addition, the retina is 116 

amenable to rapid, non-invasive, and cost-effective assessments. The advent of deep 117 

learning (DL) has greatly improved the accuracy of image classification and 118 

processing. Recent studies have demonstrated successful applications of DL models 119 

in the prediction of age using clinical images.5,6,13 Taken together, this raises the 120 

potential that biological age can be predicted by applying DL to retinal images. For 121 

optimal utility, viable biomarkers of ageing must also relate to the risk of age-related 122 

morbidity and mortality. 123 

 124 

We therefore developed a DL model that can predict age from fundus images, known 125 

as retinal age. Using a large population-based sample of middle-aged and elderly 126 

adults, we investigated the association between retinal age gap, defined as the 127 

difference between retinal age and chronological age, and all-cause mortality. 128 

 129 

Methods 130 

Study population 131 
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The UK Biobank is a large-scale, population-based cohort of more than 500,000 UK 132 

residents aged 40-69 years. Participants were recruited between 2006 and 2010, with 133 

all participants completing comprehensive health-care questionnaires, detailed 134 

physical measurements, and biological sample collections. Health-related events were 135 

ascertained via data linkage to hospital admission records and mortality registry. 136 

Ophthalmic examinations were introduced in 2009. The overall study protocol and 137 

protocols for each test have been described in extensive details elsewhere.14 138 

 139 

The National Information Governance Board for Health and Social Care and the NHS 140 

North West Multicenter Research Ethics Committee approved the UK Biobank study 141 

(11/NW/0382) in accordance with the principles of the Declaration of Helsinki, with 142 

all participants providing informed consent. The present analysis operates under UK 143 

Biobank application 62525. 144 

 145 

Fundus photography 146 

Ophthalmic measurements including LogMAR visual acuity, autorefraction and 147 

keratometry (Tomey RC5000, Tomey GmbH, Nuremberg, Germany), intraocular 148 

pressure (IOP, Ocular Response Analyzer, Reichert, New York, USA), and paired 149 

retinal fundus and optical coherence tomography imaging (OCT, Topcon 3D OCT 150 

1000 Mk2, Topcon Corp, Tokyo, Japan) were collected. A 45-degree non-mydriatic 151 

and non-stereo fundus image centered to include both the optic disc and macula was 152 

taken for each eye. A total of 131,238 images from 66,500 participants were obtained 153 

from the UK Biobank study, among which 80,170 images from 46,970 participants 154 

passed the image quality check. 155 

 156 

Deep learning model for age prediction 157 

To build the DL model for age prediction, participants from the UK Biobank study 158 

alive on 28th February 2018 (Nsubj=46,970) were randomly split into three datasets – 159 

training (Nsubj=27,424, 60% of participants), validation (Nsubj=9,142, 20%), and test 160 

(Nsubj=9,142, 20%). For the training and validation datasets, fundus images from both 161 
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eyes (if available) were used to maximise the volume of data available (Nimg=46,834 162 

and 15,612 respectively). For the test dataset, fundus images from right eyes were 163 

selected for primary analyses (Nsubj=8,212), while fundus images from left eyes were 164 

selected for sensitivity analyses. 165 

 166 

The development and validation of the DL model for age prediction are outlined in 167 

Figure 1. Briefly, all fundus images were preprocessed by subtracting average color,15 168 

resized to a resolution of 299*299 pixels, and pixel values rescaled to 0~1. After 169 

preprocessing, images were fed into a DL model using a Xception architecture. 170 

During training, data augmentation was performed using random horizontal or 171 

vertical flips and the algorithm optimised using stochastic gradient descent. To 172 

prevent overfitting, we implemented a dropout of 0·5, and carried out early stopping 173 

when validation performance did not improve for 10 epochs. The selection of DL 174 

models was based on performance in the validation set. The performance of the DL 175 

model, including mean absolute error (MAE) and correlation between predicted 176 

retinal age and chronological age, was calculated. We then retrieved attention maps 177 

from the DL models using guided Grad-CAM,16 which highlights pixels in the input 178 

image based on their contributions to the final evaluation. 179 

 180 

Retinal age gap definition 181 

The difference between retinal age predicted by the DL model and chronological age 182 

was defined as the retinal age gap. A positive retinal age gap indicated an ‘older’ 183 

appearing retina, while a negative retinal age gap indicated a ‘younger’ appearing 184 

retina. 185 

 186 

Mortality ascertainment 187 

Mortality status and date of death were ascertained via data linkage to the National 188 

Health Service central mortality registry. Participants who had died from all causes 189 

during the follow-up period (Nsubj=1,117) were included in the death dataset. Duration 190 

of follow-up for each participant (person-year) was calculated as the length of time 191 
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between baseline age and date of death, loss to follow-up, or complete follow-up (28th 192 

February 2018), whichever came first.  193 

 194 

Covariates 195 

Factors previously known to be associated with mortality17 were included as potential 196 

confounders in the present analyses. These variables included baseline age, sex, 197 

ethnicity (recorded as white and non-white), Townsend deprivation indices (an 198 

area-based proxy measure for socioeconomic status), education attainment (recorded 199 

as college or university degree, and others), smoking status (recorded as 200 

current/previous and never), physical activity level (recorded as above 201 

moderate/vigorous/walking recommendation and not), general health status (recorded 202 

as excellent/good and fair/poor), and comorbidities (obesity, diabetes mellitus, 203 

hypertension, history of heart diseases, and history of stroke). 204 

 205 

Body mass index (BMI) was calculated as body weight in kilograms divided by 206 

height squared. Obesity was defined as BMI >30 kg/m2. Diabetes mellitus was 207 

defined as self-reported or doctor-diagnosed diabetes mellitus, the use of 208 

anti-hyperglycaemic medications or insulin, or a glycosylated haemoglobin level 209 

of >6·5%. Hypertension was defined as self-reported, or doctor-diagnosed 210 

hypertension, the use of antihypertensive drugs, an average systolic blood pressure of 211 

at least 130mmHg or an average diastolic blood pressure of at least 80mmHg. 212 

Self-reported history of angina and heart attack was used to classify history of heart 213 

diseases. 214 

 215 

Statistical analyses 216 

Descriptive statistics, including means and standard deviations (SDs), numbers and 217 

percentages, were used to report baseline characteristics of study participants. The 218 

retinal age gap was calculated for participants in the test and death datasets, and 219 

further used to explore the association between retinal age gap and mortality risk. Cox 220 

proportional hazards regression models considering retinal age gap as a continuous 221 
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linear term were fitted to estimate the effect of a one-year increase in retinal age gap 222 

on mortality risk. We then investigated associations between retinal age gaps at 223 

different quantiles with mortality. In addition, a restricted cubic spline analyses of 224 

possible non-linear associations between retinal age gap and mortality status was 225 

performed, with 5 knots placed at equal percentiles of the retinal age gap, and retinal 226 

age gap of zero years used as the reference value. We adjusted Cox models for the 227 

following covariates – baseline age, sex, ethnicity, and Townsend deprivation indices 228 

(model I); additional educational level, obesity, smoking status, physical activity level, 229 

diabetes mellitus, hypertension, general health status, history of heart diseases, and 230 

history of stroke (model II). 231 

 232 

The proportional hazards assumption for each variable included in the Cox 233 

proportional hazards regression models were graphically assessed. All variables were 234 

found to meet the assumption. A two-sided p value of < 0·05 indicated statistical 235 

significance. Analyses were performed using R (version 3.3.0, R Foundation for 236 

Statistical Computing, www.R-project.org, Vienna, Austria) and Stata (version 13, 237 

StataCorp, Texas, USA). 238 

 239 

Role of the funding source 240 

The funders had no role in study design, data collection, data analyses, data 241 

interpretation, preparation of the manuscript, and decision to publish. The 242 

corresponding author had full access to all data and final responsibility for the 243 

decision to submit for publication. 244 

 245 

Results 246 

Study sample 247 

The study population characteristics are described in Table 1. The DL model was 248 

trained and validated on subsets of participants with mean ages of 55·6 ± 8·21 and 249 

55·7 ± 8·19 years; and with 55·9% and 55·2% female, respectively. For the test and 250 
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death datasets, participants had mean ages of 55·5 ± 8·22 and 61·0 ± 6·67 years; and 251 

were 55·1% and 42·2% female, respectively. 252 

 253 

Deep learning model performance for age prediction 254 

Figure 2A shows the performance of the DL model on the test dataset. The trained DL 255 

model was able to achieve a strong correlation of 0·83 (P<0·001) between predicted 256 

retinal age and chronological age, with an overall MAE of 3·50 years. Two 257 

representative examples of fundus images with corresponding attention maps for age 258 

prediction are shown in Figure 3. Regions around retinal vessels are highlighted by 259 

the DL model for age prediction. 260 

 261 

Retinal age gap 262 

The distribution of the retinal age gap followed a nearly normal distribution (Figure 263 

2B). The mean (SD) and median (interquartile range) of the retinal age gap were -0.16 264 

(4.54) and -0.19 (-2.99, 2.60). The proportions of fast agers with retinal age gaps more 265 

than 3, 5 and 10 years were 22.0%, 12.0% and 1.67%, respectively. 266 

 267 

Retinal age gap and mortality 268 

Considering linear effects only and following adjustment for all confounding factors, 269 

each one-year increase in retinal age gap was associated with a 2% increase in 270 

mortality risk (hazard ratio [HR] = 1·02, 95% confidence interval [CI]: 1·00-1·04, P = 271 

0·021; Table 2). Compared to participants with retinal age gaps in the lowest quantile, 272 

mortality risk was comparable for those in the second and the third quantiles (HR = 273 

1·05, 95% CI: 0·88-1·24, P = 0·602; HR = 0·89, 95% CI: 0·73-1·09, P = 0·261, 274 

respectively). Mortality risk was significantly increased for participants with retinal 275 

age gaps in the fourth quantile (HR = 1·33, 95% CI: 1·06-1·67, P = 0·012; Table 2). 276 

 277 

Allowing for non-linearity, Figure 5 illustrates the estimated association between 278 

retinal age gap and mortality risk. Evidence of an overall and non-linear association 279 

between retinal age gap and mortality risk was observed (Poverall < 0·001; Pnon-linear = 280 
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0·001). Higher retinal age gaps were associated with substantially increased risks of 281 

mortality, but only if the retinal age gap exceeded 3·71 years. 282 

 283 

Sensitivity analyses 284 

In order to verify the robustness of our findings, fundus images from left eyes were 285 

chosen for the statistical analyses. Similar results were observed for left eyes (data not 286 

shown). 287 

 288 

Discussion 289 

Using a large population-based sample of middle-aged and elderly adults, we 290 

developed a DL model that could predict age from fundus images with high accuracy. 291 

Further, we found that the retinal age gap, defined as the difference between predicted 292 

retinal age and chronological age, independently predicted the risk of mortality. Our 293 

findings have demonstrated that retinal age is a robust biomarker of ageing that can 294 

predict all-cause mortality. 295 

 296 

To the best of our knowledge, this is the first study that has proposed retinal age as a 297 

biomarker of ageing. Our trained DL model achieved excellent performance with a 298 

MAE of 3·5, outperforming most existing biomarkers in the prediction of age. 299 

Previous studies have demonstrated MAEs of 3·3-5·2 years for DNA methylation 300 

clock,18,19 5·5-5·9 years MAEs for blood profiles,20,21 and 6·2-7·8 years MAEs for the 301 

transcriptome ageing clock.22,23 Neuroimaging and 3D facial imaging have achieved 302 

accurate performances in age prediction with MAEs between 4·3 and 7·3,7,24 and 2·8 303 

and 6·4 years,6,25 respectively. Despite these reasonable accuracies, the invasiveness 304 

of cellular and molecular ageing biomarkers, high cost and time-consuming nature of 305 

neuroimaging and 3D facial ages, and ethical and privacy concerns of facial imaging, 306 

have limited their utilities. In addition to excellent performance in age prediction, 307 

determining retinal age using fundus images is fast, safe, cost-effective and 308 

user-friendly, thus offering great potential for use in a large number of people. 309 

 310 
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Beyond age prediction, our study has extended the application of retinal age to the 311 

prediction of survival. Our novel findings have determined that the retinal age gap is 312 

an independent predictor of increased mortality risk, further suggesting that retinal 313 

age is a clinically significant biomarker of ageing. The relevance of retinal age for 314 

general health is intuitive, given that the retina is the only organ that is amenable to in 315 

vivo visualisation of the microvasculature and neural tissue. The retina offers a unique, 316 

accessible ‘window’ to evaluate underlying pathological processes of systemic 317 

vascular and neurological diseases that are associated with increased risks of mortality. 318 

This hypothesis is supported by previous studies which have suggested that retinal 319 

imaging contains information about cardiovascular risk factors,26 chronic kidney 320 

diseases27 and systemic biomarkers.28 In addition, this hypothesis is also consistent 321 

with previously reported qualitative and quantitative studies that have found that 322 

ocular imaging measures (e.g. retinal-vessel calibre) and retinal diseases (e.g. 323 

glaucoma) are significantly associated with mortality.29,30 This body of work supports 324 

the hypothesis that the retina plays an important role in the ageing process and is 325 

sensitive to the cumulative damages of ageing which increase the mortality risk. 326 

 327 

Our findings have several important clinical implications. Firstly, the fast, 328 

non-invasive, and cost-effective nature of fundus imaging enables it to be an 329 

accessible screening tool to identify individuals at an increased risk of mortality. This 330 

risk stratification will assist tailored health-care decision-making, as well as targeting 331 

and monitoring of interventions. Given the rising burden of non-communicable 332 

diseases and population ageing globally, the early identification and delivery of 333 

personalised health-care may have tremendous public health benefits. Further, the 334 

recent development of smartphone-based retinal cameras, together with the 335 

integration of DL algorithms, may in the future provide point-of-care assessments of 336 

ageing and improve accessibility to tailored risk assessments. Secondly, the capability 337 

to use fundus images in predicting ageing may improve potential health benefits of 338 

eye disease screening, beyond the diagnosis of sight-threatening eye diseases. This 339 

may improve the health economic cost-effectiveness of programs such as diabetic 340 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 30, 2020. ; https://doi.org/10.1101/2020.12.24.20248817doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.24.20248817
http://creativecommons.org/licenses/by-nc-nd/4.0/


retinopathy screening, thus increasing the impact and access to eye disease screening 341 

programs. 342 

 343 

The large-scale sample size, long-term follow-up, standardised protocol in capturing 344 

fundus images, validity of mortality data, and adjustment for a wide range of 345 

confounding factors in the statistical models of this study support the robustness of 346 

our findings. Despite these promising results, our study has several limitations. Firstly, 347 

these current analyses are limited by retinal images that were captured at a particular 348 

cross-section in time, with trajectories in retinal ageing potentially being a better 349 

indicator of mortality. Secondly, participants involved in the UK Biobank study were 350 

volunteers, who might not be representative of the population from which they were 351 

drawn. Of note, the potential healthy effect might underestimate effects of retinal age 352 

gap on mortality, as individuals with extremely poor health were less likely to 353 

participate in this study. Thirdly, the lack of external datasets might limit the 354 

generalisability of our DL algorithms and findings. Lastly, we were unable to fully 355 

exclude the possibility of residual confounders between retinal age gap and mortality. 356 

 357 

Conclusion 358 

In summary, we have developed a DL algorithm that can detect footprints of ageing in 359 

fundus images and predict age with high accuracy. Further, we have been the first to 360 

demonstrate that the retinal age gap is significantly associated with an increased risk 361 

of mortality. Our findings suggest that retinal age is a robust biomarker of ageing. 362 

Lastly, our work calls for future research into applications of the retinal age gap, and 363 

whether retinal age can be used to better understand processes underpinning ageing. 364 
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 463 

Figure 1. Overview of the study workflow 464 

Figure legend: Figures showing the study workflow used to calculate retinal age gaps 465 

from fundus images. Fundus images were preprocessed and fed into the DL model. (A) 466 

The Xception architecture was used to train fundus images, with chronological age as 467 

the outcome variable; (B) The selection of DL models was based on performance in 468 

the validation set, where predicted retinal and chronological ages were compared; (C) 469 

The selected trained DL model was then applied to make retinal age predictions from 470 
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fundus images for participants in the test and death datasets; (D) The difference 471 

between predicted retinal age and chronological age was defined as the retinal age gap. 472 

A positive retinal age gap indicated an ‘older’ appearing retina, while a negative 473 

retinal age gap indicated a ‘younger’ appearing retina. This figure was created with 474 

BioRender.com. 475 

476 

Figure 2. Performance of the deep learning model on the test dataset 477 

Figure legend: (A) Scatterplot depicting correlation of predicted age (y-axis) with 478 

chronological age (x-axis); (B) Histogram showing the nearly normal distribution of 479 

the retinal age gap. 480 
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 482 

Figure 3. Attention maps for age prediction 483 

Figure legend: Figures showing representative examples of fundus images with 484 

corresponding attention maps for age prediction. Regions highlighted with a brighter 485 

colour indicate areas that are used by the DL model for age prediction. Regions 486 

around the retinal vessels are highlighted. 487 
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 489 

Figure 4. Adjusted survival curves for mortality risk by retinal age gap quantiles 490 

Figure legend: Mortality risk is shown over time for participants in different retinal 491 

age gap quantiles. Lower quantiles corresponded to participants who had 492 

chronological ages greater than predicted retinal age, whereas higher quantiles 493 

corresponded to those with chronological ages lower than predicted retinal age. Plots 494 

were based on Cox proportional hazards regression models, adjusted for age, sex, 495 

ethnicity, Townsend deprivation indices, educational level, obesity, smoking status, 496 

physical activity level, diabetes mellitus, hypertension, general health status, history 497 

of heart diseases, and history of stroke. Compared to participants with retinal age gaps 498 

in the lowest quantile, mortality risk was comparable for those in the second and the 499 

third quantiles (hazard ratio [HR] = 1·05, 95% confidence interval [CI]: 0·88-1·24, P 500 

= 0·602; HR = 0·89, 95% CI: 0·73-1·09, P = 0·261, respectively). Mortality risk was 501 

significantly increased for participants with retinal age gaps in the fourth quantile (HR 502 

= 1·33, 95% CI: 1·06-1·67, P=0·012). 503 
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 505 

Figure 5. Association between retina age gap and mortality risk, allowing for 506 

non-linear effects 507 

Figure legend: The reference retinal age gap for this plot (with hazard ratio [HR] 508 

fixed as 1·0) was 0 years. The model was fitted with a restricted cubic spline for 509 

retinal age gap (knots placed at equal percentiles of retina age gap), adjusted for age, 510 

sex, ethnicity, Townsend deprivation indices, educational level, obesity, smoking 511 

status, physical activity level, diabetes mellitus, hypertension, general health status, 512 

history of heart diseases, and history of stroke. Evidence of an overall and non-linear 513 

association between retinal age gap and all-cause mortality was observed (Poverall < 514 

0·001; Pnon-linear = 0·001). Higher retinal age gaps were associated with substantially 515 

increased risks of mortality, but only if the retinal age gap exceeded 3·71 years. 516 
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Table 1. Characteristics of datasets derived from the UK Biobank study 518 

 Training a Validation a Test Death 

Nsubj 27424 9142 8212 1117 

Nimg 46834 15612 8212 1117 

Mean age (mean+SD, yrs) b 55·6+8·21 55·7+8·19 55·5+8·22 61·0+6·67 

Female, N (%) b 15,341 (55·9) 5,045 (55·2) 4,526 (55·1) 471 (42·2) 

White ethnicity, N (%) b 25,400 (92·6) 8,468 (92·6) 7,618 (92·8) 1,035 (92·7) 

Townsend index (mean+SD) b -1·09+2·94 -1·10+2·96 -1·08+2·95 -0·73+3·12 

College or university degree, N (%) b 9,981 (36·4) 3,344 (36·6) 3,035 (37·0) 299 (26·8) 

Current/previous smoker, N (%) b 11,671 (42·8) 3,905 (43·0) 3,532 (43·1) 659 (59·4) 

Above physical activity recommendation, N (%) b 18,746 (82·7) 6,219 (82·4) 5,682 (83·4) 681 (77·4) 

Excellent/good health status, N (%) b 20,290 (74·5) 6,738 (74·0) 6,149 (75·2) 618 (55·8) 

Obesity, N (%) b 6,239 (22·9) 2,112 (23·2) 1,840 (22·5) 312 (28·1) 

Diabetes mellitus, N (%) b 1,332 (4·86) 443 (4·85) 428 (5·21) 133 (11·9) 

Hypertension, N (%) b 19,632 (71·6) 6633 (72·6) 5,956 (72·5) 928 (83·1) 

History of heart diseases, N (%) b 848 (3·09) 296 (3·24) 250 (3·04) 94 (8·42) 

History of stroke, N (%) b 309 (1·13) 83 (0·91) 103 (1·25) 35 (3·13) 

 

Nsubj = number of subjects; Nimg = number of images; yrs = years; SD = standard deviation. 

a Selection of images of both eyes if available. 

b Values are based on Nsubj. 
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Table 2. Association between retinal age gap with mortality using Cox proportional 520 

hazards regression models 521 

 

Retinal age gap 

 

N 

 

Mean+SD (yrs) 

Model I Model II 

HR (95% CI) P value HR (95% CI) P value 

Retinal age gap, per one age (yrs) 9,329 -0·31+4·59 1·03 (1·01-1·05) <0·001 1·02 (1·00-1·04) 0·021 

Retinal age gap       

Quantile 1 2,333 -5·98+2·69 Reference - Reference - 

Quantile 2 2,332 -1·72+0·82 1·11 (0·96-1·29) 0·168 1·05 (0·88-1·24) 0·602 

Quantile 3 2,332 1·01+0·81 0·96 (0·80-1·15) 0·666 0·89 (0·73-1·09) 0·261 

Quantile 4 2,332 5·43+2·59 1·46 (1·20-1·78) <0·001 1·33 (1·06-1·67) 0·012 

 

HR = hazard ratio; CI = confidence interval. 

Model I adjusted for age, sex, ethnicity, and Townsend deprivation indices. 

Model II adjusted for covariates in Model I + educational level, obesity, smoking status, physical activity level, diabetes mellitus, 

hypertension, general health status, history of heart diseases, and history of stroke. 

 522 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 30, 2020. ; https://doi.org/10.1101/2020.12.24.20248817doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.24.20248817
http://creativecommons.org/licenses/by-nc-nd/4.0/

