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ABSTRACT 
Background: The nicotine metabolite ratio and nicotine equivalents are measures of  
metabolism rate and intake. Genome-wide prediction of these nicotine biomarkers will extend 
biomarker studies to cohorts without measured biomarkers and enable tobacco-related 
behavioral and exposure research.  
Methods: We screened genetic variants genome-wide using marginal scans and applied 
statistical learning algorithms on top-ranked genetic variants and age, ethnicity and sex, and 
cigarettes per day (CPD) (in additional modeling) to build prediction models for the urinary 
nicotine metabolite ratio (uNMR) and creatinine-standardized total nicotine equivalents (TNE) in 
2,239 current cigarette smokers in five ethnic groups. We predicted these nicotine biomarkers 
using model ensembles, and evaluated external validity using behavioral outcomes in 1,864 
treatment-seeking smokers in two ethnic groups.  
Results: The genomic regions with the most selected and trained variants for measured 
biomarkers were chr19q13.2 (uNMR, without and with CPD) and chr15q25.1 and chr10q25.3 
(TNE, without and with CPD). We observed ensemble correlations between measured and 
predicted biomarker values for the uNMR and TNE without (with CPD) of 0.67 (0.68), and 0.65 
(0.72) in the training sample. We observed inconsistency in penalized regression models of 
TNE (with CPD) with fewer variants at chr15q25.1 selected and trained. In treatment-seeking 
smokers, predicted uNMR (without CPD) was significantly associated with CPD, and predicted 
TNE (without CPD) with CPD, Time-To-First-Cigarette, and Fagerström total score. 
Conclusions: Nicotine metabolites, genome-wide data and statistical learning approaches 
develop novel robust predictive models for urinary nicotine biomarkers in multiple ethnic groups. 
Predicted biomarker associations help define genetically-influenced components of nicotine 
dependence.
 
Keywords: Genome-Wide Association Study, Machine Learning, Multifactorial Inheritance, 
Nicotine Metabolism, Nicotine Equivalents 



 

 

 

IMPLICATIONS 

We demonstrate development of robust models and multiethnic prediction of the urinary nicotine 

metabolite ratio and total nicotine equivalents using statistical and machine learning 

approaches. Trained variants in models for both biomarkers include top-ranked variants in 

multiethnic genome-wide studies of smoking behavior, nicotine metabolites and related disease. 

Association of the two predicted nicotine biomarkers with Fagerstr�m Test for Nicotine 

Dependence items support models of nicotine biomarkers as predictors of physical dependence 

and nicotine exposure. Predicted nicotine biomarkers may facilitate tobacco-related disease and 

treatment research in samples with genomic data and limited nicotine metabolite or tobacco 

exposure data. 

 

 
 
 
 
 
 
  
 



 

 

INTRODUCTION 

Cigarette smoking remains the largest modifiable cause of mortality in the United States, 

responsible for one-third of deaths due to cancer and cardiovascular disease, and most 

pulmonary disease.1 Tobacco control programs and smoking cessation therapies have reduced 

smoking prevalence 67% over the last 50 years in the United States; yet, in 2018, there were 34 

million adult cigarette smokers, with numerous use disparities by demographic, economic and 

health conditions.1 

 

Nicotine (NIC) is the tobacco constituent responsible for sustained tobacco use.2 The nicotine 

metabolite ratio (NMR, the ratio of trans-3’-hydroxycotinine, 3HC, to cotinine, COT), is a 

biomarker of CYP2A6 activity. CYP2A6 is the primary catalyst of nicotine in smokers. The ratio 

of these two nicotine metabolites may be measured via laboratory analysis of blood, saliva or 

urine.3,4 Total nicotine equivalents (TNE) is a biomarker of nicotine consumption and is defined 

as the molar sum of the urinary concentration of total NIC, total COT, total 3HC, and additional 

metabolites depending on the particular study (“total” refers to the sum of the compound and its 

glucuronides).5 In addition to serving as a biomarker of nicotine metabolism and consumption,6 

the NMR is associated with the efficacy of multiple tobacco cessation therapies with potential 

use for personalizing treatment for tobacco use disorder,7 while TNE is associated with smoking 

behaviors and toxicant exposures that may account for some race/ethnicity lung cancer risk 

disparities.8,9  

 

Predictive genetic modeling of nicotine biomarkers promises to provide genetic signatures 

supporting disease, mechanistic, and treatment research. Genetic modeling of the NMR is 

supported by significant twin and locus specific heritability estimates.10–12 There are no 

heritability estimates of TNE. Heritability estimates of cigarettes per day (CPD), a less precise 

measure of consumption, are significant in twin and genome-wide approaches,13–15 but lower 



 

 

than NMR estimates.  

 

Predictive genetic modeling of nicotine metabolism and initial applications have encompassed 

laboratory studies, research cohorts and cessation trials; modeling focused first on candidate 

gene variants and then leveraged variants from genome-wide analyses. Predictive genetic 

models of CYP2A6-mediated nicotine metabolism have been developed that account for 

approximately 38% to 62% of NMR variance16–18.  Herein, we build and characterize prediction 

models of two urinary nicotine biomarkers from metabolite, demographic and genome-wide data 

in current smokers of multiple ethnicities.19 Using statistical learning techniques, we trained 

models which robustly predicted two urinary biomarkers in five ethnic groups. We applied these 

models to predict both biomarkers in treatment-seeking smokers in two ethnic groups,20 and 

explored predicted biomarker associations with nicotine dependence measures.21 We relate 

findings to prior analyses and review prospects for translation. 

 

MATERIALS AND METHODS 

Ethical Approval 

Written informed consent was obtained from all participants. The research described herein 

received approvals from the Institutional Review Boards of BioRealm, the Oregon Research 

Institute, the University of Hawaii and the NIH Joint Addiction, Aging, and Mental Health Data 

Access Committee. 

 

Participants, Measured Biomarkers and Nicotine Dependence Measures 

We utilized participant data from two multiethnic studies in this secondary data analysis: current 

smokers from the Multiethnic Cohort study (MEC), initially assembled in 1993 at the University 

of Hawaii Cancer Center and Department of Preventive Medicine, University of Southern 

California, to study diet and cancer; and, treatment-seeking smokers recruited by the University 



 

 

of Wisconsin Transdisciplinary Tobacco Use Research Center (UW-TTURC), at the Center for 

Tobacco Research and Intervention, established in 1992 to study nicotine dependence and 

deliver smoking cessation treatments. MEC study participants were not compensated for their 

participation; UW-TTURC participants were compensated for participation in the smoking 

cessation trial. 

 

We studied a subsample of MEC current smokers who provided (2004-2006) blood and urine 

samples and epidemiologic data to enable research on genomics and tobacco exposures.22 

Urinary total and free NIC, COT, and 3HC, and free nicotine N-oxide (NNO), were measured.22 

The natural log-transformed urinary NMR (uNMR, defined as total 3HC/free COT), and the 

square root-transformed TNE (the creatinine-standardized molar sum of total NIC, COT, and 

3HC, and free NNO) were the two nicotine biomarkers analyzed in this study. 

 

We studied UW-TTURC smokers recruited and randomized (2000-2010) into three smoking 

cessation trials,23–25 who provided a blood sample to enable research on genetics and nicotine 

addiction (dbGaP phs000404.v1.p1).20 The dataset includes four self-administered nicotine 

dependence measures: the Fagerstr�m Test of Nicotine Dependence (FTND),26 the Tobacco 

Dependence Screener (TDS),27 the Nicotine Dependence Syndrome Scale (NDSS),28 and the 

Wisconsin Inventory of Smoking Dependence Motives (WISDM).29  

 

See Supplementary Material for details on MEC metabolite and genomic data and UW-

TTURC demographic, dependence, and genomic data. 

 

Variable Selection Phase 

The variable selection phase makes use of a marginal scan to examine each genetic variant 

through a model of the form 
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where �� is the biomarker level for the ith individual; ��  is a vector of confounding variables with 

corresponding � regression coefficients; ��� is the genetic variant in question with ��  as the 

corresponding regression coefficient; 	� is a vector of principal components computed on the 

genotypes design matrix and 
 is the corresponding vector of regression coefficients; and �� is 

the usual error term.  In our primary genome-wide analyses, we included age, sex, ethnicity and 

BMI, and, in additional modeling, CPD was added (“with CPD”). We include the first 50 principal 

components (PCs) of the genotype design matrix, which more than adequately accounts for 

genetic relatedness and ancestry among the study participants; i.e., the first 50 PCs explain 

72% of PC variance. The model depicted in (1) was fit for each genetic variant in the MEC data 

with Smokescreen database annotation, and p-values for the test of 
�: �� � 0 ��. 
�: �� � 0  

were computed. This phase was completed by selecting 200 genetic variants based on the 

smallest p-values to move into the training phase. 

 

Training Phase 

The training phase of our prediction process makes use of a suite of high dimensional 

regression and machine learning techniques. In particular, we fit first order models using the 

LASSO, elastic net, adaptive LASSO, and the adaptive elastic net regression methodologies,30–

33 where predictor variables were the selected genetic variants, age, sex and ethnicity, with CPD 

added in an additional set of models. In this implementation, the penalty parameters were tuned 

to minimize the Bayesian information criterion (BIC). In each elastic net model we considered 

five settings (i.e., 0.20, 0.35, 0.5, 0.65, 0.8) for the penalty mixing parameter and in each 

adaptive method we consider five weighting schemes based on a priori fits. This leads to a total 

of 36 fitted regression models. In addition to these regression models, we also make use of 

three machine learning algorithms to train models. We fit: a regression tree,34 tuned for the 



 

 

minimum number of splits and maximum depth of the tree via five-fold cross validation; 

bagging,35 tuned for the number of trees; and gradient boosting machine,36,37 tuned for step size 

of each boosting step, maximum depth of tree, minimum sum of instance weight (Hessian) 

needed in a child, subsample ratio of the training instance and subsample ratio of columns 

when constructing each tree via five-fold cross validation. 

 

Prediction Phase 

The prediction phase leverages the 39 trained models to perform out of sample prediction. In 

particular, we form the following predictions  

�� �
���

� ����� ; �	�, for � � 1, . . . ,39,                                                       (2) 

where �� �
��� denotes the predicted nicotine biomarker level for the ith subject in the UW-TTURC 

data, �� denotes the demographics and genotypes available on the ith subject, ���. ; . �  denotes 

the form of the jth model, and �	 denotes the set of trained parameters for the jth model. These 

predictions are then used to construct an ensemble based prediction. Briefly, ensemble 

methods obtain better predictive performance by aggregating over the predictions of multiple 

statistical/machine learning algorithms. In our application, as is the common approach, we use 

the following predictive aggregation 
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In this analysis, genotypes from selected variants were extracted from African American and 

white UW-TTURC participants (dbGaP phs000404.v1.p1), and cross-referenced to the 

Smokescreen database38 by chromosome and position. Dosages were transformed as needed 

to count Smokescreen alternate alleles. Nicotine biomarker prediction and prediction 

aggregation were as described using the trained models without and with CPD. 

 

Variant Annotation 



 

 

Variant annotation (GRCh37/hg19 assembly) was from the Ensemble Variant Effect Predictor.39 

Trained variant-related gene associations with smoking-related phenotypes were from the 

Ensemble GWAS Catalog.40 

 

Measured and Predicted Biomarker Demographic Differences 

We estimated significant differences in covariate-adjusted measured biomarkers in African 

American and white MEC participants and in predicted biomarkers in UW-TTURC participants 

by sex and by ethnicity.  

 

Predicted Biomarkers and Nicotine Dependence Measures  

Predicted nicotine biomarkers uNMR and TNE were individually included in linear regression of 

each score of four nicotine dependence measures. Each model was adjusted for age, sex and 

ethnicity. Regressions were also performed to evaluate interactions with ethnicity and with sex. 

 

RESULTS  

There were 2,239 MEC participants in five ethnic groups with biomarker and genotype data 

available for variable selection and model training. There were 1,864 UW-TTURC participants in 

two ethnic groups with genome-wide data available for model prediction, and 1,800 to 1,862 

participants with nicotine dependence data.20 Participant age and sex distributions reflect study 

designs. Ethnicity distributions reflect study designs and recruitment locations, and selection of 

African American and white treatment-seeking smokers for prediction. CPD distributions reflect 

study design (current smokers) and trial recruitment criteria (treatment-seeking smokers). See 

Table 1. 

 

Measured Nicotine Biomarkers 

The two covariate-adjusted (without or with CPD) biomarkers in African American and white 



 

 

MEC participants were significantly related to each other in a linear model (p−values < .001). 

We observed statistically significant higher levels of covariate-adjusted uNMR without CPD in 

female versus male participants (P < .001), but no significant differences between African 

American and white participants. There were no significant differences in covariate-adjusted 

uNMR with CPD by sex or ethnicity. We observed statistically significant higher levels in female 

participants and lower levels in African American participants of covariate-adjusted TNE without 

CPD, than in male or white participants, respectively (p−values < .001). We observed 

statistically significant differences in covariate-adjusted TNE with CPD by sex (p−values < .001), 

but not by ethnicity. See Table 2 (African American and white participants) and Supplementary 

Tables 1A and 1B (five ethnicities). 

 

Nicotine Biomarker Genome-wide Analysis 

The number of variants in all genome-wide analyses in the MEC was N=542,732. See Table 3 

and Supplementary Tables 2A, 2B, 3A and 3B for selected variant summaries and details. 

The genome-wide analysis of measured covariate-adjusted uNMR without CPD identified 

N=122 genome-wide significant (P < 5E−8) associations at chr19q13.2, and associations 

(p−values < 6.3E-7) on N=11 additional autosomes. The region of genome-wide significant 

association on chr19q13.2 included 158 variants, spanned 173 kilo basepairs (kbp), and 

included variants at the protein-coding genes SNRPA, RAB4B, MIA, EGLN2, CYP2A6 and 

CYP2A7. The most significant marginal result genome-wide was rs56113850 (C allele, β = 0.40, 

P = 5.4E-48), in the fourth intron of CYP2A6. An additional 17 selected variants spanned 332 

kbp at chr19q13.2, including variants at protein-coding genes NUMBL, ADCK4, ITPKC and 

CYP2B6.  

 

The primary genome-wide analysis of measured covariate-adjusted TNE without CPD identified 

variant associations (p−values < 2.6E–7) on all autosomes among the top 200 variants. The 



 

 

region with the most variants selected (31 variants) was chr15q25.1, spanned 203 kbp, and 

included variants at protein-coding genes IREB2, HYKK, PSMA4, CHRNA5, CHRNA3 and 

CHRNB4. The most significant marginal result variant in this region was rs2036527 (A allele, β 

= 0.57, P = 1.4E-5), proximal of CHRNA5. The region with the top-ranked variant in the 

genome-wide analyses of TNE (rs56113850, C allele, β = 0.43, P = 2.6E-7) was chr19q13.2 (20 

variants), spanned 109 kbp, and included variants at protein coding genes CYP2A6 and 

CYP2A7. 

 

Results of genome-wide analysis of the uNMR with CPD were nearly identical to the analysis 

without CPD, e.g., 87% of selected variants in both uNMR analyses were found at chr19q13.2. 

The genome-wide analysis of TNE with CPD exhibited reduced marginal significance (p−values 

< 3.4E-6), reduced numbers of variants in the chr15q25.1 region (four versus 31 variants 

selected), and different regions with most variants selected (12 chr10q25.3 versus 31 

chr15q25.1 variants), than in analysis of TNE without CPD.  

 

Model Training, Variants, Covariates and Associated Genes 

Variants selected in genome-wide analyses but not available in UW-TTURC data were not 

included in model training. See Table 3 and Supplementary Tables 2A, 2B, 3A, and 3B for 

trained variant summaries and model counts.  

 

As expected, most trained variants in the uNMR model without CPD and associated protein-

coding genes (43/63 variants and 10/19 genes) were located on chr19q13.2 from NUMBL to 

CYP2B6. Clinical covariates trained in 38 uNMR models included age (22 models), sex (27 

models), and ethnicity (38 models). Several chr19q13.2 SNPs were trained in the two machine 

learning models reviewed (Supplementary Figures) with rs56113850 included in all models 

reviewed. In one machine learning method (Supplementary Figure 1), Japanese American 



 

 

ethnicity dichotomized uNMR, with chr19q13.2 variants defining the remaining tree structure.  

 

Training variants in TNE models without CPD resulted in 124 trained variants located on all 

autosomes. The most trained variants were found on chromosomes 1, 8, 11, and 15. The 

regions with the largest number of trained variants were chr15q25.1 (eight variants), from HYKK 

to CHRNB4, and chr19q13.2 (six variants), from rs12459249 proximal of CYP2A6 to the 

CYP2A7-CYP2B6 intergenic region. Eighty-five of 124 trained variants were trained in all 

penalized regression models on all autosomes except 16 and 21. Clinical covariates trained in 

38 TNE models reviewed included age (one model), sex (37 models), and ethnicity (38 models). 

In one machine learning model (Supplementary Figure 2), a chr15q25.1 variant dichotomized 

TNE, sex dichotomized lower values, and Latino ethnicity and a chr22q13.2 variant 

trichotomized higher values. Trained variants were annotated to 53 protein-coding genes 

distributed over all autosomes. Thirty-six of 47 annotated protein-coding genes in the GWAS 

catalog have associations with smoking related behaviors, diseases or traits, and five have 

associations with kidney function (data not shown).  

 

In uNMR models without and with CPD, 40 of 43 trained chr19q13.2 variants and 18 of 20 

trained non-chr19q13.2 variants were identical. In uNMR models with CPD, CPD was trained in 

36 of 38 models reviewed, and age and sex were trained in 25 and 36 models. Across trained 

variants in common between uNMR models with and without CPD, there were only minor 

differences in the number of models trained. However, in TNE models with CPD, the number of 

trained variants increased and the mean, median, mode, and maximum number of models 

variants were trained in decreased. The number of trained variants declined at chr15q25.1 (from 

eight to two) and chr19q13.2 (from six to four) and increased elsewhere in the genome. In TNE 

models with CPD, CPD was trained in all 38 models reviewed, age was trained in six additional 

models and ethnicity was trained in eight fewer models. In one TNE machine learning model 



 

 

CPD replaced the chr15q25.1 variant, and sex replaced Latino ethnicity and the chr22q13.2 

variant, as prediction criteria (data not shown).  

 

Training of Nicotine Biomarker Models 

For each of 39 model fits, we evaluated the final form of the model via standard model 

diagnostic techniques, e.g., residual plots. From these diagnostics, we discovered no evidence 

that the assumed forms of the models were invalid. To assess the model fits, the correlation 

between measured and fitted nicotine biomarkers were computed for each model and biomarker 

in the MEC. The ensemble value of these correlations (r) for uNMR and TNE without CPD were 

0.6695 and 0.6450, with similar correlations across all penalized regression models for each 

biomarker (data not shown). These values tend to indicate good fit and do not point to overfitting 

issues. This supports equal weighting for each contributing model in constructing our ensemble-

based estimators. For measured vs fitted biomarker correlations with CPD, the ensemble values 

were 0.6760 and 0.7162 for uNMR and TNE. Penalized regression model correlations within 

each uNMR analysis (without and with CPD) were similar to each other, but penalized 

regression model correlations in TNE analysis with CPD dropped from 0.73 to 0.42 as penalty 

parameters increased (data not shown), reflecting the loss of highly correlated or confounded 

variables.  

 

Predicted Biomarkers in the UW-TTURC 

Given minimal differences in model and ensemble correlations between the two analyses for the 

uNMR, and evidence for confounding in penalized regression TNE models with CPD, we focus 

further reporting on predicted biomarkers modeled without CPD. Using the ensemble-based 

models without CPD generated in the MEC, predictions were obtained for both nicotine 

biomarkers for all UW-TTURC participants (Table 2). Predicted uNMR and predicted TNE in 

participants were significantly related to each other (β(SE) = .017(.005), P < .001). Predicted 



 

 

uNMR was significantly higher in African American than white participants (P < .001), but there 

was no significant difference in predicted uNMR by sex (P = 0.28). Predicted TNE was 

significantly larger in female than male participants, and significantly smaller in African American 

than white participants (p−values < .001). 

 

Predicted uNMR and Nicotine Dependence 

Predicted uNMR was positively associated with FTND CPD (P = .002), WISDM Automaticity (P 

= .049), and NDSS Tolerance (P = .022) (Table 4). In additional analyses, interactions of 

ethnicity and of sex with predicted uNMR (ethnicity P = .041, sex P = .024) were observed with 

NDSS Continuity, and of sex with predicted uNMR (P = .045) were observed with NDSS 

Stereotypy (Supplementary Table 10). 

 

Predicted TNE and Nicotine Dependence 

Predicted TNE was positively associated with: FTND total score (P = .027), CPD (P = .014) and 

time-to-first-cigarette (TTFC) (P = .022); with WISDM Tolerance (P = .042);  and NDSS 

Stereotypy (P = .003) (Table 4). In additional analyses, interaction of ethnicity with predicted 

TNE (P = .0036) was observed with NDSS Stereotypy (Supplementary Table 10). 

 

DISCUSSION 

Genome-wide analysis, selection and training of variants 

Our analyses describe the first genome-wide modeling and prediction of the uNMR using 

statistical and machine learning approaches, and the first genome-wide modeling and prediction 

of TNE, as far as we are aware. These analyses demonstrate internal or analytic validity in 

current smokers and external validity in treatment-seeking smokers with prior genome-wide, 

biomarker and nicotine dependence findings. We modeled the two nicotine biomarkers 

throughout the analysis workflow without and with self-reported CPD coded as in the FTND, as 



 

 

CPD is a significant predictor of TNE and the uNMR. As expected, inclusion of CPD had limited 

influence on modeling of the uNMR, and resulted in fewer chr15q25.1 SNPs selected and 

trained in modeling of the TNE. We concentrate our discussion on the results of modeling the 

two biomarkers without CPD. 

 

As expected from prior genome-wide studies, most (87%) variants selected in the uNMR 

genome-wide analysis were from the chr19q13.2 CYP2A6 region. We previously identified 

rs56113850 in the MEC as the top-ranked variant for uNMR in all ethnic groups tested,19 and as 

a cis expression Quantitative Trait Locus (cis eQTL) in liver and lung for CYP2A6.41 rs56113850 

has been identified as top-ranked in genome-wide studies of the NMR in smokers of European 

descent.11,12 Nearly a third (31%) of trained variants in uNMR models were located in non-

chr19q13.2 genomic regions. Four of six non-chr19q13.2 protein-coding genes with variants 

trained in uNMR models (DAB1, CPNE4, CAMKMT and RMBS3) have prior associations with 

smoking-related behaviors and disease in the GWAS catalog (data not shown). This adds to the 

non-chr19q13.2 genes with variants trained in models of nicotine metabolism.17 

 

Variant selection and training in TNE modeling was more polygenic than for the uNMR, 

consistent with our understanding of nicotine pharmacology,6 and dominant nicotine-related loci 

characterized in genome-wide studies.42 We previously identified the top-ranked trained variant 

for TNE (rs2036527 in chr15q25.1) as top-ranked in genome-wide studies of CPD and of lung 

cancer in African Americans.43,44 This variant is the top-ranked variant in genome-wide studies 

of blood-based COT and of COT+3HC levels in European ancestry smokers and a cis eQTL for 

CHRNA5 and other chr15q25.1 genes.12 In our analysis, rs2036527 was trained in seven 

penalized regression models of TNE; among chr15q25.1 trained variants, only rs55676755 was 

trained in all penalized regression models. Association of rs55676755 with pulmonary disease 

and functional measures in multiethnic genome-wide studies45 supports the hypothesis that 



 

 

rs55676755 is a predictor of smoking-related toxicant exposures in multiple ethnicities. 

 

We and others previously identified the proximal TNE model trained variant in the chr19q13.2 

region (rs12459249) as the top-ranked variant in genome-wide analyses of the laboratory-based 

NMR in three ethnicities,41 and the blood-based NMR in African American smokers.46 Among six 

trained chr19q13.2 region variants in TNE modeling, rs12459249 was trained in six penalized 

regression models, while rs56113850 and rs73038469 in this region were trained in all 

penalized regression models. Both rs56113850 and rs73038469 are cis eQTLs for protein-

coding and non-coding genes in multiple tissues and cis QTLs for methylated cytosine-guanine 

dinucleotides, supporting possible functional roles in gene regulation.12 While multiple 

chr19q13.2 trained variants were included in models for each biomarker, only rs56113850 was 

a trained variant in models of both biomarkers.  

 

Biomarkers, demographics and dependence  

These are the first analyses to relate predicted uNMR and predicted TNE to each other, to 

ethnicity and sex, to major FTND items, and to WISDM and NDSS subscales. Predicted uNMR 

and TNE in treatment-seeking smokers were significantly associated with each other as are 

measured uNMR and TNE in current smokers.19 Significant differences for both measured and 

predicted TNE by ethnicity and by sex were observed, in the expected directions for creatinine-

standardized TNE.47 

 

Prior findings provide support for the associations with nicotine dependence measures we 

observed using predicted nicotine biomarkers. A systematic review found the measured NMR 

significantly correlated with CPD in nine of 15 studies (in three of four using the measured 

uNMR) examined.48 Predictive genetic models of the NMR have shown significant associations 

with CPD in ordinal and continuous coding.16,18 An additive wGRS of four independent 



 

 

chr19q13.2 variants of the blood-based NMR was significantly associated with continuous CPD 

in current smokers.11 Measured TNE (24 hour urine, molar sum of NIC, COT, 3HC, and 

glucuronides, unadjusted for creatinine) was significantly associated with CPD, TTFC and total 

FTND score in current smokers.49 

The associations of predicted nicotine biomarkers with components of the WISMD and NDSS 

measures we observed are novel. Prior associations of smoking constructs provide support for 

the observed associations. E.g., WISDM Automaticity and Tolerance and NDSS Stereotypy and 

Tolerance correlations with the FTND and CPD were as large or the largest correlations of 13 

WISDM and five NDSS subscales tested in treatment-seeking smokers from two UW-TTURC 

cessation trials.21 NDSS Stereotypy and Tolerance were significantly correlated with multiple 

physical dependence variables in daily smokers recruited for laboratory studies of smoking 

cessation medications.28  

 

Strengths and Limitations 

Use of a multiethnic cohort for modeling nicotine biomarkers will support translation to studies of 

smokers of multiple ethnicities in behavioral, disease and treatment research. Further research 

is needed to assess the performance of multiethnic models in specific ethnic populations. 

 

Our uNMR GWAS and model training identified multiple signals at and outside the chr19q13.2 

region. Selection and training of models predicting the uNMR in larger samples may clarify the 

role of non-chr19q13.2 genes in nicotine metabolism. Additional model development of the NMR 

and the uNMR may provide clues to the reduced correlation between measured blood NMR and 

uNMR.50  

 

Our TNE genome-wide selection identified top-ranked variants at chr15q25.1 and chr19q13.2 

identified in recent genome-wide studies of smoking behavior and nicotine metabolites, and 



 

 

variants in both regions were included in trained models. Research in additional cohorts with 

measured metabolite data may elucidate how metabolite source, measurement and 

standardization influence model development and power.  

 

Conclusions 

Concordances observed between our nicotine biomarker modeling and recent genome-wide 

studies support our goal of developing robust genome-wide prediction models for nicotine 

biomarkers. Meta-analysis of larger and more diverse samples with respect to participants, 

biomarkers and clinical data will improve the predictive power of models and enable out-of-

sample model validation, but may present challenges with respect to phenotype harmonization. 

The associations we observed between predicted urinary biomarkers and measures of physical 

dependence are generally supported by prior analyses of biomarkers and previous models of 

predicted NMR with similar measures. Availability of smoking cessation trial data will provide an 

opportunity to characterize relations between genetically determined components of 

dependence and cessation outcomes and assess translational relevance. 
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Table 1: Samples Included in Nicotine Biomarker Modeling and Prediction  

 
Characteristic MEC UW-TTURC 

Participant N 2,239 1,864 

Ageα Mean (SD) γ63.9 (7.2) γ43.4 (11.3) 

Female N (%) γ1199 (53.6%) γ1090 (58.5%) 

Ethnicity N (%)   

African American 364 (16.3%) 260 (14.0%) 

Native Hawaiian 311 (13.9%) - 

Japanese American 674 (30.1%) - 

Latinos 453 (20.2%) - 

White 437 (19.5%) 1604 (86.0%) 

Cigarettes per Day γ γ 

1 – 10  1,168 (52.2%) 99 (5.3%) 

11 - 20    870 (38.9%) 988 (53.1%) 

21 - 30 119 (5.3%) 533 (28.6%) 

≥31  82 (3.5%) 242 (13.0%) 

αMEC age at biospecimen collection, UW-TTURC age at baseline interview.  

 αP < .05, βP < .005, γP < .001. Ethnicity proportions not tested.



 

 

Table 2: Measured (MEC) and Predicted (UW-TTURC) Nicotine Biomarkers By Sex and Ethnicity, African American and White 
 
 

Female Male                        African American White 
Biomarker 

 
Mean (SE) Mean (SE) Mean (SE) Mean (SE) 

 
Measured N = 500 N = 301 N = 364 N = 437 

 

uNMR γ1.48 (0.03) γ1.36 (0.04) 1.45 (0.04)  1.40 (0.04) 

uNMRCPD 1.20 (0.06) 1.09 (0.06) 1.44 (0.07)    1.32 (0.07) 

TNE γ8.03 (0.12) γ7.71 (0.13) γ7.27 (0.12)  γ8.32 (0.11) 

TNECPD γ7.43 (0.18) γ6.42 (0.18) 6.99 (0.20)   7.42 (0.20) 

Predicted N = 1090 N = 774 N = 260 N = 1604 

uNMR 1.46 (0.01) 1.45 (0.01) γ1.52 (0.01) γ1.45 (0.01) 

TNE γ8.46 (0.04) γ7.91 (0.04) γ7.43 (0.06) γ8.36 (0.03) 

*Natural log transformed, no units. **Square root transformed, nmol/mg creatinine. For measured nicotine biomarker values by sex, 

values are adjusted by age and ethnicity (and CPD, where indicated), and ethnicity strata values are adjusted by age and sex (and 

CPD, where indicated). For predicted nicotine biomarker values, age, sex and ethnicity (and CPD, where indicated) were included in 

the models. αP < .05, βP < .005, γP < .001.



 

 

 

 

 

Table 3: Variants Selected and Trained in Penalized Regression Models, MEC 

 uNMR uNMRCPD TNE TNECPD 

Chr* Select Train** Select Train** Select Train** Select Train** 

1 4 3/3 4 3/4 25 12/22 24 15/22 

2 4 3/4 5 3/5 4 4/4 4 4/4 

3 5 4/4 3 3/3 5 5/5 3 3/3 

4 0 -/- 0 -/- 10 9/10 13 12/13 

5 3 3/3 4 4/4 8 6/7 17 11/14 

6 0 -/- 0 -/- 6 6/9 9 9/9 

7 1 1/1 1 1/1 5 5/5 9 9/9 

8 3 1/1 3 1/1 24 14/23 25 17/23 

9 0 -/- 0 -/- 4 4/4 5 4/5 

10 1 1/1 1 1/1 16 8/13 16 10/13 

11 1 1/1 0 -/- 14 11/14 20 10/19 

12 0 -/- 0 -/- 3 3/3 3 3/3 

13 1 1/1 1 1/1 2 2/2 6 6/6 

14 0 -/- 1 1/1 1 1/1 1 1/1 

15 1 1/1 1 1/1 34 9/29 7 4/7 

16 1 1/1 1 1/1 1 1/1 3 3/3 

17 0 -/- 0 -/- 3 3/3 4 3/4 

18 0 -/- 0 -/- 4 4/4 4 4/4 

19 175 43/151 174 43/148 20 6/18 15 7/12 

20 0 -/- 0 -/- 7 7/7 7 6/6 

21 0 -/- 0 -/- 1 1/1 0 -/- 

22 0 -/- 0 -/- 3 3/3 5 5/5 

*Chr = chromosome. **The number of variants trained / the number of variants available to be 

trained. Note: The number of variants available to be trained in the training sample excluded 

variants not available in the prediction sample. See Supplementary Material for details. 

 



 

 

 

 

 

Table 4: Predicted Biomarkers (1° Model) and Nicotine Dependence, Behavior Model 

Dependence N uNMR   TNE  
 

Measure  Coefficient SE  Coefficient SE 

FTND        

Total  1843 0.129 0.195  α0.099 0.045  

CPD 1862 β0.211 0.068  α0.039 0.016  

TTFC 1861 -0.008 0.078  α0.041 0.018  

WISDM        

Automaticity 1800 α0.297 0.151  -0.011 0.035  

Loss of Control 1800 -0.021 0.127  0.033 0.029  

Craving 1800 -0.156 0.120  0.025 0.028  

Tolerance 1800 0.147 0.127  α0.060 0.029  

Total PDM 1800 -0.003 1.183  -0.065 0.273  

NDSS        

Drive 1809 -0.062 0.096  0.005 0.022  

Priority 1820 0.019 0.097  -0.033 0.022  

Tolerance 1814 α0.239 0.104  0.032 0.024  

Continuity 1815 0.033 0.094  0.015 0.022  

Stereotypy 1813 -0.012 0.096  β0.066 0.022  

NDSS-T 1800 0.008 0.086  0.022 0.020  

αP < .05, βP < .005 


