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Abstract	20 

As	COVID-19	continues	to	pose	significant	public	health	threats,	quantifying	the	21 

effectiveness	of	different	public	health	interventions	is	crucial	to	inform	intervention	22 

strategies.	Using	detailed	epidemiological	and	mobility	data	available	for	New	York	City	23 

and	comprehensive	modeling	accounting	for	under-detection,	we	reconstruct	the	COVID-24 

19	transmission	dynamics	therein	during	the	2020	spring	pandemic	wave	and	estimate	the	25 

effectiveness	of	two	major	non-pharmaceutical	interventions—lockdown-like	measures	26 

that	reducing	contact	rates	and	universal	masking.	Lockdown-like	measures	were	27 

associated	with	>50%	transmission	reduction	for	all	age	groups.	Universal	masking	was	28 

associated	with	a	~7%	transmission	reduction	overall	and	up	to	20%	reduction	for	65+	29 

year-olds	during	the	first	month	of	implementation.	This	result	suggests	that	face	covering	30 

can	substantially	reduce	transmission	when	lockdown-like	measures	are	lifted	but	by	itself	31 

may	be	insufficient	to	control	SARS-CoV-2	transmission.		Overall,	findings	support	the	need	32 

to	implement	multiple	interventions	simultaneously	to	effectively	mitigate	COVID-19	33 

spread	before	the	majority	of	population	can	be	protected	through	mass-vaccination.		34 

	35 

Keywords:	COVID-19;	transmission	dynamics;	effectiveness	of	intervention;	social	36 

distancing;	lockdown;	face	covering	37 

	38 

Introduction	39 

Since	the	emergence	of	SARS-CoV-2	in	late	2019,	the	virus	has	infected	over	79	million	40 

people	and	killed	over	1.75	million	worldwide	by	the	end	of	2020	(as	of	12/27/20).1		Non-41 

pharmaceutical	interventions	such	as	social	distancing	and	face	covering	have	been	the	42 
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main	strategies	to	contain	COVID-19	during	this	pandemic	in	2020.		In	late	2020,	Phase-III	43 

trials	for	several	SARS-CoV-2	vaccines	showed	highly	promising	results	and	were	granted	44 

emergency	use	in	several	countries.2,3		However,	before	these	vaccines	become	widely	45 

available	to	the	general	population	(likely	in	mid-	or	late	2021),	non-pharmaceutical	46 

interventions	will	need	to	remain	the	main	strategies	to	contain	COVID-19.		In	addition,	47 

future	(re)emerging	infectious	disease	outbreaks	may	need	to	rely	on	similar	non-48 

pharmaceutical	measures.		It	is	thus	critical	to	understand	the	effectiveness	of	different	49 

non-pharmaceutical	interventions	implemented	during	the	COVID-19	pandemic	waves	in	50 

order	to	inform	effective	future	planning	while	balancing	economic	need.			For	instance,	51 

with	face	covering	and	social	distancing	by	closing	businesses	as	two	main	interventions,	52 

the	more	effective	face	covering	is,	the	more	businesses	could	remain	open.		As	a	simplified	53 

calculation,	with	a	basic	reproductive	number	(R0)	of	3	and	minimal	immunity,	a	city	could	54 

maintain	55%	business	capacity	while	curbing	epidemic	growth,	if	its	residents	could	55 

reduce	transmission	by	40%	using	face	covering	[ie,	effective	reproductive	number	Rt	=	3	×	56 

55%	×	(1	–	40%)	=	0.99	<	1];	this	threshold	business	capacity	would	drop	to	33%	if	no	57 

residents	used	face	covering.			58 

	59 

However,	assessing	the	effectiveness	and	impact	of	a	given	intervention	for	COVID-19	has	60 

been	challenging	due	to	low	infection	detection	rates	(many	asymptomatic	and	mild	61 

infections	do	not	seek	care	or	receive	testing),4	fluctuation	of	those	infection	detection	62 

rates,	differential	disease	manifestation	by	age	group,5,6	and	concurrent	public	health	63 

interventions.		As	such,	while	a	few	studies	have	assessed	the	overall	effectiveness	of	64 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted December 27, 2020. ; https://doi.org/10.1101/2020.09.08.20190710doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.08.20190710


 4 

lockdown-like	measures,	to	date,	the	effectiveness	of	specific	measures	including	face	65 

covering	under	real-world	conditions	remains	unclear.			66 

	67 

To	estimate	the	effectiveness	of	different	non-pharmaceutical	public	health	interventions,	68 

here	we	thus	focus	on	the	2020	spring	COVID-19	pandemic	wave	in	New	York	City	(NYC),	69 

the	first	COVID-19	epidemic	center	in	the	United	States,	where	detailed	data	are	also	70 

available.		NYC	experienced	widespread	COVID-19	transmission	citywide	since	early	March	71 

and	recorded	over	200,000	cases	and	over	21,000	COVID-19	confirmed	or	probable	deaths	72 

during	the	following	three	months.	To	curb	this	intense	transmission,	NY	State	and	NYC	73 

implemented	multiple	intervention	measures,	including	health	promotion	campaigns	in	74 

early	March,	telecommuting	and	staggered	work	schedule	recommendations	beginning	the	75 

week	of	March	8,	public	schools	closure	starting	the	week	of	March	15,7	stay-at-home	76 

orders	for	non-essential	workers	starting	the	week	of	March	22,8	and	requirements	for	use	77 

of	face	covering	in	public	starting	the	week	of	April	12.9		With	these	overlapping	and	far	78 

reaching	public	health	interventions,	case	diagnoses	and	hospitalizations	peaked	in	April,	79 

and	started	to	decline	substantially	in	late	April	and	May.	NYC	was	able	to	begin	its	phased	80 

re-opening	of	industries	starting	the	week	of	June	7,	2020.		81 

	82 

In	this	study,	we	apply	a	model-inference	system10-12	developed	to	support	the	city's	83 

COVID-19	pandemic	response	to	reconstruct	the	underlying	transmission	dynamics	of	84 

COVID-19	in	NYC	during	March	1	–	June	6,	2020	(i.e.	prior	to	the	city's	reopening).		To	85 

address	the	aforementioned	challenges,	our	model-inference	system	simultaneously	86 

assimilates	three	sources	of	data:	1)	confirmed	COVID-19	case	data,	2)	COVID-19	87 
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associated	death	data	(both	cases	and	deaths	are	assimilated	by	neighborhood	and	age	88 

group),	and	3)	neighborhood-level	mobility	data	to	constrain	the	model	system.	This	89 

enables	inference	of	the	overall	infection	rate	(i.e.	including	those	not	documented	by	90 

surveillance),	estimation	of	key	transmission	characteristics	(e.g.,	the	reproductive	91 

number)	through	time,	and	assessment	of	the	effectiveness	of	different	public	health	92 

interventions,	including	social	distancing	and	face	covering,	implemented	over	time.	We	93 

further	incorporate	these	estimates	to	project	cases	and	deaths	in	the	weeks	beyond	our	94 

study	period	and	compare	the	projections	to	independent	observations	in	order	to	evaluate	95 

the	accuracy	of	these	estimates.		We	conclude	with	a	discussion	on	the	implication	of	our	96 

findings	on	strategies	to	safely	reopen	economies	in	places	COVID-19	continues	to	pose	97 

substantial	public	health	threats.	98 

	99 

Results	100 

Overall	Epidemic	Trends	101 

Following	diagnosis	of	the	first	case	in	NYC,	confirmed	COVID-19	cases	in	the	entire	102 

population	increased	nearly	exponentially	during	the	first	three	weeks	(Fig	1B)	before	103 

slowing	down	beginning	the	week	of	March	22,	2020	when	NYC	implemented	a	stay-at-104 

home	order.		However,	case	trajectories	differed	substantially	by	age	group.	Foremost,	105 

reported	cases	increased	with	age:	the	case	trajectory	for	those	aged	25-44	years	mirrored	106 

the	overall	epidemic	curve,	those	older	than	45	years	had	higher	case	rates,	and	those	107 

under	25	years	had	the	lowest	case	rates	(Fig	1A	and	Table	S1).	Infants	(i.e.	<1	year),	108 

however,	had	higher	case	rates	than	1-4	and	5-14	year-olds	(Fig	1).	In	addition,	the	timing	109 

of	peak	case	rate	was	mixed.	Case	rates	in	25-44,	45-64,	and	65-74	year-olds	peaked	110 
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earliest	during	the	week	of	March	29,	2020,	followed	by	<1,	1-4,	15-24,	and	75+	year-olds	111 

with	a	1-week	lag;	in	comparison,	the	case	rate	for	5-14	year-olds	fluctuated	with	a	less	112 

clear	peak	during	the	weeks	of	March	29	–	April	26,	2020.		113 

	114 

The	epidemic	trends	based	on	diagnosed	cases,	however,	were	obscured	by	varying	115 

infection	detection	rates	by	age	and	through	time.	COVID-19	infections	are	more	likely	to	116 

manifest	as	symptomatic	illness	and/or	more	severe	disease	in	individuals	with	underlying	117 

conditions	and	in	older	adults.5,6	Such	differential	clinical	characteristics	by	age	thus	lead	to	118 

varying	healthcare	seeking	behaviors	and	infection	detection	rates	by	age.	In	addition,	119 

testing	policies	varied	over	the	course	of	the	Spring	2020	COVID-19	pandemic	in	NYC.	120 

During	this	time,	testing	capacity	was	limited	at	the	federal,	state	and	local	levels	by	121 

guidelines	for	who	should	be	tested	(due,	for	example,	to	limited	availability	of	test	kits,	122 

swabbing	supplies	and	reagents),	which	required	prioritizing	testing	for	severely	ill	123 

patients	and	those	highly	vulnerable	to	severe	disease.	Testing	capacities	expanded	during	124 

the	week	of	March	8,	2020;13	however,	by	late	March,	material	shortages	(including	testing	125 

kits	and	personal	protective	equipment)	again	prompted	the	city	to	restrict	testing	to	those	126 

severely	ill.14	Using	our	model-inference	system,	we	estimated	that	infection	detection	127 

rates	increased	in	early	March,	reaching	a	peak	of	around	20%	for	all	ages	overall	during	128 

the	week	of	March	15,	and	declined	afterwards	before	increasing	again	in	mid-April.11,12	129 

	130 

After	accounting	for	infection	detection	rates	to	include	undiagnosed	infections,	a	different	131 

picture	of	the	NYC	spring	outbreak	emerges	(Fig	2	and	Fig	S3).	Estimated	infection	rates	132 

were	highest	among	25-44	and	45-64	year-olds	(Fig.	2	F	and	G),	followed	by	65-74	and	75+	133 
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year-olds	(Fig.	2	H	and	I),	then	5-14	and	15-24	year-olds	(Fig.	2	D	and	E),	and	were	lowest	134 

among	<1	and	1-4	year	olds	(Fig.	2	B	and	C;	Table	S1).	Estimated	infection	rates	in	the	135 

younger	age	groups	(in	particular,	5-14,	15-24,	and	25-44	year-olds;	Fig.	2	D-F)	peaked	136 

during	the	week	of	March	22,	2020,	followed	by	the	three	older	age	groups	(i.e.	45-64,	65-137 

74,	and	75+	year-olds;	Fig.	2	G-I)	about	a	week	later.			138 

	139 

Given	the	large	uncertainties	in	model	estimates,	we	verified	our	estimates	of	infection	140 

rates	using	available	serology	data	collected	during	three	phases	of	the	pandemic	(i.e.	141 

early-phase	in	March,15	mid-phase	in	April,16	and	end	of	the	pandemic	wave	in	June17).	142 

Overall,	our	estimated	cumulative	infection	rates	were	in	line	with	corresponding	143 

measures	from	antibody	tests,	for	all	three	phases	of	the	pandemic	wave	(for	details,	see	144 

the	Appendix	of	Yang	et	al.	202011,12)	145 

	146 

Overall	effectiveness	of	interventions	147 

The	reproductive	number	at	time-t	(Rt)	measures	the	average	number	of	persons	an	148 

infected	individual	infects	and	thus	reflects	underlying	epidemic	dynamics.	The	epidemic	149 

expands	in	size	if	Rt	is	above	unity	and	subsides	otherwise.	In	addition,	when	the	entire	150 

population	is	susceptible	and	no	interventions	are	in	place,	Rt,	referred	to	as	the	basic	151 

reproductive	number	(R0),	reflects	the	transmissibility	of	an	infection	in	that	population.	152 

Here	we	estimated	that	Rt	was	2.99	[median	and	interquartile	range	(IQR):	2.32	–	3.86;	153 

Table	S2]	during	the	first	week	of	the	pandemic	(i.e.	the	week	of	March	1)	in	NYC,	similar	to	154 

R0	estimates	reported	for	other	places.18,19	It	decreased	to	around	2.2	during	the	next	two	155 

weeks,	when	NY	State	declared	a	state	of	emergency	and	public	awareness	and	voluntary	156 
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precautionary	measures	(e.g.	avoiding	public	transit20)	increased	(Fig	2A).	Following	the	157 

stay-at-home	mandate	starting	the	week	of	March	22,	Rt	dropped	substantially	to	1.37	158 

(IQR:	1.08	–	1.68)	during	that	first	week,	to	0.93	(IQR:	0.73	–	1.13)	a	week	later,	and	to	a	159 

minimum	of	0.56	(IQR:	0.45	–	0.67)	during	the	week	of	April	12	(Fig	2A).	These	prompt	160 

decreases	in	Rt	from	mid-March	to	mid-April	indicate	that	implemented	public	health	161 

messaging	and	interventions	were	effective	in	curtailing	COVID-19	transmission.		162 

	163 

Similar	decreases	in	Rt	occurred	among	most	age	groups	(Fig	2	B-I).	Overall,	Rt	among	164 

younger	age	groups	(<45	years)	decreased	one	or	two	weeks	earlier	than	older	age	groups	165 

(45-64,	65-74,	and	75+;	Fig	2	C-F	vs.	Fig	2	G-I).	Of	note,	among	the	four	age	groups	with	166 

higher	contact	rates21	(i.e.	5-14,	15-24,	25-44,	and	45-64	year-olds),	Rt	dropped	below	1	the	167 

earliest	among	5-14	year-olds	(0.99,	IQR:	0.74	–	1.30;	Table	S2)	during	the	week	of	March	168 

22.	This	is	consistent	with	the	earliest	public	health	interventions	to	this	age	group:	the	169 

closure	of	public	schools	beginning	the	week	of	March	15.7		170 

	171 

Effectiveness	of	reducing	contact	via	school	closure	and	voluntary	or	mandated	stay-172 

at-home	measures	173 

Several	public	health	interventions	were	implemented	around	the	same	time	(Fig.	2),	and	174 

some	interventions	may	take	longer	to	produce	an	effect	(e.g.,	due	to	slower	compliance	175 

with	the	measure).	It	is	thus	challenging	to	separate	the	impact	of	different	interventions.	176 

However,	a	number	of	measures	–	including	voluntarily	working	from	home	during	the	177 

early	weeks	of	the	pandemic,	school	closures,	and	the	stay-at-home	mandate	–	in	effect	178 

reduce	rates	of	close	in-person	contact,	a	key	factor	for	COVID-19	transmission.	Thus,	here	179 
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we	focus	on	estimating	the	impact	of	interventions	whose	primary	mechanism	of	action	is	180 

through	a	reduction	in	population	contact	rates.	Given	the	difficulties	measuring	this	181 

quantity	directly,	we	instead	approximated	population	contact	rates	using	human	mobility	182 

data,	which	record	real	time	population	movement	based	on	location	changes	of	individual	183 

mobile	devices	(see	Data).	Indeed,	the	reduction	in	Rt	mirrored	the	reduction	in	mobility	184 

(Fig	3).	The	Pearson	correlation	(r)	between	Rt	and	mobility	over	the	14-week	study	period	185 

was	0.96	for	all	ages	overall	and	≥0.9	for	1-4,	5-14,	15-24,	and	25-44	year-olds	(Table	S3).	186 

Thus,	we	focused	on	mobility	as	a	proxy	for	contact	rates	and	used	this	quantity	to	estimate	187 

the	corresponding	changes	in	Rt	and	segregate	the	impact	of	interventions	that	reduce	188 

population	contact	rates	from	other	concurrent	interventions.			189 

	190 

Mobility	reduced	by	11.6%	during	the	second	week	of	the	pandemic	in	NYC	(i.e.	the	week	of	191 

March	8),	and	by	a	further	33.5%	and	17.3%	in	the	following	two	weeks,	respectively	(Fig	192 

3).	Using	observed	mobility	data	(i.e.	our	proxy	for	population	contact	rates)	to	estimate	193 

the	corresponding	changes	in	Rt,	we	estimate	that,	for	all	ages	overall,	reductions	in	194 

population	contact	rates	were	associated	with	Rt	reductions	of	10.1%	(95%	CI:	8.3	–	195 

11.9%)	by	the	second	week	of	the	pandemic,	and	another	29.2%	(95%	CI:	24.9	–	33.5%)	196 

and	15.0%	(95%	CI:	14.3	–	15.8%)	in	the	following	two	weeks,	respectively	(Fig	3A).	By	the	197 

week	of	April	12	when	Rt	reached	its	minimum,	the	reduction	in	population	contact	rates	198 

was	associated	with	an	Rt	reduction	of	70.7%	(95%	CI:	65.0	–	76.4%).	In	addition,	analysis	199 

at	the	neighborhood	level	consistently	showed	large	reductions	in	Rt	that	were	likely	due	to	200 

reductions	in	population	contact	rates	(range	of	median	estimates:	66.1	–	90.1%	across	the	201 

42	neighborhoods	in	NYC;	Fig	S4).			202 
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	203 

In	addition,	transmission	in	four	age	groups	(i.e.,	5-14,	15-24,	25-44,	and	45-64	year-olds)	204 

appeared	to	be	most	impacted	by	changing	population	contact	rates	(Fig	3	and	Table	1).	205 

The	reduction	in	population	contact	rates	was	associated	with	decreases	of	the	age-specific	206 

Rt	by	83.4%	(95%	CI:	80.1	–	86.7%)	for	5-14	year-olds,	65.4%	(95%	CI:	57.0	–	73.8%)	for	207 

15-24	year-olds,	76.5%	(95%	CI:	68.5	–	84.6%)	for	25-44	year-olds,	and	68.9%	(95%	CI:	208 

59.2	–	78.6%)	for	45-64	year-olds,	by	the	week	of	April	12.	209 

	210 

Effectiveness	of	face	covering/masking	under	real-world	conditions	211 

Estimated	transmission	rates	(or	probability	of	infection)	and	the	infectious	period	also	212 

closely	tracked	changes	in	mobility	(Table	S3;	r≥0.5	for	most	age	groups).	Thus,	it	appears	213 

that	reducing	mobility	not	only	reduces	contact	rates	but	also	likely	reduces	1)	the	214 

probability	of	transmission	per	contact	due	to,	e.g.,	increased	public	spacing	and	2)	the	215 

effective	infectious	period	per	infected	individual	due	to,	e.g.,	more	time	spent	at	home	and	216 

as	a	result	reduced	time	for	community	transmission	despite	likely	unchanged	duration	of	217 

viral	shedding.	Given	this	observation,	we	hypothesize	that	the	relationship	between	218 

mobility	and	estimated	transmission	rates	(and	effective	infectious	period)	can	be	used	to	219 

disentangle	the	impact	of	interventions	that	reduce	population	contact	rates	(particularly,	220 

the	stay-at-home	mandate)	and	face	covering/masking	—	two	major	public	health	221 

interventions	implemented	in	NYC	during	the	pandemic	—	on	transmission.		We	make	two	222 

predictions	if	this	hypothesis	holds.	First,	predicted	transmission	rates	(infectious	period)	223 

using	mobility	data	alone	would	be	higher	(longer)	than	those	estimated	by	the	model-224 

inference	system	additionally	based	on	case	and	mortality	data	for	weeks	when	face	225 
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covering	in	public	was	mandated	as	it	would	lead	to	further	reductions	in	transmission	(i.e.,	226 

temporality	and	direction	of	the	impact).	Second,	while	the	efficacy	of	masking	(i.e.,	227 

measured	under	ideal	conditions	of	mask	quality	and	correct	use)	likely	does	not	vary	by	228 

individual,	the	effectiveness	of	masking	(i.e.,	measured	under	real-world,	often	imperfect	229 

conditions)	and	impact	of	this	intervention	could	vary	by	subpopulation	due,	for	example,	230 

to	different	usage	rates	of	masks;	as	such,	we	expect	the	predictive	errors	to	be	larger	for	231 

age	groups	with	higher	compliance	of	masking	(i.e.,	magnitude	of	the	impact).	Our	analyses	232 

largely	confirmed	both	predictions.	For	the	first,	as	shown	in	Fig	4,	transmission	rates	233 

predicted	using	a	linear	regression	model	with	the	observed	mobility	as	the	sole	predictor	234 

were	higher	than	those	estimated	by	the	model-inference	system,	following	the	face	235 

covering	mandate	starting	the	week	of	April	12.9	For	the	latter,	the	discrepancies	in	the	two	236 

model	estimates	(i.e.	the	gaps	between	the	dashed	and	solid	blue	lines;	Fig	4)	appeared	to	237 

increase	with	age	and	were	largest	among	the	two	elderly	age	groups	who	have	been	238 

reported	to	more	frequently	use	masks.22-24	However,	infants	(<1	year)	appeared	to	have	a	239 

larger	reduction	than	other	children	groups;	this	could	have	been	due	to	transmission	240 

reduction	related	to	their	sources	of	infection	(e.g.	their	caretakers	and	healthcare	settings	241 

where	they	tended	to	be	exposed).	Similar	patterns	held	for	the	effective	infectious	period	242 

(Fig	4).			243 

	244 

Given	these	observations,	we	further	used	the	discrepancies	in	the	two	model	estimates	to	245 

approximate	the	impact	of	face	covering	on	reducing	COVID-19	transmission.	Combining	246 

the	reduction	in	the	transmission	rate	and	effective	infectious	period,	we	estimated	that,	247 

for	all	ages	combined,	face	covering	contributed	to	a	6.6%	(95%	CI:	0.8	–	12.4%)	reduction	248 
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during	the	first	month	it	was	implemented	and	a	3.4%	(95%	CI:	-1.9	–	8.6%)	reduction	over	249 

the	entire	8	weeks	prior	to	the	city's	reopening	(Table	1).	As	expected,	the	estimated	250 

impact	varied	substantially	by	age	group.	The	effectiveness	was	20.8%	(95%	CI:	-0.1	–	251 

41.6%)	for	65-74	year-olds	and	20.8%	(95%	CI:	-0.9	–	42.5%)	for	75+	year-olds	during	the	252 

first	month	and	remained	at	similar	levels	afterwards.	For	25-44	and	45-64	year-olds,	two	253 

age	groups	with	the	highest	infection	rates	(Fig	2),	the	effectiveness	was	4.5%	(95%	CI:	-0.6	254 

–	9.7%)	and	8.1%	(95%	CI:	-0.1	–	16.1%)	in	the	first	month,	respectively;	however,	it	255 

reduced	substantially	afterwards,	likely	due	to	reversed	risk	behavior.	Of	note,	in	addition	256 

to	the	likely	lower	usage	rate	of	face	covering	in	late	May	–	early	June,	increases	in	risky	257 

behaviors	such	as	large	gatherings	at	the	time25	may	have	partially	obscured	the	258 

effectiveness	of	masking.		259 

	260 

Retrospective	projections	of	cases	and	deaths		261 

NYC	started	phased	reopening	from	the	week	of	6/7/2020,	which	allows	industries	to	262 

gradually	reopen	per	a	four-phase	plan.26	For	instance,	manufacturing	industries	were	263 

allowed	to	reopen	starting	the	week	of	6/7/2020	(dubbed	"Phase	1"),	whereas	real	estate	264 

was	allowed	to	reopen	starting	the	week	of	6/21/2020	(dubbed	"Phase	2"),	and	personal	265 

care	services	were	allowed	starting	the	week	of	7/6/2020	(dubbed	"Phase	3").	As	such,	266 

population	mobility	has	increased	gradually	during	this	time,	which	could	lead	to	increased	267 

transmission	of	unknown	magnitude.	Such	changes	also	offer	an	opportunity	to	test	the	268 

accuracy	of	our	estimates	–	should	the	estimated	effectiveness	of	reducing	contact	rates	269 

and	utilizing	face	coverings	be	accurate,	these	estimates	could	be	used	to	anticipate	270 

changes	in	transmission	in	response	to	the	changing	mobility	and	in	turn	the	epidemic	271 
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dynamics	after	reopening.	We	thus	used	these	estimates	to	generate	projections	of	cases	272 

and	deaths	for	the	8	weeks	beyond	our	study	period,	and	compared	the	projections	to	273 

available,	independent	corresponding	observations.	Overall,	our	projections	274 

underestimated	the	total	number	of	cases	(relative	error	of	median	projections:	-27%	over	275 

8	weeks;	Fig	5A)	but	were	able	to	accurately	estimate	the	total	number	of	deaths	(relative	276 

error:	-2%	over	8	weeks;	Fig	5B).	In	addition,	examination	of	age-grouped	projections	277 

shows	that	the	underestimation	of	cases	was	mostly	among	younger	age	groups	whose	278 

case	rates	had	increased	in	June	(1-4,	5-14,	15-24	and	25-44	year-olds;	Fig	S5).	These	279 

recent	increases	in	young	cases	may	have	resulted	from	more	young	adults	returning	to	280 

work	including	some	in	service	industries	with	high	contact	rates	and,	relatedly,	sending	281 

their	children	to	childcare	and/or	summer	camps	due	to	a	lack	of	caretakers	at	home	282 

[information	from	NYC	Department	of	Health	and	Mental	Hygiene	(DOHMH)	community	283 

investigation;	unpublished].	In	addition,	increased	risk	behaviors	of	some	young	284 

individuals	(e.g.,	large	parties	without	physical	distancing25)	may	have	also	contributed	to	285 

the	increased	cases	among	young	adults	in	late	June.27	Consistently,	COVID-19	associated	286 

mortality,	mostly	occurring	among	older	adults	continued	to	decrease	and	were	accurately	287 

predicted	for	different	age	groups	(Fig	S6).		288 

	289 

Discussion	290 

The	spring	2020	pandemic	wave	in	NYC,	the	first	epidemic	center	in	the	US,	provides	a	test	291 

case	to	study	COVID-19	epidemiological	characteristics	and	the	effectiveness	of	public	292 

health	interventions.	Through	comprehensive	modeling,	we	have	reconstructed	the	293 

transmission	dynamics	and	estimated	the	effectiveness	of	two	major	interventions,	social	294 
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distancing	and	mandatory	face	covering	in	public.	Our	results	show	that	reducing	contact	295 

rates	(mainly	via	school	closures	and	voluntary	or	mandated	stay-at-home	measures)	likely	296 

contributed	to	the	largest	reduction	in	transmission	in	the	population	overall	(~70%)	and	297 

for	most	age	groups	(>50%	for	all	age	groups).	Widespread	use	of	face	covering	likely	298 

contributed	to	an	additional	~7%	overall	reduction	and	up	to	~20%	reduction	among	65+	299 

year-olds	during	the	first	month	face	covering	was	mandated	in	public	places.	Our	findings	300 

largely	consolidate	previous	model	estimates	on	the	impact	of	lockdown-like	301 

measures4,28,29	and	studies	on	face	covering	in	reducing	COVID-19	transmission.	These	302 

findings	provide	insights	that	can	inform	COVID-19	mitigation	efforts	in	the	coming	months	303 

before	the	majority	of	population	can	be	protected	through	mass-vaccination,	as	well	as	304 

control	strategies	for	other	(re)emerging	infections	in	the	future.			305 

	306 

Lockdown-like	measures	where	confinement	at	home	is	encouraged	or	mandated	through	307 

school	closures,	telework	policies,	closure	of	non-essential	businesses,	and	stay-at-home	308 

orders	have	been	a	major	control	measure	to	curb	COVID-19	spread.	In	effect,	such	309 

measures	reduce	population	contact	rates	and	thus	transmission.	Previous	modeling	310 

studies	estimated	that	lockdowns	reduced	COVID-19	transmission	(measured	by	Rt)	by	311 

58%	in	Wuhan,	China,4	45%	(95%	CI:	42-49%)	in	Italy,29	and	77%	(95%	CI:	76-78%)	in	312 

France.28	Our	estimate	for	NYC	overall	(~70%)	is	consistent	with	these	previous	estimates.	313 

In	addition,	our	estimates	show	that	reducing	population	contact	rates	effectively	reduced	314 

transmission	across	all	age	groups	(ranging	from	a	51%	reduction	among	1-4	year-olds	to	315 

83%	among	5-14	year-olds;	Table	1).	Together,	these	findings	underscore	the	importance	316 
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of	reducing	contact	rates	through,	for	example,	physical	distancing	in	places	with	317 

continuous	community	transmission	of	COVID-19.		318 

	319 

The	use	of	surgical	masks	or	cloth	face	coverings	has	been	another	major	preventive	320 

measure	for	COVID-19.	Studies	overall	have	shown	that	surgical	masks	could	substantially	321 

reduce	onward	transmission	albeit	with	a	large	range	of	efficacy	estimates	across	322 

settings.30	However,	it	remains	unclear	the	overall	effectiveness	of	universal	face	covering	323 

requirements	at	the	population	level,	especially	during	a	pandemic,	due	to	several	factors:	324 

1)	The	overall	effectiveness	depends	on	compliance	which	may	vary	across	subpopulations	325 

and	time;	2)	Improper	use	of	face	coverings	(e.g.	without	covering	the	nose	and/or	mouth	326 

or	improper	handling31)	can	reduce	the	effectiveness	of	face	covering;	3)	Face	coverings	327 

are	required	and	mostly	worn	in	public	and	thus	likely	have	a	lower	impact	in	private	328 

settings,	particularly	in	reducing	household	transmission;	consequently,	the	relative	impact	329 

of	face	covering	depends	on	the	relative	contribution	of	different	sources	of	transmission	330 

(e.g.	household	vs.	community)	at	a	given	time	and	vice	versa;	and	4)	Use	of	face	coverings	331 

may	lead	to	complacency	and	less	stringent	adherence	to	social	distancing	and	stay-at-332 

home	behaviors.	Here	we	estimated	a	~7%	reduction	in	overall	transmission	during	the	333 

first	month	of	the	face	covering	mandate.	However,	the	estimated	effectiveness	varied	334 

largely	across	age	groups	with	much	higher	effectiveness	among	older	adults	(~20%	for	335 

both	65-74	and	75+	year-olds	vs.	<10%	for	other	age	groups).	This	discrepancy	was	likely	336 

due	to	the	differential	compliance	and	types	of	face	covering	used.	Observational	studies	in	337 

Wisconsin	and	surveys	nationwide	in	April/May	reported	about	2-fold	higher	rates	of	face	338 

covering	usage	among	older	adults	versus	younger	adults	and	minors.22-24	In	addition,	due	339 
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to	the	shortage	of	surgical	masks	during	March–May,32	older	adults	at	higher	risk	of	severe	340 

COVID-19	infection	were	more	likely	to	use	surgical	masks	whereas	younger	age	groups	341 

more	frequently	used	non-medical	cloth	coverings,	which	are	often	less	effective33,34	(e.g.	342 

measured	ultrafine	filtration	efficiency	is	~50%	for	surgical	masks	vs.	~10-25%	for	T-shirt	343 

and	~25-35%	for	cotton	covers34).			344 

	345 

When	lockdown-like	measures	are	lifted,	residents	will	spend	more	time	outside	their	346 

homes	than	during	the	lockdown.	Adjusting	for	the	time	spent	outside	of	homes	(~8.3	347 

hours	in	April	2020	vs.	~11.5	hours	in	June-July	2020	and	~13.5	hours	pre-pandemic;	NYC	348 

data35),	universal	face	covering	would	have	reduced	overall	transmission	by	~9–11%	(i.e.,	349 

6.6%	multiplied	by	a	factor	of	1.4–1.6)	during	reopening,	given	the	same	rates	of	face	350 

covering	as	in	April.	However,	if	the	same	effectiveness	among	older	adults	were	achieved	351 

among	other	age	groups,	universal	face	covering	could	reduce	overall	transmission	by	up	to	352 

~28–32%	(i.e.,	20%	multiplied	by	a	factor	of	1.4–1.6).		The	implication	of	this	latter	353 

estimate	is	two-fold.		On	the	one	hand,	it	suggests	that	for	places	with	high	level	of	354 

transmission,	implementing	face	covering	alone	is	likely	insufficient	to	lower	the	effective	355 

reproductive	number	Rt	to	<1	in	order	to	control	the	epidemic	[for	instance,	for	a	city	with	356 

an	R0	=	3,	the	resulting	Rt	would	be	3	×	(1–	30%)	=	2.1].	This	finding	is	consistent	with	the	357 

observed	resurgence	of	COVID-19	cases	in	NYC	during	fall/winter	2020	despite	the	358 

concurrent	high	usage	rate	of	face	coverings	(~90%	of	survey	respondents	in	NYC	reported	359 

always	or	frequently	wearing	masks	in	public	in	July	2020;36	and	this	number	was	likely	360 

higher	during	fall/winter	2020).			On	the	other	hand,	our	findings	also	suggest	that	361 

improving	effective	usage	rates	of	face	coverings,	especially	among	younger	age	groups,	362 
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could	significantly	mitigate	the	risk	of	resurgence	of	COVID-19	infections	during	re-opening	363 

(i.e.,	~30%	reduction	without	compromising	economic	growth).		It	is	thus	crucial	for	future	364 

research	to	understand	reasons	for	the	use/non-use	and	selection	of	face	coverings	by	age	365 

group	to	inform	strategies	to	increase	consistent	and	correct	mask	use	in	settings	where	366 

social	distancing	is	not	possible.			367 

	368 

It	is	important	to	note,	however,	that	not	all	individuals	have	the	same	opportunities	to	369 

physically	distance	and/or	adopt	face	coverings	during	a	pandemic,	despite	government	370 

mandates.	For	instance,	over	one	million	frontline	workers	in	NYC	(e.g.,	healthcare	371 

workers,	transportation	workers,	janitors,	and	grocery	clerks,	which	comprise	25	percent	372 

of	the	city's	workforce)	had	to	continue	their	essential	work	during	the	pandemic.37	In	373 

addition,	data	from	the	U.S.	Bureau	of	Labor	Statistics	suggest	Black	and	Latino	374 

communities	have	less	opportunities	to	work	from	home.38	Consequently,	NYC	375 

neighborhoods	with	more	frontline	workers	and/or	Black	and	Latino	residents	tended	to	376 

have	lower	reductions	in	population	mobility	during	the	pandemic.35	In	NYC,	these	377 

communities	also	experience	a	number	of	social	conditions	that	are	thought	to	exacerbate	378 

COVID-19,	including	overcrowded	multigenerational	households,	poverty,	and	high	379 

prevalence	of	chronic	diseases.		These	communities,	known	to	also	carry	a	higher	burden	of	380 

underlying	health	conditions,	suffered	greater	impacts	from	COVID-19	and	have	expressed	381 

fear	and	experiences	of	racialized	bias	when	wearing	a	face	covering.39,40	Further	research	382 

is	warranted	to	investigate	such	health	disparities.	In	addition,	future	policies	should	take	383 

into	account	structural	inequities	in	labor	trends,	overcrowded	housing,	and	underlying	384 
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conditions	and	adopt	additional	preventive	measures	to	protect	those	vulnerable	385 

communities.		386 

	387 

We	also	note	there	remain	large	uncertainties	in	our	estimates	due	to	several	limitations.	388 

First,	we	used	population	mobility	as	a	proxy	for	contact	rates	rather	than	more	direct	389 

measures.	Similar	approximation	and	uncertainty	applied	to	our	estimates	of	the	390 

effectiveness	of	face	covering.	Future	studies	are	thus	warranted	for	further	assessment.	391 

For	instance,	large	population	scale	surveys	documenting	changes	of	the	intensity	and	392 

pattern	of	contact	during	the	pandemic	could	provide	more	accurate	measures	of	contact	393 

rates	among	different	age	groups	and	over	time.		Second,	while	we	restricted	our	analysis	394 

on	the	effectiveness	of	face	covering	to	a	period	when	masks	were	mandated,	there	remain	395 

other	residual	confounding	effects.	For	instance,	increased	awareness	of	COVID-19	and	396 

health	risk	among	key	age	groups	such	as	the	elderly	may	have	contributed	to	further	397 

reductions	of	transmission	through	other	precautions in	addition	to	face	covering;	this	may	398 

have	led	to	an	overestimation	of	the	effectiveness	of	face	covering	for	those	age	groups.		399 

Third,	here	we	focused	on	estimating	the	effectiveness	of	interventions	in	the	general	400 

population	without	segregating	key	settings	with	intense	transmission	(e.g.,	long-term	care	401 

facilities).	Future	studies	should	assess	the	impact	of	interventions	targeting	such	high-risk	402 

settings.		Lastly,	our	estimates	here	were	largely	based	on	the	first	wave	of	the	pandemic	403 

and	may	not	fully	capture	subsequent	changes	in	awareness	and	perception	of	COVID-19	404 

and	related	behavioral	adjustment	during	later	waves.		However,	we	have	also	used	a	405 

similar	methodology	to	estimate	the	effectiveness	of	reducing	contact	rates	and	face	406 

covering	under	different	city	reopening	schedules	and	generated	long-term	projections	for	407 
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NYC;	the	projections	generated	during	June	2020	for	the	period	of	June	2020	–	May	2021	408 

have	been	consistent	with	observations	up	to	the	end	of	2020	(i.e.,	at	the	time	of	this	409 

writing;	see	the	projected	resurgence	and	second	wave	in	Yang	et	al.41 and	comparison	410 

with	available	data	in	Fig	S7).		These	results	thus	support	the	robustness	of	our	estimates	411 

here.				412 

	413 

Our	study	also	has	several	strengths.	In	particular,	our	estimates	were	based	on	414 

comprehensive	model-inference	incorporating	multiple	data	streams	and	further	evaluated	415 

using	model	projections.		Our	results	thus	provide	an	assessment	of	two	major	public	heath	416 

interventions	(reducing	contact	rates	and	face	covering)	at	the	population	level	where	the	417 

overall	effectiveness	depends	on	multiple	factors	in	addition	to	the	efficacy	of	a	given	418 

intervention.	Altogether,	our	estimates	support	the	need	for	multiple	interventions	419 

(including	reducing	contact	rates	by,	e.g.,	restricting	occupancy,	universal	face	covering,	420 

and,	albeit	not	studied	here,	testing,	contact	tracing,	isolation	and	timely	treatment	of	421 

cases)	in	order	to	effectively	mitigate	the	spread	of	COVID-19	as	it	continues	to	pose	422 

threats	to	public	health.			423 

	424 

Methods	425 

Data	426 

COVID-19	cases	included	all	laboratory-confirmed	cases	by	week	of	diagnosis	reported	to	427 

the	NYC	DOHMH.	Mortality	data	by	week	of	death	combined	confirmed	and	probable	428 

COVID-19-associated	deaths.	Confirmed	COVID-19-associated	deaths	were	defined	as	those	429 

occurring	in	persons	with	laboratory-confirmed	SARS-CoV-2	infection,	and	probable	430 
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COVID-19	deaths	were	defined	as	those	with	COVID-19,	SARS-CoV-2,	or	a	similar	term	431 

listed	on	the	death	certificate	as	an	immediate,	underlying,	or	contributing	cause	of	death,	432 

but	did	not	have	laboratory-confirmation	of	COVID-19.42	For	this	study,	both	weekly	case	433 

and	mortality	data	were	aggregated	by	age	group	(<1,	1-4,	5-14,	15-24,	25-44,	45-64,	65-434 

74,	and	75+	years)	for	each	of	the	42	United	Hospital	Fund	(UHF)	neighborhoods,43	435 

according	to	the	patient’s	residential	address.	All	data	were	retrieved	on	Sep	4,	2020.		For	a	436 

summary	of	the	spatial	variations	across	the	42	neighborhoods,	see	Table	S3	in	the	437 

Appendix	of	Yang	et	al.12	438 

	439 

The	mobility	data,	used	to	model	changes	in	population	contact	rates	due	to	public	health	440 

interventions	implemented	during	the	pandemic	(e.g.,	social	distancing),	came	from	441 

SafeGraph35,44	and	contained	counts	of	visitors	to	locations	in	each	zip	code	from	the	same	442 

zip	code	and	others,	separately,	based	on	mobile	device	locations.	The	released	data	were	443 

anonymized	and	aggregated	in	weekly	intervals.	We	spatially	aggregated	these	data	to	the	444 

UHF	neighborhood	level,	for	both	intra	and	inter	UHF	neighborhood	mobility.	In	addition,	445 

SafeGraph	also	provided	an	aggregate	measure	of	the	length	of	time	spent	outside	of	the	446 

home	during	each	week.		447 

	448 

This	study	was	classified	as	public	health	surveillance	and	exempt	from	ethical	review	and	449 

informed	consent	by	the	Institutional	Review	Boards	of	both	Columbia	University	and	NYC	450 

DOHMH.		451 

	452 

Network	transmission	model	453 
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The	epidemic	model	used	in	this	study	was	described	in	Yang	et	al.	202011,12	Briefly,	the	454 

model	simulated	intra-	and	inter	neighborhood	transmission	of	COVID-19	using	a	455 

susceptible-exposed-infectious-removed	(SEIR)	network	model:	456 
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		(Eqn	1)	457 

	458 

where	Si,	Ei,	Ii,	Ri,	and	Ni	are	the	numbers	of	susceptible,	exposed	(but	not	yet	infectious),	459 

infectious,	and	removed	(either	recovered	or	deceased)	individuals	and	the	total	460 

population,	respectively,	from	a	given	age	group	in	neighborhood	i.	Note	that	due	to	model	461 

complexity	and	a	lack	of	information	for	parameterizing	interactions	among	age	groups,	we	462 

modeled	each	age	group	separately	(i.e.,	combining	all	sources	of	transmission	to	each	age	463 

group;	see	further	detail	on	parameter	estimation	below);	as	such,	Eqn	1	describes	the	464 

spatial	transmission	across	neighborhoods	without	interactions	among	age	groups.		01,(2 	is	465 

the	citywide	transmission	rate,	which	incorporated	seasonal	variation	as	observed	for	466 

OC43,	a	beta-coronavirus	in	humans	from	the	same	genus	as	SARS-CoV-2.12	To	allow	467 

differential	transmission	in	each	neighborhood,	we	included	a	multiplicative	factor,	bi,	to	468 

scale	neighborhood	local	transmission	rates.		Z	and	D	are	the	latency	and	infectious	469 

periods,	respectively	(Table	S4).		470 

	471 

The	contact	rates	(cij)	in	each	neighborhood	over	time	and	connectivity	among	472 

neighborhoods	were	computed	based	on	mobility	data.	The	model	also	accounted	for	473 
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delays	from	infection	to	diagnosis	using	two	parameters	(gamma	distribution	with	mean	Td	474 

and	standard	deviation	Tsd	estimated	along	with	other	parameters)	and	death	(based	on	475 

observed	time	from	diagnosis	to	death)	as	well	as	infection	detection	rate	using	a	476 

parameter	r	(estimated	along	with	other	parameters).	For	further	detail,	please	refer	to	477 

Yang	et	al.	2020.11,12	478 

	479 

Parameter	estimation	480 

To	estimate	model	parameters	(e.g.,	bi,	βcity,	Z,	D,	r,	and	infection	fatality	risk,	for	i=1,…,42)	481 

and	state	variables	(e.g.,	number	of	susceptible	and	infectious	individuals	in	each	482 

neighborhood)	for	each	week,	we	ran	the	network-model	stochastically	with	a	daily	time	483 

step	in	conjunction	with	the	ensemble	adjustment	Kalman	filter	(EAKF)45	and	fit	to	weekly	484 

case	and	mortality	data	from	the	week	starting	March	1	to	the	week	ending	June	6,	2020.	485 

The	posterior	distribution	of	each	model	parameter/variable	was	updated	for	that	week	at	486 

the	same	time.45	This	parameter	estimation	process	was	done	separately	for	each	of	the	487 

eight	age	groups	(i.e.	<1,	1-4,	5-14,	15-24,	25-44,	45-64,	65-74,	and	75+	years).	To	include	488 

transmission	from	other	age	groups,	we	used	measured	intra	and	inter-group	contacts	489 

from	the	POLYMOD	study21	to	compute	the	total	number	of	contacts	made	with	each	age	490 

group	and	adjusted	the	prior	range	of	the	transmission	rate	(βcity)	for	each	age	group	491 

accordingly.	The	posterior	estimate	was	computed	based	on	cases	and	mortality	data	for	492 

each	group,	which	included	all	sources	of	infection.	Thus,	the	estimated	transmission	rate	493 

for	each	age	group	nevertheless	included	all	sources	of	transmission.	To	account	for	494 

stochasticity	in	model	initiation,	we	ran	the	parameter	estimation	process	independently	495 

10	times.	Results	for	each	age	group	were	combined	from	these	10	runs	(each	with	500	496 
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model	realizations).	We	computed	age-specific	Rt,	the	effective	reproductive	number	497 

during	week-t,	from	the	posterior	estimates	of	transmission	rate	(βcity	and	bi),	infectious	498 

period	(D),	contact	matrix	(cij),	susceptibility	and	population	size	in	the	neighborhood	499 

using	the	next	generation	method.46		We	computed	Rt,	βcity,	and	D	estimates	for	all	ages	500 

overall	as	a	weighted	average	of	the	age-specific	estimates	with	weights	equal	to	the	501 

population	fraction	in	each	age	group.			502 

	503 

Estimating	the	effectiveness	of	reducing	contact	rates		504 

The	Rt	estimates	from	the	model-inference	system	capture	changes	in	transmission	due	to	505 

various	interventions,	i.e.,	the	overall	effectiveness	of	all	implemented	interventions.	To	506 

separately	estimate	the	effectiveness	of	interventions	that	reduce	contact	rates,	we	used	507 

human	mobility	as	a	measure	of	population	contact	rate	to	estimate	the	changes	in	Rt	in	508 

response	to	changing	population	contact	rates.	Specifically,	we	regressed	the	Rt	estimates	509 

from	the	full	model-inference	system	on	the	mobility	data:	@( = AB + A:DEFG,( 	(Eqn	2),	510 

where	Mave,t	is	the	mean	of	all	intra-neighborhood	mobility	at	week-t.		We	then	computed	511 

the	effectiveness	of	reducing	contact	rate	based	on	@(I,	the	Rt	estimate	from	this	regression	512 

model	solely	based	on	the	observed	mobility.	That	is,	the	reduction	in	Rt	by	week-t,	likely	513 

due	to	reducing	contact	rate,	was	computed	as	(@(I − @BI)/@BI	(Eqn	3).	To	test	the	robustness	514 

of	our	method,	we	performed	the	same	analysis	for	individual	UHF	neighborhoods	(n	=	42).			515 

	516 

Estimating	the	effectiveness	of	face	covering/masking	517 

In	addition	to	changes	in	population	contact	rates,	face	covering/masking	was	another	518 

major	control	measure	implemented	beginning	the	week	of	April	12,	2020	when	NYC	519 
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mandated	residents	wear	face	coverings	in	public	places.	To	estimate	the	effectiveness	of	520 

face	covering,	we	first	estimated	the	changes	in	transmission	rate	and	effective	infectious	521 

period,	two	model	parameters	determining	Rt,	due	to	changes	in	mobility	(as	opposed	to	522 

masking)	using	regression	models	similar	to	Eqn	2.	Specifically,	we	regressed	the	estimated	523 

citywide	transmission	rate	(or	effective	infectious	period)	from	the	full	model-inference	524 

system	on	average	mobility:		L( = AB + A:DEFG,( 	(Eqn	4),	where	Yt	is	βcity	or	D.		We	then	525 

computed	the	relative	reduction	in	transmission	rate	(or	effective	infectious	period)	due	to	526 

face	covering	as	MN = O((L( − L(P )/L(),	where	E(·)	gives	the	mean	over	the	relevant	527 

timeframe	(here	we	estimated	two	timeframes,	i.e.,	1	month	following	the	mandate	and	528 

over	8	weeks	up	to	6/6/2020).	Combining	both	reductions,	we	computed	the	effectiveness	529 

of	face	covering	as	M = 1 − (1 − MR)(1 − M>).	Of	note,	while	mechanistically	face	coverings	530 

act	primarily	by	reducing	the	probability	of	transmission	(i.e.,	transmission	rate),	here	we	531 

included	both	the	potential	impact	on	the	transmission	rate	(MR)	and	effective	infectious	532 

period	(M>),	mainly	because	the	multiplicative	relationship	of	the	two	variables	with	Rt	533 

makes	it	challenging	to	separate	the	two	effects.		Nevertheless,	reductions	in	the	infectious	534 

period	via	face	covering	are	possible.	A	recent	study	on	animals	showed	that	masking	could	535 

reduce	the	severity	of	infection;47	if	persons	with	milder	infection	experience	shorter	536 

duration	of	viral	shedding	(there	is	some	evidence	for	this,	e.g.,	from	He	et	al.48),	milder	537 

symptoms	in	individuals	infected	while	wearing	face	covering	could	lead	to	shorter	538 

infectious	period	of	these	individuals.		539 

	540 

Projections	of	cases	and	deaths		541 
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To	evaluate	the	accuracy	of	model	estimates,	in	particular,	the	effectiveness	of	transmission	542 

reduction	by	reducing	contact	rates	and	use	of	face	covering,	we	tested	if	these	estimates	543 

along	with	the	model	could	generate	accurate	predictions	of	cases	and	deaths	for	8	weeks	544 

beyond	the	study	period	(i.e.	from	the	week	of	6/7/2020	to	the	week	of	7/26/2020).	We	545 

first	projected	the	citywide	transmission	rate	and	infectious	period	based	on	observed	546 

mobility	using	Eqn	4;	these	estimates	thus	accounted	for	changes	due	to	changes	in	contact	547 

rates.	To	incorporate	the	reduction	in	transmission	by	face	covering,	we	further	reduced	548 

the	projected	city	transmission	rate	by	a	factor	of	1 − MRSTU( 	and	the	infectious	period	by	a	549 

factor	of	1 − M>STU( ,	where	pout	is	a	factor	to	adjust	for	time	spent	outside	of	the	home	550 

during	each	week.	To	reflect	longer-term	usage	rates	of	face	covering,	we	used	MR	and	M> 	551 

estimated	during	the	entire	8	weeks	face	covering	was	required	(i.e.	from	the	week	of	552 

4/12/2020	to	the	week	of	5/31/2020).	Finally,	we	used	estimates	of	population	553 

susceptibility	and	infection	rates	at	the	end	of	the	week	of	5/31/2020	to	model	initial	554 

conditions	and	integrated	the	SEIR	network	model	forward	stochastically	for	8	weeks	using	555 

the	projected	transmission	rate	and	infectious	period.			556 
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Table	731 

Table	1.	Estimated	effectiveness	of	reducing	contact	rate	and	face	covering.	Numbers	are	732 

the	estimated	mean	and	95%	CIs,	in	percentage.	Note	the	estimated	effectiveness	of	contact	733 

rate	reduction	combined	all	measures	that	reduce	contact	rates,	including	school	closures	734 

and	voluntary	or	mandated	stay-at-home	measures.	735 

	
Estimated	effectiveness	of	intervention	(%)	

Age	

contact	rate	

reduction	

Face	covering	(1st	

month)	

Face	covering	(2	

months)	

all	 70.7	(65.0,	76.4)	 6.6	(0.8,	12.4)	 3.4	(-1.9,	8.6)	

<1	 53.8	(41.6,	66)	 9.3	(-4.2,	22.9)	 12.8	(0.2,	25.3)	

1-4	 51.0	(45.8,	56.2)	 0.9	(-5.5,	7.4)	 6.7	(0.6,	12.8)	

5-14	 83.4	(80.1,	86.7)	 3.0	(-0.5,	6.6)	 1.6	(-1.6,	4.8)	

15-24	 65.4	(57.0,	73.8)	 4.3	(-2.8,	11.4)	 4.0	(-2.5,	10.6)	

25-44	 76.5	(68.5,	84.6)	 4.5	(-0.6,	9.7)	 -1.0	(-5.6,	3.7)	

45-64	 68.9	(59.2,	78.6)	 8.1	(-0.1,	16.1)	 4.4	(-2.9,	11.8)	

65-74	 55.8	(34.5,	77.2)	 20.8	(-0.1,	41.6)	 18.3	(-0.2,	36.9)	

75+	 53.8	(32.3,	75.3)	 20.8	(-0.9,	42.5)	 16.2	(-3.3,	35.7)	

	736 

737 
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Figures	738 

Fig	1.	Epidemic	dynamics.		Reported	laboratory	confirmed	cases	(A)	and	cumulative	cases	739 

(B)	per	100,000	population	by	week	of	diagnosis	for	all	ages	overall	and	by	age	group.		740 
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Fig	2.	Estimated	changes	in	the	effective	reproductive	number	and	infection	rates.	Blue	742 

lines	show	the	estimated	effective	reproductive	number	(Rt)	for	each	week;	surrounding	743 

areas	show	the	50%	and	95%	CrIs.	Superimposed	boxes	(right	y-axis)	show	estimated	744 

infection	rates	by	week:	median	(thick	vertical	lines),	50%	CrIs	(box	edges),	and	95%	CrIs	745 

(whiskers).		746 
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Fig	3.	Effectiveness	of	reducing	contact	rates.	Note	the	estimated	effectiveness	combined	748 

all	measures	that	reduce	contact	rates,	including	school	closures	and	voluntary	or	749 

mandated	stay-at-home	measures.	Dark	grey	lines	show	the	observed	changes	in	mobility	750 

(right	y-axis).	Blue	lines	show	Rt	estimated	using	a	linear	regression	model	with	mobility	as	751 

the	sole	predictor;	surrounding	areas	show	the	95%	CrIs	of	the	model	estimates.	The	752 

adjusted	r2	for	the	regression	model	is	also	shown	in	each	plot.	For	comparison,	dashed	753 

blue	lines	show	Rt	estimates	from	the	model-inference	system,	without	accounting	for	754 

susceptibility.	Percentages	attached	to	the	lines	show	the	incremental	reductions	in	either	755 

estimated	Rt	(in	blue)	or	mobility	(in	grey).	756 
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Fig	4.	Effectiveness	of	face	covering	in	reducing	the	transmission	rate	and	infectious	759 

period.	Solid	lines	show	the	estimated	transmission	rate	(in	blue,	left	y-axis)	and	infectious	760 

period	(in	red,	right	y-axis)	using	the	model-inference	system	incorporating	interventions	761 

including	face	covering.	Surrounding	areas	show	the	50%	CrIs	of	model	estimates.	Dashed	762 

lines	show	corresponding	estimates	from	a	linear	regression	model	with	mobility	as	the	763 

sole	predictor	(i.e	without	accounting	for	face	covering).	764 
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Fig	5.	Projections	of	COVID-19	cases	and	deaths	eight	weeks	beyond	the	study	period.	Blue	766 

dots	show	confirmed	cases	by	week	of	diagnosis	and	deaths	by	week	of	death,	as	observed	767 

by	the	surveillance	system.		Blue	lines	show	model	median	estimates;	surrounding	shades	768 

show	50%	and	90%	CrIs.	Orange	lines	show	model	projected	median	weekly	cases	and	769 

deaths;	surrounding	shades	show	50%	and	90%	CIs	of	the	projection.				770 
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Supplemental	Tables	and	Figures	
	
Supplemental	Tables	
Table	S1.	Total	number	of	reported	cases	and	estimated	cumulative	infection	rate	by	the	
week	of	5/31/20.	Case	rate	was	computed	as	the	number	of	total	cases	divided	by	the	
population	size	of	the	corresponding	age	group.	Estimated	infection	rate	was	estimated	by	
model-inference	system,	normalized	to	the	corresponding	population	size;	numbers	are	
median	(and	95%	CrIs).		
Age	 Total	number	of	cases	 Case	rate	(%)	 Estimated	infection	rate	(%)	
all	 205693	 2.45	 17.6	(13.2,	25.5)	
<1	 515	 0.46	 4.4	(2.9,	10.5)	
1-4	 609	 0.14	 1.4	(0.9,	3.7)	
5-14	 2646	 0.28	 10.5	(6.5,	24.5)	
15-24	 12562	 1.28	 12.0	(8.4,	19.5)	
25-44	 64764	 2.45	 22.7	(16.8,	31.5)	
45-64	 74833	 3.64	 23.1	(18.4,	29.6)	
65-74	 25469	 3.64	 15.2	(11.4,	21.7)	
75+	 24295	 4.44	 12.7	(9.8,	18.4)	
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Table	S2.	Estimated	reproductive	number	by	week	and	age	group.		Numbers	are	median	(and	interquartile	range)	of	the	
posterior	estimates.		

	 Age	Groups	

date	 all	 <1	 1-4	 5-14	 15-24	 25-44	 45-64	 65-74	 75+	

3/1/20	 2.99	(2.32,	3.86)	 1.52	(1.19,	1.96)	 1.56	(1.22,	2.02)	 3.15	(2.47,	4.09)	 2.47	(1.93,	3.22)	 4	(3.1,	5.15)	 2.97	(2.3,	3.86)	 1.77	(1.37,	2.29)	 1.75	(1.35,	2.27)	

3/8/20	 2.25	(1.64,	2.98)	 1.43	(1.11,	1.85)	 1.28	(1,	1.7)	 2.35	(1.74,	3.18)	 2.02	(1.53,	2.64)	 2.46	(1.57,	3.48)	 2.49	(1.97,	3.12)	 1.98	(1.55,	2.44)	 1.84	(1.48,	2.29)	

3/15/20	 2.14	(1.62,	2.74)	 1.63	(1.32,	2)	 1.17	(0.92,	1.48)	 1.52	(1.13,	2.06)	 2.38	(1.86,	3)	 1.45	(0.97,	2.03)	 2.99	(2.3,	3.68)	 2.84	(2.33,	3.51)	 2.87	(2.33,	3.52)	

3/22/20	 1.37	(1.08,	1.68)	 1.59	(1.35,	1.89)	 1.05	(0.85,	1.29)	 0.99	(0.74,	1.3)	 1.29	(1.03,	1.57)	 1	(0.76,	1.26)	 1.37	(1.06,	1.71)	 2.58	(2.15,	3.04)	 2.52	(2.06,	3.02)	

3/29/20	 0.93	(0.73,	1.13)	 1.22	(0.97,	1.44)	 1.06	(0.82,	1.3)	 0.88	(0.66,	1.14)	 0.96	(0.75,	1.15)	 0.7	(0.52,	0.88)	 0.89	(0.71,	1.06)	 1.43	(1.17,	1.65)	 1.46	(1.27,	1.66)	

4/5/20	 0.63	(0.5,	0.75)	 0.74	(0.6,	0.88)	 0.84	(0.65,	1.03)	 0.53	(0.41,	0.68)	 0.77	(0.59,	0.91)	 0.44	(0.33,	0.56)	 0.62	(0.5,	0.73)	 0.9	(0.79,	1.02)	 0.9	(0.78,	1.02)	

4/12/20	 0.56	(0.45,	0.67)	 0.67	(0.54,	0.79)	 0.69	(0.53,	0.84)	 0.5	(0.38,	0.62)	 0.72	(0.57,	0.83)	 0.44	(0.34,	0.55)	 0.57	(0.47,	0.67)	 0.63	(0.55,	0.71)	 0.65	(0.57,	0.74)	

4/19/20	 0.59	(0.48,	0.7)	 0.67	(0.54,	0.8)	 0.68	(0.54,	0.81)	 0.57	(0.44,	0.7)	 0.81	(0.66,	0.93)	 0.55	(0.42,	0.68)	 0.49	(0.41,	0.57)	 0.6	(0.52,	0.68)	 0.66	(0.58,	0.74)	

4/26/20	 0.62	(0.5,	0.73)	 0.62	(0.5,	0.75)	 0.77	(0.62,	0.91)	 0.54	(0.42,	0.67)	 0.75	(0.61,	0.86)	 0.58	(0.45,	0.72)	 0.6	(0.5,	0.71)	 0.58	(0.5,	0.67)	 0.63	(0.56,	0.71)	

5/3/20	 0.66	(0.54,	0.77)	 0.7	(0.56,	0.84)	 0.78	(0.62,	0.91)	 0.56	(0.44,	0.67)	 0.72	(0.61,	0.8)	 0.68	(0.54,	0.82)	 0.68	(0.56,	0.78)	 0.6	(0.52,	0.67)	 0.55	(0.48,	0.63)	

5/10/20	 0.82	(0.67,	0.95)	 0.71	(0.56,	0.86)	 0.75	(0.6,	0.88)	 0.6	(0.47,	0.73)	 0.88	(0.73,	0.98)	 0.9	(0.72,	1.06)	 0.88	(0.74,	0.99)	 0.73	(0.64,	0.81)	 0.65	(0.57,	0.74)	

5/17/20	 1.03	(0.83,	1.18)	 0.82	(0.65,	0.99)	 0.8	(0.65,	0.93)	 0.73	(0.57,	0.88)	 1.1	(0.89,	1.24)	 1.21	(0.95,	1.42)	 1.1	(0.91,	1.24)	 0.78	(0.69,	0.87)	 0.81	(0.72,	0.92)	

5/24/20	 0.89	(0.73,	1.03)	 0.78	(0.61,	0.95)	 0.79	(0.63,	0.91)	 0.69	(0.53,	0.83)	 0.94	(0.78,	1.06)	 0.96	(0.76,	1.13)	 0.95	(0.78,	1.08)	 0.79	(0.7,	0.88)	 0.89	(0.78,	0.99)	

5/31/20	 0.79	(0.66,	0.91)	 0.71	(0.55,	0.87)	 0.71	(0.56,	0.83)	 0.7	(0.55,	0.86)	 0.85	(0.72,	0.95)	 0.79	(0.64,	0.93)	 0.77	(0.65,	0.89)	 0.72	(0.64,	0.79)	 1.04	(0.93,	1.15)	
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Table	S3.	Correlation	of	key	epidemiological	parameters	with	population	mobility	during	
the	week	of	March	1	–	the	week	of	May	31,	2020.	

Age	
Rt	(ignore	
susceptibility)	 Rt	

Transmission	
rate	 Infectious	period	

all	 0.96	 0.96	 0.73	 0.54	
<1	 0.76	 0.77	 0.41	 0.70	
1-4	 0.93	 0.93	 0.05	 0.65	
5-14	 0.99	 0.99	 0.86	 0.92	
15-24	 0.90	 0.91	 0.52	 -0.05	
25-44	 0.93	 0.96	 0.80	 0.27	
45-64	 0.88	 0.90	 0.60	 0.24	
65-74	 0.57	 0.63	 0.54	 0.65	
75+	 0.55	 0.60	 0.50	 0.64	
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Table	S4.		Prior	ranges	for	main	model	parameters	and	variables.		The	spatial,	temporal,	
and	age	resolution	of	each	parameter	or	variable,	estimated	in	the	model-inference	system,	
is	specified	in	the	column	"Resolution".		Note	posterior	parameter	estimates	can	extend	
outside	the	specified	prior	ranges.	Note	this	is	the	same	as	Table	S1	in	Yang	et	al.(1)		

Parameter/	
variable	

Symbol	 Resolution	 Prior	range	 Source/rationale	

Initial	
exposed	

E(t=0)	 neighborhood-	and	age-
group	specific,	estimated	for	
the	beginning	of	the	Week	of	
March	1,	2020	

300	–	8000	total	
citywide,	scaled	by	
population	size	for	each	
age	group	and	
neighborhood	

Large	uncertainties,	used	
very	wide	range	

Initial	
infectious	

I(t=0)	 neighborhood-	and	age-
group	specific,	,	estimated	
for	the	beginning	of	the	
Week	of	March	1,	2020	

150	–	4000	total	
citywide,	scaled	by	
population	size	for	each	
age	group	and	
neighborhood	

Assumed	to	be	half	the	initial	
exposed	

Initial	
susceptible	

S(t=0)	 neighborhood-	and	age-
group	specific,	estimated	for	
the	beginning	of	the	Week	of	
March	1,	2020	

N	–	E	–	I	 Assumed	all	were	
susceptible	except	for	those	
initially	exposed/infectious		

Population	
size	in	each	
age	group	and	
neighborhood	

N	 neighborhood-	and	age-
group	specific	

N/A	 NYC	intercensal	population	
estimates	for	2018(2)	

Citywide	
transmission	
rate	

βcity	 Citywide,	age-group	specific,	
estimated	for	each	week	

[0.5,	1]	per	day	overall;	
scaled	by	contact	rate	for	
each	age	group	based	on	
contact	data	from	the	
POLYMOD	study(3)	
(averaged	across	8	
countries)	

Based	on	R0	estimates	of	
around	1.5-4	for	SARS-CoV-
2(4-6)	

Scaling	of	
neighborhood	
transmission	
rate	

bi	 neighborhood-	and	age-
group	specific,	estimated	for	
each	week	

[0.8,	1.2]	for	age	groups	
under	65	years;	[0.5,	1.5]	
for	age	groups	65	or	
older	

Around	1;	larger	variation	
for	elderly	groups	based	on	
data	
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Latency	
period	

Z	 Citywide,	age-group	specific,	
estimated	for	each	week	

[2,	5]	days	 Incubation	period:	5.2	days	
(95%	CI:	4.1,	7)(4);	latency	
period	is	likely	shorter	than	
the	incubation	period	

Infectious	
period	

D	 Citywide,	age-group	specific,	
estimated	for	each	week	

[2,	5]	days	 Time	from	symptom	onset	to	
hospitalization:	3.8	days	
(95%	CI:	0,	12.0)	in	China,(7)	
plus	1-2	days	viral	shedding	
before	symptom	onset.	We	
did	not	distinguish	
symptomatic/asymptomatic	
infections.	

Multiplicative	
factor	for	
mobility	

m1	 Citywide,	age-group	specific,	
estimated	for	each	week	

[1,	2]	for	<1	year;	[0.5,	
1.5]	for	three	age	groups	
1-24	years;	[0.1,	1.5]	for	
age	group	25-44;	[1,	2.5]	
for	age	groups	45	or	
older	

Initial	model	testing	showed	
transmission	rates	for	
younger	age	groups	were	
more	sensitive	to	changes	in	
mobility	whereas	the	two	
oldest	age	groups	were	not	
sensitive	to	mobility.		For	
age	groups	with	contact	
rates	lower	than	the	average	
(based	on	the	POLYMOD	
study(3)),	we	raised	the	
diagonal	elements	in	the	
mobility	matrix	to	the	power	
of	the	relative	contact	rate	
(<1)	to	account	for	
insensitivity	of	transmission	
rate	in	these	age	groups	to	
mobility.		

Multiplicative	
factor	for	
neighborhood	
connectivity	

m2	 Citywide,	age-group	specific,	
estimated	for	each	week	

[0.5,	2]	 Likely	around	1	but	with	
large	uncertainties	

Mean	of	time	
from	viral	
shedding	to	
diagnosis	

Tm	 Citywide,	age-group	specific,	
estimated	for	each	week	

[3,	8]	days	 From	a	few	days	to	a	week	
from	symptom	onset	to	
diagnosis/	reporting,(7)	plus	
1-2	days	of	viral	shedding	
(being	infectious)	before	
symptom	onset	
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Standard	
deviation	(SD)	
of	time	from	
viral	shedding	
to	diagnosis	

Tsd	 Citywide,	age-group	specific,	
estimated	for	each	week	

[1,	3]	days	 To	allow	variation	in	time	to	
diagnosis/reporting	

Reporting	rate	 r	 Citywide,	age-group	specific,	
estimated	for	each	week	

Starting	from	[0.001,	
0.05]	at	time	0	and	
allowed	to	increase	over	
time	using	space	re-
probing(8)	

Large	uncertainties	

Infection	
fatality	risk	
(IFR)	

	 Citywide,	age-group	specific,	
estimated	for	each	week	

[5,	15]×10-5	for	ages	
under	25;	[5,	15]×10-4	for	
ages	25-44;	[5,	15]×10-3	
for	ages	45-64;	[0.01,	0.1]	
for	ages	65-74;	[0.02,	0.2]	
for	ages	75+;	

Based	on	previous	
estimates(9)	but	extend	to	
have	wider	ranges		

Time	from	
diagnosis	to	
death	

	 Citywide	 Gamma	distribution	with	
mean	of	9.36	days	and	SD	
of	9.76	days	

Based	on	n=15,686	COVID-
19	confirmed	deaths	in	NYC	
as	of	May	17,	2020.		
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Supplemental	Figures	
Fig	S1.	Model	fits	of	reported	confirmed	COVID-19	cases.	Blue	dots	show	reported	number	
of	cases	by	age	group	and	week	of	diagnosis.	Boxes	show	the	model	fitted	weekly	number	
of	cases	by	age	group.	Box	edges,	thick	middle	lines,	and	whiskers	show	the	2.5th,	25th,	50th,	
75th,	and	97.5th	percentiles	of	model	estimates.			
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Fig	S2.	Model	fits	of	reported	COVID-19	associated	deaths.	Blue	dots	show	reported	weekly	
number	of	deaths	by	age	group.	Boxes	show	the	model	fitted	weekly	number	of	deaths	by	
age	group.	Box	edges,	thick	middle	lines,	and	whiskers	show	the	2.5th,	25th,	50th,	75th,	and	
97.5th	percentiles	of	model	estimates.		Note	that	deaths	among	<25	year-olds	are	combined	
due	to	low	counts.	
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Fig	S3.	Estimated	case	rates	and	infection	rates	by	age	group.	Blue	dots	show	confirmed	
case	rates	by	age	group	and	week	of	diagnosis.	Blue	boxes	(left	y-axis)	show	the	model	
fitted	weekly	case	rates	and	grey	boxes	(right	y-axis)	show	the	model	estimated	weekly	
infection	rates	by	age	group.	Box	edges,	thick	middle	lines,	and	whiskers	show	the	2.5th,	
25th,	50th,	75th,	and	97.5th	percentiles	of	model	estimates.			
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Fig	S4.	Sensitivity	analysis	on	the	effectiveness	of	reducing	contact	rate	by	neighborhood.	
There	are	42	United	Hospital	Fund	(UHF)	neighborhoods	in	NYC.		(A)	shows	the	changes	in	
human	mobility	during	the	pandemic	by	neighborhood	(each	colored	line).	The	reductions	
were	substantial	in	all	neighborhoods	but	to	varying	degrees.	(B)	shows	the	estimated	Rt	
(combining	all	ages)	for	each	week	and	neighborhood	(each	colored	line).	Note	these	
estimates	did	not	account	for	changes	in	susceptibility	so	as	to	restrict	to	changes	due	to	
interventions.	(C)	shows	the	adjusted	r2	of	linear	regression	model	fitting	the	mobility	data	
(A)	to	the	Rt	estimates	(B),	for	each	neighborhood,	per	Eqn	2	in	the	main	text.	Adjusted	r2	
for	most	neighborhoods	was	>0.9.	(D)	shows	the	estimated	reduction	in	Rt	by	the	Week	of	
April	12,	2020	based	on	the	Eqn	3	in	the	main	text,	for	each	neighborhood.	The	histogram	is	
based	on	the	median	estimated	reduction	in	Rt.	
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Fig	S5.	Projections	of	COVID-19	cases	by	age	group	eight	weeks	beyond	the	study	period.	
Blue	dots	show	observed	confirmed	cases	by	week	of	diagnosis	(those	after	the	Week	of	
5/31/2020	were	not	used	in	the	model).		Blue	lines	show	model	median	estimates;	
surrounding	shades	show	50%	and	90%	CrIs.	Orange	lines	show	model	projected	median	
weekly	cases	and	deaths;	surrounding	shades	show	50%	and	90%	CIs	of	the	projection.				
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Fig	S6.	Projections	of	COVID-19	associated	deaths	by	age	group	eight	weeks	beyond	the	
study	period.	Blue	dots	show	observed	weekly	deaths	(those	after	the	Week	of	5/31/2020	
were	not	used	in	the	model).		Blue	lines	show	model	median	estimates;	surrounding	shades	
show	50%	and	90%	CrIs.	Orange	lines	show	model	projected	median	weekly	cases	and	
deaths;	surrounding	shades	show	50%	and	90%	CIs	of	the	projection.				
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Fig	S7.		Comparing	long	term	projection	with	available	observations.		The	projections	on	
COVID-19	cases,	hospitalizations	and	deaths	were	generated	on	June	30,	2020,	using	case	
and	mortality	data	up	to	June	26,	2020.	These	projections	were	generated	at	the	time	using	
a	simpler	model	without	age	grouping	but	otherwise	the	same	methodology	presented	in	
the	study.	Results	were	posted	online	on	June	30,	2020	(https://github.com/wan-yang/re-
opening_analysis/tree/master/test3_occupancy).	Various	policy	scenarios	were	tested	and	
here	we	used	the	one	labeled	“sce2fix_asIs”	for	the	“intervention”	identifier,	which	has	been	
the	closest	to	implemented	interventions	thus	far	(main	settings	were	capping	capacity	for	
all	industries	including	schools	at	50%;	no	shutdown).	For	comparison	with	observations	
thus	far,	we	used	data	published	by	the	New	York	City	Department	of	Health	and	Mental	
Hygiene,	as	of	Dec	27,	2020	(https://raw.githubusercontent.com/nychealth/coronavirus-
data/master/trends/data-by-day.csv).			Red	line	and	shaded	area	show	our	projections	
(median	and	interquartile	range)	and	blue	dots	show	corresponding	observations	from	the	
New	York	City	Department	of	Health	and	Mental	Hygiene.	Note	that	estimated	infection-
detection	rates	using	PCR	tests	during	June	–	Dec	2020	have	been	similar	to	those	in	June.		
However,	hospitalization	rates	and	estimated	infection-fatality-risk	in	months	after	June	
2020	have	been	lower	than	that	during	the	spring	wave;	these	lower	hospitalization	rates	
and	mortality	risks	contribute	to	the	lower	observed	numbers	than	our	projections.			
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