
Mechanical ventilation affects respiratory microbiome of COVID-19 patients and its 1 

interactions with the host 2 

 3 

Verónica Lloréns-Rico1,2, Ann C. Gregory1,2, Johan Van Weyenbergh3, Sander Jansen4, 4 

Tina Van Buyten4, Junbin Qian5,6, Marcos Braz3, Soraya Maria Menezes3, Pierre Van 5 

Mol5,6,7, Lore Vanderbeke8, Christophe Dooms7,9, Jan Gunst10, Greet Hermans10, 6 

Philippe Meersseman11, CONTAGIOUS collaborators, Els Wauters7,9, Johan Neyts4, 7 

Diether Lambrechts5,6, Joost Wauters11,12, Jeroen Raes1,2,12,13 8 

 9 
1 Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, 10 

Rega Institute, KU Leuven, Belgium 11 
2 Center for Microbiology, VIB, Leuven, Belgium 12 
3 Laboratory for Clinical and Evolutionary Virology, Department of Microbiology and 13 

Immunology, Rega Institute, KU Leuven, Belgium 14 
4 Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology 15 

and Transplantation, Rega Institute, KU Leuven, Belgium 16 
5 Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, 17 

Belgium  18 
6 VIB Center for Cancer Biology, VIB, Leuven, Belgium  19 
7 Department of Pneumology, University Hospitals Leuven, Belgium 20 
8 Laboratory of Clinical Bacteriology and Mycology, Department of Microbiology, 21 

Immunology and Transplantation, KU Leuven, Belgium 22 
9 Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of 23 

Chronic Diseases and Metabolism, KU Leuven, Belgium 24 
10 Laboratory of Intensive Care Medicine, Department of Cellular and Molecular 25 

Medicine, KU Leuven, Belgium 26 
11 Laboratory for Clinical Infectious and Inflammatory Disorders, Department of 27 

Microbiology, Immunology and Transplantation, KU Leuven, Belgium 28 
12 These authors contributed equally 29 
13 Corresponding author: jeroen.raes@kuleuven.vib.be 30 

 31 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 26, 2020. ; https://doi.org/10.1101/2020.12.23.20248425doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2020.12.23.20248425
http://creativecommons.org/licenses/by-nc-nd/4.0/


Keywords: COVID-19, SARS-CoV-2, respiratory microbiome, single-cell RNA-32 

sequencing, host-microbiome interactions 33 

 34 

 35 

Abstract  36 

 37 

Understanding the pathology of COVID-19 is a global research priority. Early evidence 38 

suggests that the microbiome may be playing a role in disease progression, yet current 39 

studies report contradictory results. Here, we examine potential confounders in 40 

COVID-19 microbiome studies by analyzing the upper (n=58) and lower (n=35) 41 

respiratory tract microbiome in well-phenotyped COVID-19 patients and controls 42 

combining microbiome sequencing, viral load determination, and immunoprofiling. We 43 

found that time in the intensive care unit and the type of oxygen support explained 44 

the most variation within the upper respiratory tract microbiome, dwarfing (non-45 

significant) effects from viral load, disease severity, and immune status. Specifically, 46 

mechanical ventilation was linked to altered community structure, lower species- and 47 

higher strain-level diversity, and significant shifts in oral taxa previously associated 48 

with COVID-19. Single-cell transcriptomic analysis of the lower respiratory tract of 49 

ventilated COVID-19 patients identified increased oral microbiota compared to 50 

controls. These oral microbiota were found physically associated with proinflammatory 51 

immune cells, which showed higher levels of inflammatory markers. Overall, our 52 

findings suggest confounders are driving contradictory results in current COVID-19 53 

microbiome studies and careful attention needs to be paid to ICU stay and type of 54 

oxygen support, as bacteria favored in these conditions may contribute to the 55 

inflammatory phenotypes observed in severe COVID-19 patients. 56 

 57 

Introduction 58 

 59 

COVID-19, a novel coronavirus disease classified as a pandemic by the World Health 60 

Organization, has caused over 40 million reported cases and 1 million deaths 61 

worldwide to date. Infection by its causative agent, the novel coronavirus SARS-CoV-2, 62 

results in a wide range of clinical manifestations: it is estimated that around 80% of 63 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 26, 2020. ; https://doi.org/10.1101/2020.12.23.20248425doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.23.20248425
http://creativecommons.org/licenses/by-nc-nd/4.0/


infected individuals are asymptomatic or present only mild respiratory and/or 64 

gastrointestinal symptoms, while the remaining 20% develop acute respiratory distress 65 

syndrome requiring hospitalization and oxygen support and, of those, 25% of cases 66 

necessitate critical care. Despite a concerted global research effort, many questions 67 

remain about the full spectrum of the disease severity. Independent studies from 68 

different countries, however, agree that age and sex are the major risk factors for 69 

disease severity and patient death1–3, as well as type 2 diabetes and obesity 4,5. Other 70 

risk factors for critical condition and death are viral load of the patient upon hospital 71 

admission6–8 and the specific immune response to infection, with manifestation of a 72 

“cytokine storm” in critical patients characterized by increased levels of pro-73 

inflammatory cytokines and chemokines, sustaining a disproportionate immune 74 

response that may ultimately cause organ failure9–11.  75 

 76 

Despite its close interplay with the immune system and its known associations with 77 

host health, little is known about the role of the respiratory microbiota in modulating 78 

COVID-19 disease severity, or its potential as a prognostic marker12. Previous studies 79 

exploring other pulmonary disorders have shown that lung microbiota may exacerbate 80 

their symptoms and contribute to their severity13, potentially through direct crosstalk 81 

with the immune system and/or due to bacteremia and secondary infections14. Few 82 

studies of the respiratory microbiome in COVID-19 have revealed elevated levels of 83 

opportunistic pathogenic bacteria15–17. However, reports on bacterial diversity are 84 

contradictory. While some studies report a low microbial diversity in COVID-19 85 

patients15,18 that rebounds following recovery16, others show an increased diversity in 86 

the COVID-19 associated microbiota17. These conflicting results could be due to 87 

differences in sampling location (upper or lower respiratory tract), severity of the 88 

patients, disease stage, or other confounders. While these early findings already 89 

suggest that the lung microbiome could be exacerbating or mitigating COVID-19 90 

progression, exact mechanisms are yet to be elucidated.  Therefore, an urgent need 91 

exists for studies identifying and tackling confounders in order to discern true signals 92 

from noise. 93 

 94 
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To identify potential associations between COVID-19 severity and evolution and the 95 

upper and lower respiratory tract microbiota, we used nasopharyngeal swabs and 96 

bronchoalveolar lavage (BAL) samples, respectively. For the upper respiratory tract, we 97 

longitudinally profiled the nasopharyngeal microbiome of 58 COVID-19 patients during 98 

intensive care unit (ICU) treatment and after discharge to a classical hospital ward 99 

following clinical improvement, in conjunction with viral load determination and 100 

nCounter immune profiling. For the lower respiratory tract, we analyzed microbial 101 

signals in cross-sectional single-cell RNA-seq data from of bronchoalveolar lavage (BAL) 102 

samples of 22 COVID-19 patients and 13 pneumonitis controls with negative COVID-19 103 

qRT-PCR, obtained from the same hospital. The integration of these data enabled us to 104 

(1) identify potential confounders of COVID-19 microbiome associations, (2) explore 105 

how microbial diversity evolves throughout hospitalization, (3) study microbe-host cell 106 

interaction and (4) substantiate a link between the respiratory microbiome and SARS-107 

CoV-2 viral load as well as COVID-19 disease severity. Altogether, our results directly 108 

point to specific interactions between the microbiota and the immune cells, likely 109 

driven by clinical ventilation practices, which could potentially influence COVID-19 110 

disease progression and resolution.  111 

 112 

Results 113 

 114 

The upper respiratory microbiota of COVID-19 patients  115 

 116 

We longitudinally profiled the upper respiratory microbiota of 58 patients diagnosed 117 

with COVID-19 based on a positive qRT-PCR test or a negative test with high clinical 118 

suspicion based on symptomatology and a chest CT-scan showing alveolar damage. All 119 

these patients were admitted and treated at UZ Leuven hospital. Patient demographics 120 

for this cohort are shown in Table 1. 121 

 122 

In total, 112 nasopharyngeal swabs from these patients were processed (Figure 1a): 123 

the V4 region of the 16S rRNA gene amplified on extracted DNA using 515F and 806R 124 

primers, and sequenced on an Illumina MiSeq platform (see Methods). From the same 125 

swabs, RNA was extracted to determine SARS-CoV-2 viral loads and to estimate 126 
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immune cell populations of the host using nCounter (Methods). Of the 112 samples 127 

processed and sequenced, 101 yielded over 10,000 amplicon reads that could be 128 

assigned to bacteria at the genus level (Figure 1b; Methods). The microbiome of the 129 

entire cohort was dominated by the gram-positive genera Staphylococcus and 130 

Corynebacterium, typical from the nasal cavity and nasopharynx19.  131 

 132 

Bacterial alpha diversity is strongly associated with ICU stay length  133 

 134 

First, we determined genus-level alpha-diversity for the 101 samples with more than 135 

10,000 assigned reads, using Shannon Diversity index (see Methods; Supplementary 136 

Table 1). We observed that alpha diversity was not significantly correlated to SARS-137 

CoV-2 viral load in nasopharyngeal swabs (Figure 1c). In contrast, we found the 138 

Shannon index to be significantly affected by the sampling moment (Kruskal-Wallis 139 

test, p-value = 0.0076; Figure 1d), with significant differences between swabs procured 140 

upon patient admission and later timepoints, suggesting an important effect of disease 141 

progression and/or treatment (i.e. due to antibiotics administered throughout ICU 142 

stay). We explored these differences further, and observed that Shannon Diversity 143 

index correlated negatively with the number of days spent in ICU at the moment of 144 

sampling, with longer ICU stays leading to a lower diversity (Supplementary Figure 1a; 145 

r=-0.55, p-value=4.4·10-9). Furthermore, the observed decrease in diversity occurred 146 

mostly over the first 2 weeks in ICU (Supplementary Figure 1a). Other severity 147 

indicators, such as the patient clinical status (i.e. a qualitative metric used to classify 148 

patients into different levels of disease severity) or the type of oxygen support 149 

required at the moment of sampling, showed no association with the genus-level 150 

Shannon index (Supplementary Figure 1b,c). Therefore, the differences in diversity 151 

observed across samples were likely driven by the time spent in ICU, and not 152 

specifically by disease progression as other severity indicators were unaffected.  153 

 154 

Since time in ICU had a major effect in alpha diversity, we explored whether it might 155 

be masking any effects of viral load, as SARS-CoV-2 load was not associated with the 156 

length of the ICU stay (Supplementary Figure 1d). When controlling for the time in ICU 157 

(see Methods), we observed that viral load was negatively associated with the 158 
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Shannon diversity index (r=-0.26, p-value=0.0089; Supplementary Figure 1e). Other 159 

severity indicators such as the clinical status and the type of oxygen support were not 160 

correlated to diversity even after controlling for the confounding effect of ICU stay 161 

(Kruskal-Wallis test, p-value>0.05).  162 

 163 

Microbiome composition variation is driven by the type of respiratory support 164 

 165 

We next explored potential associations between the upper respiratory genus-level 166 

microbiota composition and the extensive metadata collected in the study. In total, 70 167 

covariates related to patient anthropometrics, medication and clinical variables 168 

measured in the hospital and host cytokine expression measured in the swabs were 169 

tested (Supplementary Table 2). Individually, 19 of these covariates showed a 170 

significant correlation to microbiota composition (dbRDA, p-value<0.05;FDR<0.05; 171 

Figure 2a). These significant covariates were related to disease and measures of its 172 

severity, such as the clinical evaluation of the patient, the total length of the ICU stay, 173 

the number of days in ICU at the time of sampling, or the type of oxygen support 174 

needed by the patient. Surprisingly, the total SARS-CoV-2 viral load detected in the 175 

swabs was not significantly associated to microbiome composition variation 176 

(Supplementary Table 2).  177 

 178 

Of the 19 significant covariates, only 2 accounted for 48.7% non-redundant variation in 179 

this dataset, with the rest holding redundant information. These were the patient ID, 180 

included due to the longitudinal sampling of patients, and confirming that intra-181 

individual variation over time is smaller than patient inter-individual variation20, and 182 

the type of oxygen support received at the time of sampling (Figure 2a,b). Notably, the 183 

type of oxygen support discriminated samples based on ventilation type, with non-184 

invasive ventilation samples (groups 1, 2 and 3) separating from samples from 185 

intubated patients (groups 4 to 7; PERMANOVA test, R2=0.0642, p-value=0.001).  186 

 187 

To determine if oxygen support also impacted the microbiome at finer taxonomic 188 

resolution, we revisited alpha-diversity at species- and strain-level. We defined species 189 

as 97% identity 16S OTUs and strains per species as the clustered 16S sequences 190 
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within each OTU. The species and strain-level diversity per sample were calculated as 191 

the number of OTUs and as the mean of the number of strains from five randomly 192 

sampled OTU species sampled 1,000 times, respectively. Our analyses revealed both 193 

species- and strain-level diversity change with ventilation, even with non-invasive 194 

ventilation (e.g. BIPAP, CPAP). Across all samples we observed high species- and low 195 

strain-level diversity pre-ventilation, which reversed following any form of ventilation 196 

(Figure 2c; Wilcoxon test; p-values<0.05, with the exception of type 7), with the 197 

exception of ventilation with inhaled nitric oxide. Further, Species- and strain-level 198 

diversity showed a strong inverse correlation (Figure 2d; Pearson’s correlation, R2 = -199 

0.92, p-value = 0.0035). 200 

 201 

Therefore, we evaluated which specific taxa were differentially abundant between 202 

samples from intubated and non-intubated patients. In total, 30 genera were more 203 

abundant in intubated samples, while 2 genera were more abundant in non-invasively 204 

ventilated patients (p-value<0.05;FDR<0.05; Figure 2e, Supplementary Figure 2; 205 

Supplementary Table 3). Some of these taxa are common oral microbiome 206 

commensals or opportunistic pathogens that had been repeatedly reported as more 207 

abundant in COVID-19 patients than in healthy controls, such as Prevotella, Veillonella, 208 

Fusobacterium, Porphyromonas or Lactobacillus15–17. Here, we reported higher 209 

abundance of these genera in intubated COVID-19 patients as compared to non-210 

mechanically ventilated patients. This points at mechanical ventilation as a potential 211 

confounder of previous COVID-19 studies. Additionally, we found other taxa not 212 

previously reported in previous COVID-19 microbiome studies, such as Mycoplasma or 213 

Megasphaera (Figure 3c, Supplementary Figure 2), but previously associated to risk of 214 

ventilator-associated pneumonia21.  215 

 216 

By extracting the amplicon sequence variants (ASVs) corresponding to these 217 

differentially abundant genera (see Methods), some of these taxa could be narrowed 218 

down to the species level, confirming their origin as typically oral bacteria: for 219 

instance, Prevotella species included P. oris, P. salivae, P. denticola, P. buccalis and P. 220 

oralis. Within the Mycoplasma genus, ASVs were assigned to Mycoplasma salivarium 221 

among other species, an oral bacterium which has been previously associated to the 222 
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incidence of ventilator-associated pneumonia21. When controlling for ventilation type, 223 

no taxa were found associated to SARS-CoV-2 viral loads. These results show that 224 

further research with larger cohorts and controlling for the relevant confounders 225 

highlighted here, such as ventilation type or length of stay in ICU, will be needed to 226 

study the specific effect of the viral infection. 227 

 228 

Single-cell RNA-seq identifies oral commensals and opportunist pathogens in the 229 

lower respiratory tract 230 

 231 

Next, we explored what the functional consequences of (ventilation-driven) lung 232 

microbiome disturbances could be. To do so, we screened single-cell RNA-seq data 233 

generated on BAL samples of 35 patients22 to identify microbial reads. All patients in 234 

this cross-sectional cohort had clinical symptoms of pneumonia, 22 of them being 235 

diagnosed with COVID-19. The other 13 patients with non-COVID-19 pneumonia were 236 

hereafter referred to as controls (Table 1). Microbiome read screening of these 237 

samples revealed an average of 7,295.3 microbial reads per sample (ranging from 0 to 238 

74,226 reads, with only a single sample yielding zero microbial reads; Supplementary 239 

Figure 3).  240 

 241 

Among the top taxa encountered in these patients, we found some similarities with 242 

the data obtained in nasopharyngeal swabs. The top 15 species detected include 243 

Mycoplasma salivarium as the dominating taxon in 5 COVID-19 patients in ICU, as well 244 

as different Prevotella members. Non-COVID-19 pneumonia patients in ward (i.e. non-245 

intubated) harbored different microbes: 2 patients had a microbiome dominated by 246 

Porphyromonas gingivalis, while a single patient had a microbiome dominated by the 247 

fungus Pneumocystis jirovecii, a known pathogen causing pneumonia23.  248 

Supplementary table 4 shows associations between organism abundances and specific 249 

patient metadata: disease, hospital stay and ventilation type. Multiple links with 250 

COVID-19 diagnosis were identified (Wilcoxon test, (noncorrected) p-value<0.05; see 251 

Methods) but due to the low sample number, none was significant after multiple-test 252 

correction. Additionally, as hospital stay (ICU or ward), type of oxygen support 253 

(invasive or non-invasive ventilation) and disease (COVID-19 or controls) were highly 254 
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correlated (Chi-squared test, p-value < 0.0001 for all three pairwise correlations), the 255 

effect of these three variables could not be disentangled.  256 

 257 

Bacteria in the lower respiratory tract associate to host cells from the innate immune 258 

system in COVID-19 patients 259 

 260 

Next, we took advantage of the single-cell barcoding and questioned whether the 261 

microbial cells that we identified were found in association with host cells, or 262 

contrarily, had unique barcodes suggesting a free-living state. In total, 29,886 unique 263 

barcodes were identified that matched a total of 46,151 microbial UMIs. The 264 

distribution of UMIs per barcode was asymmetrical, ranging from 1 to 201 and with 265 

88% of the barcodes having a single UMI. Additionally, 26,572 barcodes (89%) were 266 

associated to a single microbial species, the rest being associated to 2 species (8.8%) or 267 

more (2.2%).  268 

 269 

Out of the total 29,886 microbial barcodes, only 2,108 were also assigned to host cells, 270 

suggesting that the bulk of bacteria found in BAL samples exist as free-living organisms 271 

or in bacterial biofilms. However, for those associated to host cells, the distribution 272 

across disease types was not random. We found that while 2.3% of the non-COVID-19 273 

patient cells were associated to bacterial cells, almost the double (4%) could be 274 

observed in COVID-19 patients (Figure 3a; Chi-squared test; p-value < 2.2·10-16). 275 

However, because COVID-19 diagnosis is highly correlated with intubation in this 276 

cohort, this effect could be due to higher intubation rates in COVID-19 patients. Within 277 

COVID-19 patients, we also evaluated the overlap between bacteria-associated host 278 

cells and cells with detected SARS-CoV-2 reads (Supplementary Table 5). Out of 1033 279 

host cells associated with bacteria in these patients and 343 cells with detected SARS-280 

CoV-2 reads, only one cell was positive for both. A binomial test for independence of 281 

virus and bacteria detection in the same host cell, showed that the observed co-282 

occurrence in one cell only was highly unlikely (p-value=5.7·10-4), therefore suggesting 283 

mutual exclusion of microbiome members and viruses in the same host immune cells.  284 

 285 
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We also explored whether host-associated bacterial reads would preferentially be 286 

linked with specific cell types, taking into account the varying frequencies of cell types 287 

in COVID-19 patients and controls (see Methods). Such a preferential association 288 

would suggest that these observations are biologically relevant and not an artifact of 289 

the single-cell sample and library preparation. Among control patients, cell types were 290 

similarly distributed in both groups (i.e. with and without bacteria), with only a 291 

preferential association of microbial cells with neutrophils (p-value = 3.61·10-12; Figure 292 

3b; Supplementary Figure 4). However, in COVID-19 patients, three cell types were 293 

significantly associated with bacteria: neutrophils (p-value < 2.2·10-16), monocytes ((p-294 

value = 4.82·10-5) and monocyte-derived macrophages (p-value < 2.2·10-16; Figure 3b; 295 

Supplementary Figure 4). We also found that different bacteria associate with distinct 296 

host cells. For instance, in COVID-19 patients, bacteria from the Mycoplasma genus 297 

preferentially associated to monocyte-derived macrophages (p-value = 2.28·10-7), 298 

while Rothia (p-value = 8.21·10-4), Enterobacter (p-value = 2.59·10-5), or Klebsiella (p-299 

value = 3.12·10-9) are enriched in monocytes (Figure 3c).  300 

 301 

Last, we investigated whether the associations of bacteria to host cells are linked to 302 

host cell expression. To do so, we assessed whether expression based cell subtype 303 

classification22 for neutrophils, monocytes and macrophages showed non-random 304 

associations with bacteria across all samples in this cohort. Among the neutrophils, a 305 

subtype of inflammatory neutrophils characterized by expression of the calgranulin 306 

S100A12 was enriched in bacteria-associated cells (p-value 7.18·10-6; Figure 3d,e). This 307 

subset of cells was also found to be enriched in SARS-CoV-2 nucleocapsid gene reads22, 308 

suggesting that the same cell type responsible for defense against the virus would be 309 

responding to potentially invasive bacteria in the lung. This subgroup is characterized 310 

by the expression of the calprotectin subunits S100A8 and S100A9. It is known that 311 

S100A8/A9 heterodimer secretion is increased in infection-induced inflammation and 312 

has some antibacterial effects mediated by secretion of pro-inflammatory cytokines, 313 

release of reactive oxygen species and recruitment of other inflammatory cells, as well 314 

as chelation of Zn2+ necessary for bacterial enzymatic activity24. These mechanisms are 315 

mediated by binding of the S100A8/A9 dimer to TLR4 receptors to trigger the release 316 

of pro-inflammatory cytokines such as IL-6 and TNF-a, and thus may contribute to 317 
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sustain or exacerbate inflammation25. Therefore, the association with bacteria could, 318 

at least in part, explain the inflammatory phenotype of this neutrophil subset. To 319 

further examine this hypothesis, we explored differential gene expression between 320 

bacteria-associated and non-associated S100A12hi neutrophils (Supplementary Table 321 

6). Because association of these cells with SARS-CoV-2 and with bacteria was mutually 322 

exclusive, we also compared these changes with the ones triggered by the virus in 323 

neutrophils22. Within this subset, neutrophils with co-occurring bacteria showed 324 

significantly higher expression (Bonferroni-corrected p-value < 0.05) of pro-325 

inflammatory genes, including the cytokine IL1B and some of its target genes (PTSG2), 326 

the transcription factors FOS and JUN, and several genes involved in degranulation 327 

(S100A9, FOLR3, HSPA1A, HSP90AA1, FCGR3B), (Supplementary Table 6). Among 328 

these, FOLR3, a gene encoding for a folate receptor, is found in neutrophil secretory 329 

granules and has antibacterial functions, by binding folates and thus depriving bacteria 330 

of these essential metabolites26. This response differed to that of virus-engulfing 331 

neutrophils in that IFN response genes are not distinctively upregulated by bacteria. 332 

 333 

Regarding myeloid cells, both inflammatory IL1Bhi monocytes (p-value = 2·10-16) as well 334 

as a mixed group of CCL2-expressing macrophages (p-value = 5.38·10-10) are enriched 335 

in bacteria-associated cells (Figure 3f). These inflammatory monocytes are believed to 336 

have an important role in the cytokine storm occurring in severe COVID-19 patients. In 337 

this case, further gene expression patterns were detected, specific for bacteria-338 

associated cells: for CCL2hi macrophages, cells with co-occurring bacteria expressed 339 

higher levels of MHC genes of type I and II, suggesting a more active role of these cells 340 

in antigen presentation (Bonferroni-corrected p-value < 0.05; Figure 3f; Supplementary 341 

Table 6). A similar increase was also observed in monocytes, yet not significant 342 

(Supplementary Table 6), possibly due to the lower monocyte abundances in this 343 

dataset. Additionally, bacteria-associated macrophages express significantly higher 344 

levels of the calprotectin subunits S100A8/A9, similarly to neutrophils, as well as pro-345 

inflammatory chemokines (such as CCL4, CXCL10 and CXCL1). 346 

  347 
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Altogether, our results suggest that the bacteria detected in these cell subsets via 348 

scRNA-seq analyses may be contributing to the inflammatory response observed in the 349 

host.  350 

  351 

Discussion 352 

 353 

Since the beginning of the COVID-19 pandemic, a massive global effort by the scientific 354 

community was undertaken to understand physiopathology of SARS-CoV-2 infection 355 

and risk factors affecting disease outcome. In this study, we explored the respiratory 356 

microbiota as a potential risk factor for disease severity, and we evaluated the upper 357 

and lower respiratory tract microbiota in COVID-19 patients throughout their 358 

hospitalization. We linked this data to viral load measurements and immunoprofiling 359 

results from nCounter and single-cell RNA sequencing data. To assess robustness of 360 

previously reported signals, we investigated the effect of potential confounders based 361 

on a broad panel of patient metadata variables. 362 

 363 

We found that in the upper respiratory tract, while SARS-CoV-2 viral load has a weak 364 

negative association with bacterial biodiversity, a strong effect of severity indicators 365 

such as ICU stay was observed, with diversity decreasing throughout the length of the 366 

ICU period, a pattern reminiscent of that seen in other pulmonary conditions27,28.  367 

This effect of ICU and/or ventilation on microbiome alpha diversity could potentially 368 

explain why previous studies on the microbiota of COVID-19 patients show conflicting 369 

results regarding diversity: some studies reported lower diversity in sputum or throat 370 

swab samples of COVID-19 patients15,16,18 while others focusing on the lower 371 

respiratory microbiome using bronchoalveolar fluid samples, showed higher bacterial 372 

diversity in COVID-19 patients than in controls17. To further complicate matters, it 373 

cannot be excluded that sampling site or processing could also be potential 374 

confounders in these studies and/or reflect the different pathologies in the different 375 

areas of the respiratory tract. 376 

 377 

We further found that between patient microbiome variation (as measured by genus-378 

level microbial beta-diversity) was also affected by different severity indicators such as 379 
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the clinical status of the patient, or more importantly the type of oxygen support 380 

received, with intubated patients harboring a different microbiota than non-intubated 381 

patients. The impact of oxygen support was also reflected at the species- and strain-382 

levels, with intubation causing a significant decrease and increase, respectively, in 383 

diversity. We hypothesize that the introduction of forced oxygen may drive the fast 384 

extinction of certain microbial species enabling the diversification of existing or newly 385 

colonizing species into new strains. Our results suggest that non-invasive ventilation 386 

(e.g. BIPAP, CPAP) can have microbial effects indicating that any form of ventilation 387 

may be a tipping point for microbial community differences.  388 

 389 

Importantly, several of the taxa reported to change between intubated and non-390 

intubated patients were reported to be linked to diagnosis in previous COVID-19 391 

microbiome studies15–17. In our study, no taxa were differentially abundant between 392 

COVID-19 positive and negative patients after controlling for patient intubation. This 393 

result strongly points at the possibility that intubation and mechanical ventilation are 394 

confounding previous results. Indeed, one study comparing COVID-19 patients with 395 

patients diagnosed of community-acquired pneumonia found no differences in 396 

respiratory microbiome composition between both groups of patients, but both 397 

groups did differ from healthy controls29. Together, these results indicate that patient 398 

intubation or even non-invasive ventilation are to be considered as important 399 

confounders when studying the upper respiratory microbiome, and we strongly 400 

suggest future COVID-19 microbiome studies should foresee and include strategies to 401 

account for this covariate. A recent study found a single ASV corresponding to the 402 

genus Rothia that was specific for SARS-CoV-2 patients after controlling for ICU-related 403 

confounders30.  404 

 405 

To better understand the potential functional consequences of these procedures and 406 

linked microbial shifts, we also profiled the microbiome of the lower respiratory tract 407 

using single-cell data obtained from a cross-sectional cohort of patients derived from 408 

the same hospital. Our results show that ‘standard’ single-cell RNA-seq, even though 409 

not optimized for microbial detection and profiling, can identify bacteria alone or in 410 

association with specific human cells. Unfortunately, the low numbers of microbial 411 
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reads obtained in this cohort, together with the fact that ICU stay, COVID-19 diagnosis 412 

and intubation are highly correlated in this set of patients, only allow for a descriptive 413 

analysis of the results. In this cohort, we identified different oral commensals and 414 

opportunistic pathogens previously linked to COVID-19 patients in both groups of 415 

samples, thus pointing again at a potential ventilation-linked origin. More interestingly, 416 

we identified a subset of bacteria associated with host cells, more specifically with 417 

neutrophils, monocytes and macrophages. This enrichment shows that these bacteria 418 

are likely not random contaminants, from which an even distribution across cell types 419 

(i.e. considering cell type abundances) would be expected. The identity of these host 420 

cells suggests that bacteria could have been phagocyted by these innate immune 421 

system cells, rather than be attached to the host cell surface. To the best of our 422 

knowledge, this is the first study linking interacting host cells and lung microbiome via 423 

high-throughput single-cell RNA-seq.  424 

 425 

We find that host cells associated with bacteria, most of which are of oral origin, 426 

exhibit pro-inflammatory phenotypes as well as higher levels of MHC for antigen 427 

presentation. In this single-cell cohort it was observed that critical COVID-19 patients 428 

are characterized by an impaired monocyte to macrophage differentiation, resulting in 429 

an excess of pro-inflammatory monocytes, as well as by prolonged neutrophil 430 

inflammation22. Given that only these cell types are enriched in bacteria, we 431 

hypothesize that the respiratory (or ventilation-linked) microbiome may be playing a 432 

role in exacerbating COVID-19 progression in the lower respiratory tract. We verified 433 

that this response would likely be driven by bacteria and not SARS-CoV-2, which is also 434 

detected mostly in these cell types, as there is almost no overlap in detection of both 435 

virus and bacteria in the same cells. However, it must be noted that lack of detection 436 

does not completely rule out presence of virus and bacteria within these cells. 437 

Therefore, further research is required in order to confirm a causative role of the 438 

microbiota in this immune impairment characteristic of critical disease, and to reveal 439 

the specific mechanisms involved. 440 

 441 

The presence of oral taxa in the lung microbiota is not unique of disease conditions. It 442 

is known that microaspiration, or the aspiration of aerosol droplets originated in the 443 
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oral cavity, occurs in healthy individuals and can serve as a route for lung colonization 444 

of oral commensals31. Such an increase of oral bacteria in the lower respiratory tract 445 

could be facilitated when critically ill patients –including but not limited to COVID-19– 446 

get intubated. Indeed, oral bacteria have been linked to ventilator-associated 447 

pneumonia32,33. It is yet to be elucidated whether COVID-19 physiopathology favors 448 

lung colonization by oral bacteria or if, in contrast, a lung microbiome previously 449 

colonized by oral microbes could also contribute to the disease. What is known is that 450 

an increase of oral bacteria in the lower respiratory tract can result in an increased 451 

inflammatory phenotype, even in healthy subjects34  452 

 453 

Conclusion 454 

 455 

Overall, this study provides a systematic analysis of potential confounders in COVID-19 456 

microbiome studies. We identified that ICU hospitalization and type of oxygen support 457 

had large impacts on the upper respiratory tract microbiome and have the potential to 458 

confound clinical microbiome studies. Among the different types of oxygen support we 459 

reported the largest shifts in microbial community structure between intubated and 460 

non-intubated patients. We found that oral microbiota was strongly enriched in the 461 

upper and lower respiratory tracts of intubated COVID-19 patients. Further, in the 462 

lower respiratory tract, microbes were strongly associated with specific pro-463 

inflammatory immune cells. This information contributes to a collective body of 464 

literature on the pathology of COVID-19 and suggests that careful attention be paid to 465 

ICU stay and type of oxygen support when evaluating the role of the lung microbiome 466 

on COVID-19 disease progression. 467 

 468 

Methods  469 

 470 

Study design and patient cohorts 471 

 472 

All experimental protocols and data analyses were approved by the Ethics Commission 473 

from the UZ Leuven Hospital, under the COntAGIouS observational clinical trial (study 474 

number S63381). The study design is compliant with all relevant ethical regulations, 475 
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including the Declaration of Helsinki and in the GDPR. All participants gave their 476 

informed consent to participate in the study.  477 

 478 

A total of 58 patients from the COntAGIouS observational trial were included as our 479 

upper respiratory tract cohort. All patients were admitted to the UZ Leuven hospital 480 

with a diagnostic of COVID-19. The disease was diagnosed based on a) a positive qRT-481 

PCR test, performed on admission or previously on other hospitals, when patients 482 

were transferred from other medical facilities; or b) a chest CT-scan showing alveolar 483 

damage and clinical symptoms of the disease. All patients included in the study were 484 

admitted to ICU for a variable amount of time. Nasopharyngeal swabs were taken from 485 

these patients at different timepoints throughout ICU stay and after ICU discharge, 486 

during recovery in ward. A total of 74 swabs were processed for upper respiratory 487 

microbiome characterization (Figure 1a).  488 

 489 

To extend our findings from the upper respiratory tract, we also profiled the lower 490 

respiratory tract microbiota in a different cohort22 of 35 patients belonging to the 491 

same observational trial and also recruited at UZ Leuven hospital. This cross-sectional 492 

cohort is composed by 22 COVID-19 patients and 13 pneumonitis controls with 493 

negative qRT-PCR for SARS-CoV-2, with varying disease severity. Previous data from 494 

single-cell RNA-sequencing had been collected for this cohort22. We reanalyzed this 495 

single-cell dataset to profile the lower respiratory tract microbiota in these patients. 496 

 497 

 498 

RNA/DNA extraction and sequencing 499 

 500 

Nucleic acid extraction from the swab samples was performed with AllPrep 501 

DNA/RNA/miRNA Universal kit (QIAGEN, catnr. 80224). Briefly, swabs from the 502 

potentially infectious samples were inactivated by adding 600µL RLT-plus lysis buffer. 503 

To increase bacterial cell lysis efficiency, glass beads and DX reagent (Pathogen Lysis 504 

Tubes, QIAGEN, catnr. 19091) were added to the lysis buffer, and samples were 505 

disrupted in a FastPrep-24TM instrument with the following program: 1-minute beating 506 

at 6.5m/sec, 1-minute incubation at 4°C, 1-minute beating at 6.5m/sec, 1-minute 507 
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incubation at 4°C. After lysis, the remaining extraction steps followed the 508 

recommended protocol from the manufacturer. DNA was eluted in 50µL EB buffer. 509 

Amplification of the V4 region of the 16S gene was done with primers 515F and 806R, 510 

using single multiplex identifiers and adaptors as previously described35. RNA was 511 

eluted in 30µL of nuclease-free water and used for SARS-CoV-2 viral load 512 

determination in the swabs as well as to measure inflammatory markers and cytokines 513 

and to estimate host cell populations via marker gene expression using nCounter. In 514 

brief, raw nCounter data were processed using nSolver 4.0 software (Nanostring), 515 

sequentially correcting three factors for each individual sample: technical variation 516 

between samples (using spiked positive control RNA), background correction (using 517 

spiked negative control RNA) and RNA content variation (using 15 housekeeping 518 

genes). We have previously validated nCounter digital transcriptomics for 519 

simultaneous quantification of host immune and viral transcripts36, including 520 

respiratory viruses in nasopharyngeal aspirates, even with low RNA yield37–39.   521 

 522 

DNA sequencing was performed on an Illumina MiSeq instrument, generating paired-523 

end reads of 250 base pairs. 524 

 525 

For quality control, reads were demultiplexed with LotuS v1.56540 and processed 526 

following the DADA2 microbiome pipeline using the R packages DADA241 and 527 

phyloseq42. Briefly, reads were filtered and trimmed using the parameters truncQ=11, 528 

truncLen=c(130,200), and trimLeft=c(30, 30) and then denoised. After removing 529 

chimeras, amplicon sequence variants (ASVs) table was constructed and taxonomy was 530 

assigned using the Ribosomal Database Project (RDP) classifier implemented in DADA2 531 

(RDP trainset 16/release 11.5). The abundance table was then corrected for copy 532 

number, rarefied to even sampling depth, and decontaminated. For decontamination, 533 

we used the prevalence-based contaminant identification method in the R package 534 

decontam43. 535 

 536 

16S statistical analysis 537 

 538 
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All the analyses were performed using R v3.6.0 and the packages vegan44, phyloseq42, 539 

CoDaSeq45, DESeq246, Biostrings47, rstatix48 and DECIPHER49.  540 

 541 

To analyze the 16S amplicon data, technical replicates were pooled and counts from 542 

technical replicates were added. For all the analyses using genus-level agglomerated 543 

data, only samples containing more than 10,000 reads assigned at the genus level 544 

were used (101 samples in total). Alpha-diversity was analyzed using Shannon’s 545 

Diversity Index. Comparison of the alpha diversity values across different groups was 546 

performed using Wilcoxon signed-rank tests for 2-group comparisons, and Kruskal-547 

Wallis tests for comparisons across multiple groups. In the latter case, pairwise 548 

comparisons (when applicable) were performed using Dunn post-hoc tests. To de-549 

confound for the effect of the ICU length, we fitted a quadratic model between the 550 

days spent at ICU and the Shannon index using the lm function in R. The residuals of 551 

this model were used to test the association with the SARS-CoV-2 viral load.  552 

 553 

Beta diversity analyses were performed using distance-based redundancy analyses 554 

(RDA), using Euclidean distances on CLR-transformed data. RDA analyses were 555 

performed using the capscale function from vegan. Non-redundant contribution to 556 

variation was calculated using the ordiR2step function from vegan, using only the 557 

variables that were significant individually in the RDA, and a null model without any 558 

explanatory variables. For these analyses, taxa with prevalence lower than 10% were 559 

excluded. Metadata variables containing dates, as well as non-informative metadata 560 

(containing a single non-NA value or unique for only one patient) were also excluded.  561 

 562 

Differential taxa abundance analyses were performed using DESeq2’s likelihood ratio 563 

tests and controlling for potential confounders when indicated, including them in the 564 

null model. All statistical tests are two-sided, and when multiple tests were applied to 565 

the different features (e.g. the differential taxa abundances across two conditions) p-566 

values were corrected for multiple testing using Benjamini-Hochberg’s method.  567 

 568 

In order to explore species-level and strain-level diversity, 16S sequences were first 569 

clustered into 97% nucleotide diversity operational taxonomic units (OTUs) using the R 570 
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packages Biostrings and DECIPHER. These OTUs were used to represents the species-571 

level. The number of unique 16S sequences clustered within each OTU were used to 572 

represent the number of detectable strains per species.  To calculate strain-level 573 

diversity per sample, the number of strains of 5 detected OTU species were randomly 574 

selected and averaged. This was repeated 1,000x and the average of the all 1,000 575 

subsamplings was used as the final strain-level diversity value for each sample, as 576 

previously described50. To account for uneven sampling assessing diversity differences 577 

based on different parameters, we randomly selected and averaged the species- and 578 

strain-level diversity of 5 samples per parameter. This was repeated 100x and the 579 

subsamplings were used to assess the significant differences between species- and 580 

strain-level diversity across the parameters. The average was of all 100 subsamplings 581 

was used to as the input for a Pearson’s correlation between species- and strain-level 582 

diversity. 583 

 584 

Identification of microbial reads in BAL scRNA-seq data 585 

 586 

Single-cell data was processed with an in-house pipeline to identify microbial reads. 587 

Only read 2, containing the information on the cDNA, was used. Trimmomatic51 (v0.38) 588 

was used to remove trim low quality bases and discard short reads. Additionally, 589 

Prinseq++52 (v1.2) was used to discard reads with low-complexity stretches. Following 590 

quality control, reads from human and potential sequencing artifacts (phage phiX174) 591 

were mapped with STAR53 (v2.7.1) and discarded. The remaining reads were mapped 592 

against bacterial genomes using a 2-step approach: first, we scanned the reads using 593 

mash screen54 (v2.0) against a custom database of 11685 microbial reference genomes 594 

including bacteria, archaea, fungi and viruses. Genomes likely to be present in the 595 

analyzed sample (selected using a threshold of at least two shared hashes from mash 596 

screen) were selected and reads were pseudoaligned to this subset of genomes using 597 

kallisto55 (v0.44.0). To remove potential artifacts, two additional filters were applied: 598 

first, if less than 10 different functions were expressed from a given species, the 599 

species was discarded. Second, if one function accounted for more than 95% of the 600 

mapped reads of a given species, it was also discarded. These filters were aimed at 601 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 26, 2020. ; https://doi.org/10.1101/2020.12.23.20248425doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.23.20248425
http://creativecommons.org/licenses/by-nc-nd/4.0/


removing potential artifacts caused by contamination or errors in the genome 602 

assemblies used in our database.  603 

 604 

Differences in lower respiratory tract microbial taxa between COVID-19 patients and 605 

controls, ICU and ward patients, and invasive and non-invasive ventilation types were 606 

calculated using Wilcoxon rank-sum tests on centered-log-ratio (CLR)-transformed 607 

data. Prior to CLR data transformation, we filtered the data using the CoDaSeq.filter 608 

function, to keep samples with more than 1,000 reads and taxa with a relative 609 

abundance above 0.1%. Zeros were imputed using the minimum proportional 610 

abundance detected for each taxon. This more lenient approach than the one used for 611 

16S data was chosen due to the low number of samples available and the reduced 612 

number of bacterial reads identified per sample.  613 

 614 

Bacterial reads were assigned their specific barcodes and UMIs as follows: IDs from the 615 

mapped microbial reads were retrieved from the kallisto pseudobam output, and used 616 

to retrieve their specific barcodes and UMIs using the raw data files from read 1, 617 

assigning each barcode and UMI univocally to a microbial species and function.  618 

 619 

Direct associations between bacteria and host cells 620 

 621 

Host single-cell transcriptomics data was obtained from the Seurat56 object after 622 

preprocessing and integrating the samples of the single-cell cohort, as described 623 

previously22. From the Seurat object, the metadata was extracted, including the 624 

information on patient group (COVID-19 or control) and severity of the disease 625 

(moderate or critical) as well as cell type and subtype annotation corresponding to 626 

each barcode. Enrichment of bacteria detected in patient groups or cell types was 627 

calculated using chi-squared tests, with effect sizes determined via the standardized 628 

residuals. Significance was assessed via post-hoc tests using the R package 629 

chisq.posthoc.test57.  630 

 631 

For cell types showing an enrichment in associated bacteria, a new Seurat object was 632 

created by subsetting the specific cell type. Chi-squared tests were also used to 633 
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determine enrichment of bacteria-associated cell subtypes. Previous annotations of 634 

cell subtypes22 were used to generate new clusters manually and identify marker 635 

genes for these subtypes, using the function findAllMarkers from Seurat. This function 636 

was also used to find differentially expressed genes between bacteria-associated and 637 

not-bacteria-associated host cells of each subtype. When using this function, reported 638 

adjusted p-values are calculated using Bonferroni correction by default.  639 

 640 

Figure legends 641 

 642 

Figure 1. Sample overview and alpha diversity. a) Longitudinal sampling of patients. 643 

Each line represents one patient. Yellow lines span the days spent in ward, while blue 644 

lines span the days spent in ICU. Red points mark hospital discharge dates. Crosses 645 

indicate the timepoints were swab samples were obtained for microbiome analyses. b) 646 

Top 15 most abundant genera in this cohort. Samples with > 10,000 reads assigned to 647 

microbial taxa at the genus level were stratified according to the sampling moment: 648 

upon admission, throughout the ICU stay or at ICU discharge/during treatment in 649 

ward. c) Correlation between the SARS-CoV-2 viral load and Shannon diversity index of 650 

all samples. The shaded area surrounding the trend line represents the 95% 651 

confidence interval. d) Shannon diversity index of all samples, stratified by the 652 

sampling moment: admission, throughout ICU stay or at ICU discharge/during 653 

treatment in ward. Boxplots span from the first until the third quartile of the data 654 

distribution, and the horizontal line indicates the median value of the data. The 655 

whiskers extend from the quartiles until the last data point within 1.5 times the 656 

interquartile range, with outliers beyond. Individual data points are also represented. 657 

 658 

Figure 2. Upper respiratory microbiome covariates in COVID-19. a) Significant 659 

covariates explaining microbiota variation in the upper respiratory tract in this cohort. 660 

Individual covariates are listed on the y-axis, their color corresponds to the metadata 661 

category they belong to: technical data, disease-related, microbiological tests, 662 

comorbidities or host cell populations or gene expression, the latter measured with 663 

nCounter (see Methods). Darker colors refer to the individual variance explained by 664 

each of these covariates assuming independency, while lighter colors represent the 665 
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cumulative and non-redundant variance explained by incorporating each variable to a 666 

model using a stepwise RDA analysis. The black horizontal line separates those 667 

variables that are significant in the non-redundant analysis on top (Patient ID and 668 

oxygen support) from the non-significant ones. b) RDA ordination plot showing the 669 

first 2 constrained axes. Ordination is constrained by the two significant variables 670 

“Patient ID” and “Oxygen support”. Samples are depicted as points, whose color 671 

indicates the oxygen support type of the patient and whose shape indicates stay at 672 

ward or ICU (at the moment of sampling). Axes indicate the variance explained by the 673 

first two constrained components of the RDA analysis. c) Species- (left) and strain-level 674 

diversity (right) of the samples, stratified by oxygen support type. d) Pearson 675 

correlation between average species- and strain- level diversity for each of the oxygen 676 

support categories. e) Significant differences among oxygen support types. 677 

Differentially abundant taxa between invasive (red) and non-invasive (blue) ventilated 678 

sample. Only the top 10 most significant taxa are shown, as determined by their 679 

adjusted p-value. Boxplots span from the first until the third quartile of the data 680 

distribution, and the horizontal line indicates the median value of the data. The 681 

whiskers extend from the quartiles until the last data point within 1.5 times the 682 

interquartile range, with outliers beyond. Individual data points are also represented. 683 

Gray lines join samples pertaining to the same patient, taken at different time points.  684 

 685 

Figure 3. Host single cells associated to the lower respiratory tract microbiota. a) 686 

relative proportion of cells from negative and positive COVID-19 patients with (red 687 

color) and without (blue) associated bacteria. The p-value of a chi-squared test using 688 

the count data is shown on top of the panel. b) Cell types enriched in bacteria-689 

associated cells. Barplots represent the proportion of cell types without (“No”) and 690 

with (“Yes”) bacteria in COVID-19 positive and negative patients. For each patient 691 

class, we tested for enrichment of bacteria-associated cells (“Yes”) across the different 692 

cell types, using the proportions of non-bacteria associated cells (“No”) as background. 693 

Asterisks mark the cell types with significant enrichment of bacteria. c) Bacterial 694 

genera preferentially associating to specific cell types. The heatmaps show the 695 

standardized residuals of a chi-squared test including all bacterial genera and the three 696 

host cell types enriched in bacteria, for controls (left) and COVID-19 positive patients 697 
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(right). Taxa with no significant associations with any of the cell types are not shown. 698 

Asterisks denote significant positive or negative associations: enrichments are shown 699 

in red; depletions are depicted in blue. d) Host cell subtypes associated with bacteria. 700 

The heatmap shows the standardized residuals of a chi-squared test including the 701 

subtypes of neutrophils, monocytes and monocyte-derived macrophages with 702 

associated bacteria, considering cells without bacteria as background. Asterisks denote 703 

significant positive or negative associations: enrichments are shown in red; depletions 704 

are depicted in blue. e) Marker genes detected for the 5 different subtypes of 705 

neutrophils. The heatmap also shows within-group differences between bacteria-706 

associated and bacteria-non-associated cells. f) Myeloid cell functional gene set 707 

showing the expression of canonical pro-inflammatory, anti-inflammatory and MHC 708 

genes for the two subtypes of myeloid cells significantly associated with bacteria 709 

(CCL2hi-macrophages and IL1Bhi-monocytes). The heatmap also shows within group 710 

differences between bacteria-associated and bacteria-non-associated cells. Statistically 711 

significant differences after multiple testing correction are marked with squares. For 712 

b)-d) asterisks denote significance as follows: *  = p-value ≤ 0.05; ** = p-value ≤ 0.01; 713 

*** = p-value ≤ 0.001; **** = p-value ≤ 0.0001. 714 

 715 

 716 

Supplementary Figure Legends 717 

 718 

Supplementary Figure 1. Alpha diversity in the upper respiratory tract. a) Correlation 719 

between number of days spent in ICU at the moment of sampling and Shannon 720 

diversity index. For samples taken after discharge to ward, the total number of days 721 

spent in ICU was used. Spearman correlation and p-value are indicated in the upper 722 

right corner of the panel. The shaded area surrounding the trend line represents the 723 

95% confidence interval. b) Shannon diversity of the samples, grouped by patient 724 

clinical status at the moment of sampling. The p-value of a Kruskal-Wallis test is shown 725 

in the upper right corner of the panel. c) Shannon diversity of the samples, grouped by 726 

type of oxygen support supplied to the patient at the moment of sampling. The p-value 727 

of a Kruskal-Wallis test is shown in the upper right corner of the panel. d) Correlation 728 

between the days spent in ICU at the moment of sampling and SARS-CoV-2 viral load 729 
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of the sample. For samples taken after discharge to ward, the total number of days 730 

spent in ICU was used. The shaded area surrounding the trend line represents the 95% 731 

confidence interval. e) Correlation between SARS-CoV-2 viral load and Shannon 732 

diversity index, after controlling for the time spent in ICU. The residuals of a quadratic 733 

fit between the Shannon diversity and the days in ICU were correlated to the SARS-734 

CoV-2 viral loads measured in the samples. Spearman correlation and p-value are 735 

indicated in the upper right corner of the panel. The shaded area surrounding the 736 

trend line represents the 95% confidence interval. For b) and c), boxplots span from 737 

the first until the third quartile of the data distribution, and the horizontal line 738 

indicates the median value of the data. The whiskers extend from the quartiles until 739 

the last data point within 1.5 times the interquartile range, with outliers beyond. 740 

Individual data points are also represented. 741 

 742 

Supplementary Figure 2. Differentially abundant taxa between oxygen support types. 743 

The 32 taxa whose abundance is significantly different between non-invasive and 744 

invasive ventilation are represented. Boxplots span from the first until the third 745 

quartile of the data distribution, and the horizontal line indicates the median value of 746 

the data. The whiskers extend from the quartiles until the last data point within 1.5 747 

times the interquartile range, with outliers beyond. Individual data points are also 748 

represented. Gray lines join samples pertaining to the same patient, taken at different 749 

time points. An asterisk next to the genera name indicates that the differences 750 

between ventilation type are also significant after controlling for patient ID. 751 

 752 

Supplementary Figure 3. Absolute microbial read counts in single-cell RNA-seq data 753 

from BAL samples. The top 15 species detected in our analyses are depicted. Samples 754 

are grouped by disease type (control for non-COVID-19 pneumonia patients, or COVID-755 

19) and hospital stay (ICU or ward).  756 

 757 

Supplementary Figure 4. Associations of specific cell types with bacteria, for COVID-19 758 

and control samples. The colors represent the strength of the association as the 759 

standardized residuals of a Chi-squared test. Red colors indicate a positive association 760 

(i.e. enrichment) of bacteria for each cell type. Blue colors indicate a negative 761 
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association (i.e. depletion) of bacteria for a given cell type. Asterisks denote 762 

significance as follows: *  = p-value ≤ 0.05; ** = p-value ≤ 0.01; *** = p-value ≤ 0.001; 763 

**** = p-value ≤ 0.0001. 764 
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 Upper respiratory tract (swabs) Lower respiratory tract (BAL) 
Number of patients 58 35 

COVID-19 positive (%) 58 (100%) 22 (62.9%) 
Age (range) 61.2 (37-83) 64.1 (45-85) 

Female sex (%) 13 (22.4%) 12 (34.3%) 
BMI (range) 28.9 (22-46.7) 26.2 (16-36.4) 
Diabetic (%) 12 (20.7%) 6 (17.1%) 

Days in ICU (range) 21.4 (2-72) NA 
Days in hospital (range) 32.5 (6-86) NA 

 
Table 1. Patient demographics of our upper and lower respiratory tract cohorts 
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