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Abstract

Testing for active SARS-CoV-2 infections is key to controlling the spread of the virus and preventing

severe disease. A central public health challenge is defining test allocation strategies in the presence of

limited resources. In thispaper,weprovideamathematical framework fordefininganoptimal strategy for

allocating viral tests. The framework accounts for imperfect test results, selective testing in certain high-

risk patient populations, practical constraints in terms of budget and/or total number of available tests,

and the purpose of testing. Our method is not only useful for detecting infected cases, but can also be

used for long-time surveillance to monitor for new outbreaks, which will be especially important during

ongoing vaccine distribution across the world. In our proposed approach, tests can be allocated across

population strata defined by symptom severity and other patient characteristics, allowing the test alloca-

tion plan to prioritize higher risk patient populations. We illustrate our framework using historical data

from the initial wave of the COVID-19 outbreak in New York City. We extend our proposed method to

address the challenge of allocating two different types of tests with different costs and accuracy (for ex-

ample, theexpensivebutmoreaccurateRT-PCR test versus thecheapbut less accurate rapidantigen test),

administered under budget constraints. We show how this latter framework can be useful to reopening

of college campuses where university administrators are challenged with finite resources for community

surveillance. We provide a R Shiny web application allowing users to explore test allocation strategies

across a variety of pandemic scenarios. This work can serve as a useful tool for guiding public health

decision-making at a community level and adapting to different stages of an epidemic, and it has broader

relevance beyond the COVID-19 outbreak.
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Introduction

The importance of testing for SARS-CoV-2 viral infections has been widely accepted by public health pro-

fessionals around the world. Identifying infected cases early in their infectious period through large-scale

testing efforts can help prevent disease transmission, guide contact tracing and isolation strategies, and

contribute to estimation of expected healthcare needs. While immunoglobulin antibody tests can evalu-

ate past SARS-CoV-2 viral infections, many public health interventions such as contact tracing are based

ondetection of active infections. Several testing options for detecting an active SARS-CoV-2 viral infection

are currently available, and these tests have varying levels of accuracy (as characterized by their sensitiv-

ity and specificity) and different barriers to access. Expensive RT-PCR tests are based on nasopharyngeal

swabs, whereas less accurate rapid antigen tests require only a saliva sample and are much less expen-

sive [1, 2]. Tests may be administered for many reasons, including diagnostic testing for symptomatic or

exposed individuals, population surveillance to detect an outbreak, or enhanced screening in high-risk

strata (e.g. essential workers). Testing for active infections is key to controlling the spread of the virus and

reducing rates of severe outcomes. A central public health challenge is defining “optimal" test allocation

strategiesunder resourceconstraints and/ormultiple competing test options. Thediscussion in thispaper

is broadly applicable to test allocation designs, beyond the COVID-19 pandemic.

One ideal testing strategy for estimating the population infection rate is universal random test-

ing [3], where a large random sample of the entire population is tested. This process is repeated regularly

to track the pandemic over time. However, this approach requires conducting an enormous number of

tests and is impractical for countries or regions such as the United States with large heterogeneous pop-

ulation and limited number of tests. Several approaches have been suggested for allocating tests under

resource constraints. Cleevely et al. [4] proposed stratified periodic testing for reducing the effective re-

production rate, where tests are administered at different rates (in terms of test frequency and volume) for

patients at different levels of infection risk. Although this approach highlights the importance of stratify-

ing the population and prioritizing testing high-risk groups, the authors did not consider how exactly to
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distribute the tests across different groups. Another approach that has been suggested for finding cases

is pooled/group testing [5, 6, 7, 8, 9], where a single test is applied to merged samples from a group of

people. Under pooled testing, the number of required tests is dramatically reduced. Nevertheless, dilu-

tion due to combined samples is always one of themajor concerns in the pooled/group testing approach

[6, 8, 7]. Ely et al. [10] described allocation of fixed numbers of multiple different test types with different

sensitivities and specificities to populations at high/low risk. Under this approach, tests are allocated by a

decision-making process for maximizing the value of the tests, mathematically defined as the sum of the

test’s specificity and sensitivityweighted by the loss of the corresponding decision error. This problem set-

ting is similar to ours, but the two objective functions are very different, leading to different interpretation

of the results. Ely et al.’s approach requires quantification of the relative loss of false negatives and false

positives for each individual.

In this paper, we develop a comprehensive mathematical framework illustrated in Figure 1 for

defining an optimal test allocation strategy, accounting for (1) imperfect test results, (2) intensified testing

in certainpatient populations, (3) resource limitations in termsof budget and/or total number of available

tests, and (4) the goal of testing. In our proposed approach, tests are allocated across population strata

defined by symptom severity and other patient characteristics (e.g., age, comorbidities, occupation), al-

lowing our test allocation plan to prioritize higher risk patient populations. Since the goal of testing may

vary at different points of the pandemic, our proposed objective function provides optimal flexible testing

strategies across the key phases of monitoring an ongoing disease surge/outbreak (here, called detecting

mode) and long-term surveillance for new outbreaks (called surveillancemode). During detectingmode,

ourapproachallocates testswith thegoaloffindingasmanyof thepositive casesaswecan toguidecontact

tracing efforts and isolation interventions. During surveillancemode, our approach allocates tests to give

a test positive rate near a target threshold (e.g. 3%). An observed test positive rate exceeding this threshold

provides an indicator of rising case counts in the population. Unlike universal random testing procedures

and many other existing approaches, neither of the proposed methods aims to directly estimate the dis-

ease prevalence in the population. However, we show that control of the test positive rate at a target level
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implies an upper bound on the population disease rate under certain conditions (supplementary mate-

rials). Our framework assumes that the true disease status is independent of patient characteristics, and

selection is independent of the disease status, conditional on the symptoms and patient characteristics.

Furthermore, we assume that the diagnostic test result is independent of other factors (including symp-

toms) conditional on the true disease status. We also assume that people with severe symptoms are al-

ways tested. Defining population strata based on symptoms and age, we use extensive simulation studies

to evaluate the proposed method for optimal test allocation strategy based on the purpose of testing. We

illustrate how these methods can be applied to determine test allocation through different stages of the

pandemic in New York City (NYC).

Wealso extend this framework to address thequestionof how to allocate twodifferent types of tests

with differing accuracy, e.g. RT-PCR tests versus rapid antigen tests. This approach can provide guidance

about allocationofmultiple types of tests at the local level (e.g., for colleges anduniversities) under budget

constraints. We explore the properties of this approach through simulation.

WeprovideaRshinyappavailableathttps://umich-biostatistics.shinyapps.io/Testing_

Optimization/ that implements all of the proposed methods. In this app, users can specify their goals

of testing as well as other key variables to obtain a customized optimal test allocation strategy.

Results

Simulations. We explore by simulation how the optimal strategy for allocating a single type of test varies

by 1) the number of available tests; and 2) the marginal probability of being asymptomatic for a truly in-

fected individual, t̄a . We consider a hypothetical region of population 8 million similar to New York City.

Although the true proportion of asymptomatic infections is likely to be unknown, existing literature sug-

gests this proportion varies across regions, with estimates from around 30% to almost 90% [11, 12, 13]. We

consider settingswith high and lowdisease prevalence separately, which correspond to beingnear or past
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the pandemic peak, respectively. Other parameter settings can be found inMethods.

Figure 2 a&b corresponds to the settingwith limited number of tests andhigh population disease

rate. In this setting, themajority of tests are allocated to peoplewith severe andmild symptoms unless the

probability of being asymptomatic among infected individuals is very high (e.g. >0.75). This is because,

unless t̄a is very large, the probability of a random person with mild symptoms testing positive is larger

than the probability of a random person without symptoms testing positive. In contrast, when we have

an abundance of tests available (Figure 2 c & d), the majority of the tests are allocated to asymptomatic

patients, partially due to a limited number of patients with severe andmild symptoms overall. When tests

are scarce and the goal is todetectmore cases, tests are allocatedacross all four age groupsbasedon the as-

sumedmarginal proportion of infected people who are asymptomatic, t̄a . These age distributions among

the tested patients are largely driven by differences in symptoms across age categories. Since younger

people are more likely to be asymptomatic [11], the majority of tests among asymptomatic people are al-

located to young (ages 0-17) people. For example, when the marginal probability of being asymptomatic

for an infected person is 0.55 (t̄a = 0.55) and when we have an abundance of tests as 200,000, 4.3% of tests

are allocated to people aged 65+ with mild symptoms compared to 1.5% to people aged 0-17 with mild

symptoms. After satisfying the prioritized testing for the severe andmild symptom groups, the remaining

59.5% of tests are allocated to the young (age 0-17) asymptomatic group.

Figure 3 shows the optimal test allocation when the disease prevalence in the population is low

and many tests are available. In this situation, we are in a surveillance mode and want to monitor when

the test positive rate exceeds a certain threshold (c), e.g. 3%. A test positive rate exceeding the threshold

level c obtained under this testing strategymay provide a good indicator that the prevalence of the disease

is goingup in thepopulation (FigureS1 in the supplementarymaterials). Theoptimal testing strategydoes

not require all available tests to be used, and the majority of allocated tests are given to people aged 50+.

Close monitoring of older asymptomatic patients may provide a good strategy for capturing an outbreak

as indicated by a raising test positive rate.
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Wecompareourproposedoptimal strategy to four alternative strategies, denotedas the risk-based

strategy, the symptom-based strategy, the severe-only strategy, and the universal random testing strategy

(Table S1- S2). The risk-based strategy prioritizes the group with higher risk of being hospitalized; that

is, it prioritizes the severe andmild symptomatic people, but within each symptom group, elderly people

are always tested first. The symptom-based strategy allocates tests based only on the severity of symp-

toms, and tests are randomly assigned to individuals within symptom groups, regardless of age or other

risk factors. The severe-only strategy prioritizes testing the severely-ill patients and randomly assigns the

remaining tests to the rest of the population. The universal random testing strategy randomly tests the

entire population without prioritizing any selected group.

Our proposed optimal strategy under the detection mode can identify more cases than all the

other methods. In a limited testing resources scenario with t̄a = 0.55, our strategy finds 26 times more

cases than the universal random testing. Although the number of identified positive tests from the risk-

based strategy is close to ours, these two strategies differ in prioritizing groups of people for testing. Our

methodprioritizes testing forpeople aged 50−64overpeople aged 65+amongpeoplewithmild symptoms,

while the risk-based strategy recommends theopposite. Thedifferencebetween these two test strategies is

more apparentwhenwehave anabundanceof tests. In this setting, our proposed strategy assigns 59.5%of

available tests to the young (aged 0−17) asymptomatic people, rather than to the elderly (aged 65+) asymp-

tomatic people as the risk-based strategy does. With a sufficient number of tests, our proposed strategy

identifiesmore positive cases than any othermethod, finding 2.6%more positive tests than the risk-based

strategy and 11 times more cases than universal random testing. Our method outperforms all other ap-

proaches consideredwhen the probability of being asymptomatic among true cases is higher, e.g. t̄a = 0.9.

Unlike the other testing strategies that use all available tests, the proposed optimal test strategy

uses only 51.5% of available tests when our goal is conducting disease surveillance. For comparison, we

also present optimal test allocations obtained from our method under the detection model. Our surveil-

lance model approach finds about 40% fewer positive cases than the proposed method under detecting
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mode and than purely risk-based and symptom-based strategies, but it still finds more cases than the

severe-only and universal random testing strategies. Even using fewer tests than the other methods, our

approach canobtain anominal 3% test positive rate, andobserveddeviations from this target positive rate

can be used as an indicator that the population prevalence is larger than expected.

A sample case-study: test allocation strategy in New York City.

We illustrate how our framework can be applied to determine test allocation through different

stages of the pandemic in New York City (N = 8,175,133) between March 3 and November 1. The case

numbers and the total available tests for each week/generation are obtained from data released by the

New York City Department of Health and Mental Hygiene [14]. Existing work studying the magnitude of

under-reported cases and the proportion of asymptomatic cases suggest that the true number of cases is

about 10 times the reported cases in theUnited States [15]. However, sinceNewYorkCity has tested nearly

70% of its population until November 11 [14], which is far above the national level of 45% [16], the frac-

tion of under-reported cases should be smaller. We assume the multiplicative under-reporting factor to

be 4, meaning we assume the true number of cases in the New York City to be 4 times the reported cases.

Following Rahmandad et al. [15], we set the marginal probability that a true case is asymptomatic, t̄a , to

be 55%. Although the accuracy varies across different types of diagnostic tests, the false negative rate is

known to be appreciable and depends on the type of test [17]. We set the false positive (α) and false neg-

ative (β) rates to 0.01 and 0.3 [17], respectively. Other details regarding assumed parameter settings can

be found inMethods and Table S3 in the supplementary materials. Alternative parameter values can be

explored dynamically using our R shiny app.

Figure 4 shows the optimal test allocation strategy ourmethodwouldhave recommended forNew

York City throughout the pandemic. We supposewe had allocated tests with the goal of detecting asmany

cases as possible betweenMarch 3 and July 21, during which the disease prevalence was high in the pop-

ulation. Under this method, we predict that the test positive rate would have fallen below 0.03 during the

week of July 21st. We then switched to the surveillancemode formonitoring disease outbreaks thereafter.
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When the goal is to detect as many cases as possible (detection mode), symptomatic and the elderly pa-

tients should be prioritized, especially when we are short of tests. From March 3 to April 7, for example,

our method would test only people with severe and mild symptoms, and people of age 0-17 would be

rarely tested, because the probability of finding a positive test in the symptomatic group is higher than the

asymptomatic group. As the number of available tests gradually increased,more testswould have been al-

located to asymptomatic patients and to young people, because the younger people would bemore likely

to be asymptomatic and the symptomatic elderly people would have already been offered a test. After

switching to surveillance mode, our method would have allocated just 53.9% of the tests that are actually

conducted. These tests would primarily be allocated to older asymptomatic people.

To validate our proposedmethod, we compare the number of detected cases and the test positive

rateobserved forNewYorkCity to thepredictedvaluesunderouroptimal testing strategymethod inFigure

5. Under our assumptions about the rate of case under-reporting, the proposed testing strategy is able to

detect a greater number of cases than were actually observed in New York City betweenMarch 3rd to July

21st. After July 21st, the optimal test strategy detects a similar number of reported cases but uses far fewer

tests than were actually administered during this time period for New York City.

Extension to allocating two tests. For universities and colleges, test allocation needs to be customized

according to the local disease rates and community testing capacity [18], as are often characterized by the

budget for testing, the total number of tests available, the observed number of positive tests and test posi-

tive rate (TableS4). As testsofdifferent costs andaccuracybecomeavailable, thequestionof test allocation

becomes even more challenging. Subject to budget constraints, we extend our proposed test allocation

method (seeMethods) to address allocation of two competing tests with differing cost and accuracy as a

function of symptoms and patient characteristics. We consider the hypothetical scenario where we want

to allocate a fixed budget to a mixture of rapid antigen tests and RT-PCR tests. The RT-PCR test, which is

considered to be the gold-standard test in COVID-19 diagnosis, costs about $100 per test and has sensi-

tivity as high as 0.9 [19, 20, 21]. Rapid antigen tests, in contrast, cost as little as $ 5 per test but have much
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lower sensitivity [19, 20, 22]. Mirroring current market information, we set the price for the rapid antigen

test and for the RT-PCR test as $5 and $135, respectively, andwe assume test sensitivity values are 0.45 and

0.9, respectively [22, 21]. Specificity is set to 0.99 for both tests. We suppose that at a certain generation, the

number of truly infected cases in a population of 8million is 10,000 and the budget is 1million. Alternative

scenarios (including different budgets, population size, age distributions, etc.) can be explored using our

R Shiny app.

Figure6provides theoptimalbudget allocationbetween the two tests as a functionof themarginal

probability thata truecase is asymptomatic (t̄a). As seen insupplementaryFigureS2, RT-PCRtests areonly

allocated to people with severe and mild symptoms, and the majority of rapid antigen tests are allocated

to asymptomatic people. Since the absolute number of symptomatic people decreases when t̄a increases

under a fixed number of total cases, the proportion of the budget allocated to RT-PCR testing decreases

with increased t̄a .

Discussion

In this paper, we provide a mathematical framework for relating population COVID-19 infection rates to

test positive rates as a function of targeted diagnostic testing with imperfect accuracy. We develop a strat-

egy forobtainingoptimal allocationofdiagnostic tests acrosspopulationstratadefinedbysymptomsever-

ity and other risk factors such as age. This method adapts to different scenarios in terms of public health

objectives. For example, when the goal is to detect as many infected cases as possible in the acceleration

phase of the pandemicwith high community prevalence, tests should be allocatedwith targeted testing in

population stratamost likely to contain cases. When our goal is to detect new disease outbreaks as part of

population surveillance after a disease wave has passed and we are in a state of containment, fewer tests

may be needed, and a substantial proportion of tests should be allocated to asymptomatic people. In the

setting where we have a sufficient number of tests, we demonstrate that our proposed detecting mode

strategy can find 2.6% more positive tests than the risk-based strategy and 11 times more than universal
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random testing. Under the surveillance mode, our strategy only uses 51.5% of tests that are available. Al-

though our model assumes that a person’s disease status is independent of his/her characteristics, this

assumption can be relaxed if the distribution of true disease status given patient characteristics is known.

Wedemonstrate this optimal test allocation strategy in a special casewhere thepopulation is strat-

ified based on age and the severity of symptoms, using New York City as a illustrative example. If tests had

been allocated as suggested by our method, we may have used only 53.9% of the tests that were actually

conducted andhave still found asmany cases aswere reported. Weprovide aRShinyweb app (available at

https://umich-biostatistics.shinyapps.io/Testing_Optimization/) allowing users to ex-

plore the optimal test allocation as a functionof test positive/negative rates, number of available tests, and

the true rate of infection among asymptomatic people.

In an extension of the proposed method, we develop a strategy for obtaining optimal allocation

of two tests with different false negative rates and cost (e.g. cheap rapid antigen tests vs. expensive RT-

PCR tests) subject to overall budget constraints. We show that the expensive but more accurate RT-PCR

tests should be used on the severe or mild symptomatic people, which is in accordance with the finding

in [10]. This approach can be used to help inform test allocation decisions currently beingmade bymany

universities, communities, businesses, etc. for planning their reopening. Through our R Shiny app, users

can explore the impact of comparative cost, total budget, population age profile, and other key factors on

the optimal test allocation at different points in a pandemic wave.

Our R shinyweb app can also be used to explore the problemof repeated testing, where rapid anti-

gen tests are repeatedly used to improve sensitivity. We found that the probability of correctly identifying

an infected individual goes upwith repeated rapid antigen testing, but the ability to detect cases in the en-

tire population decreases as fewer different people are able to be tested under a fixed overall test budget.

An advantage of the proposed test allocation method is that it directly incorporates test accuracy

and canbe applied to allocationof different types of tests, including fast antigen tests and/orRT-PCR tests.
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Wefocuson theparticular casewherepopulationstrataaredefinedbasedonageaswell as symptomsever-

ity, but thismethod can be extended to also incorporate occupation, geographical location, and other key

factors into defining population strata. We provide an example R script for implementing the methods

with strata defined by age and symptoms in the supplementary materials. Users can adapt this code to

apply our methods under different strata definitions. Care must be taken when specifying model param-

eters, since the resulting test allocationmay be sensitive to these choices. We recommend, therefore, that

users explore test allocation across a spectrum of plausible input parameters to inform decision-making

in practice.

As theworld is planning todisseminate theCOVID-19 vaccine [23, 24, 25], inoculationof half of the

world will take significant time and will reach different parts of the world at different speeds. Until global

herd immunity is reached, testing will be one of the key strategies to manage and contain the disease in

many parts of the world. We hope this general framework leads to cost-saving and effective strategies,

particularly in developing countries where resources are limited.

Methods

Conceptual Framework

Consider a population of sizeN , and letD (g )
i be a binary variable representing person i ’s true (unobserved)

disease status (infected-1 vs. not infected-0) at the g -th generation of disease circulation. Here, a genera-

tion is defined as the average time it takes an infected person to become infectious, which is around 5 days

[26]. At the g -th generation, some subset of the population will be tested, with binary S(g )
i representing

whether person i in the population is tested during generation g . LetD?(g )
i denote the test result (positive-

1 vs. negative-0) for person i during generation g , whichmay ormay not be the correct result (may ormay

not equal D (g )
i ). If person i is not tested, D?(g )

i will not be recorded. Let T (g ) denote the number of tests

available for generation g . With limited testing capacity, current test strategies prioritize tests based (at
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least in part) on severity of symptoms. Let Sym(g )
i be a categorical variable which takes value in {s,m, a}

corresponding to severe, mild, and asymptomatic symptom levels respectively. We suppose testing may

also depend on other covariates, Zi , such as patient age and occupation.

In modeling symptoms, we assume the probability P (Sym(g )
i = j |D (g )

i , Zi = z) is the same for any

g . We let t j (Zi ) be the probability of developing the j -th symptom conditional on D (g )
i = 1 and Zi , and we

let f j (Zi ) be the probability conditional on D (g )
i = 0. The marginal probabilities of developing symptom j

in the infected and uninfected population are denoted as t̄ j and f̄ j . We further make the following three

independence assumptions about testing and test results:

A1. P (D (g )
i |Zi ) = P (D (g )

i ), so D (g )
i is independent of Zi .

A2. P (S(g )
i = 1|D (g )

i ,Sym(g )
i , Zi ) = P (S(g )

i = 1|Sym(g )
i , Zi ), so S(g )

i is independent of D (g )
i given Sym(g )

i and Zi .

A3. P (D?(g )
i |Sym(g )

i , Zi ,D (g )
i ) = P (D?(g )

i |D (g )
i ), so D?(g )

i is independent of Sym(g )
i and Zi given D (g )

i .

These assumptions result in the followingmodel structure at generation g :

Symptommodel: P (Sym(g )
i = j |D (g )

i = 1, Zi = z) = t j (z) j ∈ {s,m, a}

P (Sym(g )
i = j |D (g )

i = 0, Zi = z) = f j (z) j ∈ {s,m, a}

Model for who is tested: P (S(g )
i = 1|Sym(g )

i , Zi )

Model for observed test results: P (D?(g )
i = 1|D (g )

i = 1) = 1−β

P (D?(g )
i = 1|D (g )

i = 0) =α

Under thismodel structure, we can establish theprobabilistic relationship between thedetection of a pos-

itive case and the testing procedure. We use this relationship to predict the number of people testing pos-

itive at generation g , denoted P (g ), as a function of test allocation.
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Predicting P (g ), the number of people who will test positive

For a tested/selected person i , we express the probability of testing positive as

P (D?(g )
i |S(g )

i = 1) =∑
j ,z

P (D?(g )
i |S(g )

i = 1,Sym(g )
i = j , Zi = z) ·P (Sym(g )

i = j , Zi = z|S(g )
i = 1) (Eq. 1)

For simplicity, we assume Zi takes discrete values, and the summation over Zi in Eq. 1 would become an

integral if Zi were continuous. The first term of the summation captures the likelihood of a positive test in

the selected population given symptoms Sym(g )
i and other covariates Zi . The second term describes the

joint distribution of symptoms and Zi in the selected population. We now take a closer look at each of the

terms in the summation.

Theprobability of person i testing positive canbe expressed as a function of symptoms Sym(g )
i and

covariate Zi as follows:

P (D?(g )
i = 1|S(g )

i = 1,Sym(g )
i , Zi ) =

∑
d∈{0,1} P (D?(g )

i = 1,D (g )
i = d ,S(g )

i = 1,Sym(g )
i |Zi )

P (S(g )
i = 1,Sym(g )

i |Zi )
(Eq. 2)

=
∑

d∈{0,1} P (D?(g )
i = 1|D (g )

i = d ,S(g )
i = 1,Sym(g )

i , Zi ) ·P (S(g )
i = 1|Sym(g )

i ,D (g )
i = d , Zi ) ·P (Sym(g )

i |D (g )
i = d , Zi ) ·P (D (g )

i = d |Zi )

P (S(g )
i = 1|Sym(g )

i , Zi )P (Sym(g )
i |Zi )

Under assumptions A1-A3, then Eq. 2 can be written as:

P (D?(g )
i = 1|S(g )

i = 1,Sym(g )
i , Zi ) =

∑
d∈{0,1} P (D?(g )

i = 1|D (g )
i = d) ·P (Sym(g )

i |D (g )
i = d , Zi ) ·P (D (g )

i = d)

P (Sym(g )
i |Zi )

= (1−β)t j (Zi ) D(g )

N +α f j (Zi ) N−D(g )

N

P (Sym(g )
i |Zi )

(Eq. 3)

where D (g ) = ∑
i D (g )

i is the number of infected people in the population. The joint distribution of Sym(g )
i

and Zi for tested people can be expressed as:

P (Sym(g )
i , Zi |S(g )

i = 1) = P (S(g )
i = 1|Sym(g )

i , Zi )

P (S(g )
i = 1)

·P (Sym(g )
i |Zi ) ·P (Zi ) (Eq. 4)

Putting these pieces together, the probability that person i in the selected population has a positive test

can be expressed as:

P (D?(g )
i = 1|S(g )

i = 1) =∑
j ,z

(1−β)t j (z)D (g ) +α f j (z)(N −D (g ))

N ·P (S(g )
i = 1)

P (S(g )
i = 1|Sym(g )

i = j , Zi = z) ·P (Zi = z) (Eq. 5)
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Summing over tested people, the number of positive tests is predicted as

P̂ (g ) =∑
j ,z

(
(1−β)t j (z)D (g ) +α f j (z)(N −D (g ))

) ·P (S(g )
i = 1|Sym(g )

i = j , Zi = z) ·P (Zi = z) (Eq. 6)

Eq. 6 dependsonP (S(g )
i = 1|Sym(g )

i = j , Zi = z), which is theprobabilityof testing ingeneration g for aperson

i with symptoms Sym(g )
i and covariates Zi = z. This term represents the testing protocol in the population,

and constraints on testing in terms of (1) test availability and (2) testing prioritization correspond to con-

straints on P (S(g )
i = 1|Sym(g )

i = j , Zi = z).

Optimal test strategy

Manyresearchershavebeenstudying the trueprevalenceofCOVID-19 in thepopulationgiven thenumber

of positive tests [27, 15]. Let D (g ) represent the true number of cases in the population at generation g .

We then estimate t j (z) and f j (z), the probability of developing symptom j given Zi = z and D (g )
i using the

historical data (seeMethodsParameter estimates and setup). Under the abovemathematical framework,

the problem of test allocation is nothing but to find P (S(g )
i = 1|Zi = z,Sym(g )

i = j ). We then construct the

following objective function:

min
P (S

(g )
i =1|Sym

(g )
i = j ,Zi=z)

w ||P̂ (g ) −D (g )||2 + (1−w)||P̂ (g ) − cN P (S(g )
i = 1)||2 (Eq. 7)

with constraints: 1 P (S(g )
i = 1|Sym(g )

i = s, Zi = z) = 1 for any z and 2 N P (S(g )
i = 1) ≤ T (g )

where c ∈ (0,1) is a pre-fixed target test positive rate for detecting the outbreak of the pandemic. The first

term ||P̂ (g ) −D (g )||2 controls the difference between the number of positive tests and the true case counts.

The second term ||P̂ (g ) − cN P (S(g )
i = 1)||2 controls the difference between positive rate and the target out-

break threshold c. w takes value 0 or 1, indicating the preference for either component in defining the

optimal testing strategy. For example, when w = 1, the objective function reduces to ||P̂ (g ) −D (g )||2, which

corresponds to a goal of finding the most accurate test allocation strategy to detect the greatest number

of positive tests (detecting mode). On the other hand, w = 0 corresponds to a goal of detecting if the test
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positive ratehas crossedapre-designatedoutbreak threshold (surveillancemode). In supplementaryma-

terials, we show that the population disease prevalence is bounded by a function of the test positive rate

under mild conditions, so a low test positive rate implies a low disease prevalence in the population. The

first constraint in Eq. 7 ensures that everyonewith severe symptoms is prioritized for testing. With limited

testing resources, the second constraint guarantees that the number of people tested does not exceed the

total number of available tests. We obtain the optimal testing strategy in Eq. 7 using R package optiSolve

[28].

Our objective function involves the most commonly-used information metrics for COVID-19, in-

cluding the overall number of positive tests and the overall test positive rate, which are straightforward

and easy to understand for the general public. Neither the detecting mode or the surveillance mode in

our objective function aims for estimating the true prevalence in the population, which is usually the goal

of universal random testing. It is worthy to mention that if testing is performed randomly in the popu-

lation, e.g. universal random testing, then an unbiased estimator of the population prevalence would be(
P (D?(g )

i = 1|S(g )
i = 1)−α)

/
(
1−β−α)

.

Extension to two tests

The above framework can be extended to handle allocation of two different types of tests with different

cost and accuracy constrained by a fixed total budget. We suppose the first test option is cheap but has

low sensitivity (e.g. rapid antigen testing) and the second test option is more expensive but has higher

sensitivity (e.g. RT-PCR testing). Let S(g )
i ∈ {0,1,2} represent whether an individual is untested or given the

first or second type of test, respectively. Following Eq. 6, the predicted numbers of positive tests of each

type, denoted as P̂ (g )
1 and P̂ (g )

2 are:

P̂ (g )
1 =∑

j ,z

(
(1−β1)t j (z)D (g ) +α1 f j (z)(N −D (g ))

) ·P (S(g )
i = 1|Sym(g )

i = j , Zi = z) ·P (Zi = z)

P̂ (g )
2 =∑

j ,z

(
(1−β2)t j (z)D (g ) +α2 f j (z)(N −D (g ))

) ·P (S(g )
i = 2|Sym(g )

i = j , Zi = z) ·P (Zi = z)
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where α1, α2, β1, β2 are the false positive and negative rates corresponding to two tests. Suppose that the

costs for one test of each typeare y1 and y2. In the special casewhereour goal is to identify asmany infected

cases as possible (w = 1 in Eq. 7 ), we construct the following objective function for allocating two types of

tests subject to a fixed total budget:

min
P (S

(g )
i =1,2|Sym

(g )
i = j ,Zi=z)

||P̂ (g )
1 + P̂ (g )

2 −D (g )||2 with constraints: (Eq. 8)

1 P (S(g )
i = 1|Sym(g )

i = s, Zi = z)+P (S(g )
i = 2|Sym(g )

i = s, Zi = z) = 1 for any z

2 y1P (S(g )
i = 1)N + y2P (S(g )

i = 2)N ≤ bud g et (g )

The first constraint guarantee that all the severe patients will be tested, and the second constraint ensures

that the total spending does not exceed the budget. For the problem of assigning two tests, we do not

consider to set w = 0 because it would always recommend to use the less accurate test for a lower test

positive rate.

Parameter estimates and setup

In the New York City example and all simulations, we estimate t j (z) and f j (z) using the publicly available

historical data [29, 30]. For a given value of ta , themarginal probability for a truly infected person to be an

asymptomatic carrier, themarginal probability of developing severe symptoms for an infected person is

assumed to be roughly 1/4 of all COVID-19 symptomatic cases (t̄m = 3∗ t̄s ), which is roughly the ratio of the

number of hospitalizations to the cases until September 18, 2020 in the New York City [31]. For the unin-

fected person, themarginal probabilities of having severe ( f̄s) or mild ( f̄m) symptoms are set to 2.3×10−5

and 1.6×10−4, respectively, using the data from the New York State Department of Health 2019-2020 Flu

Monitoring Archives [29]. In obtaining these estimates, hospitalized patients with flu-like symptomswere

treated as severe cases, and the remaining laboratory-confirmed caseswere treated asmild cases. We sup-

pose Zi represents age and is grouped into four categories: age 0−17, age 18−49, age 50−64 and age ≥ 65.
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Probabilities t j (z) of having severe, mild and no symptoms for an infected person are approximated as

t̄ j ·P (Zi=z|Symi= j ,Di=1)
P (Zi=z) . We estimated the age distribution within symptom categories from COVID-19 case

counts and hospitalized counts by age from the New York City Department of Health andMental Hygiene

through September 18, 2020 [30]. Similarly, f j (z) is estimated using data from the New York State Depart-

ment of Health 2019-2020 Flu Monitoring Archives by age group [29]. Table S3 provides estimates of t j (z)

and f j (z) when t̄a = 0.55.

When we evaluate the optimal strategy by simulation, we assume that 175,000 people are truly in-

fected at generation g (D (g ) = 175,000), whichmimic the situationof thepeak of thepandemic. We suppose

T (g ), the number of available tests, to be either 50,000 or 200,000. These two scenarios correspond to the

settingwith limited testing resources and the settingwith relatively sufficient testing resources. Due to the

large number of infected cases in the population, the test strategy in this setting should be aimed at de-

tecting cases, so the weight w in the objective function Eq. 7 is set as 1. After the peak of the pandemic, we

assume that the number of infected cases in the population deceases to 10,000 (D (g ) = 10,000) with 200,000

tests available. In this setting, our goal is for long-term surveillance to detect outbreaks, and we obtain

optimal test allocation by setting w = 0 in Eq. 7 . We define the outbreak threshold c to be 0.03 [32].
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Figures

Figure 1: Illustration of data structure at generation g with the incorporation of selection andmisclassifi-

cation. For a person i with the characteristic information(or risk factors) Zi = z at the beginning of genera-

tion g , the true disease status D (g )
i is unobserved, with 1 indicating being infected and 0 being uninfected.

The probability for an infected person of developing severe(s)/mild(m)/no(a) symptoms is t j (z), where

j ∈ {s,m, a}, which is based on the characteristics. An uninfected person may also develop similar symp-

toms due to other diseases, e.g. influenza, and the probability is f j (z). Often, people are tested/selected

based on symptoms and some other risk factors. β and α are the false negative and positive rate for the

test.
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Figure 2: Tests allocated to each symptom and age group near the peak of the pandemic under the detect-

ingmode, assuming either 50,000 (a) or 200,000 (b) tests are available and that the number of true infected

cases is 175,000 in a region of 8million people.

Allocation with 50,000 available tests

Allocation with 200,000 available tests
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Figure 3: Tests allocated to each symptom and age group for surveillance past the peak of the pandemic,

assuming 200,000 tests are available and the number of true infected cases is low (10,000) in a region of 8

million people. The test positive rate for the disease outbreak is 0.03.
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Figure 4: Test allocation strategy for the New York City assuming a case under-reporting factor of 4, strati-

fied by symptoms and age.

Figure 5: Comparison on predicted case numbers and test positive rates under optimal testing strategy to

values observed for New York City assuming a case under-reporting factor of 4.
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Figure 6: A total of 1 million budge divided for rapid antigen tests and RT-PCR tests. The price of a single

antigen test and RT-PCR test are $ 5 and $ 135, respectively. The number of infected cases is assumed to be

10,000 in a region of population 8 million.
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