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1 Mobility data

The mobility data was obtained from Cuebiq, a location intelligence and measurement company. The
dataset consists of anonymized records of GPS locations from users that opted-in to share the data anony-
mously in the New York metropolitan area over a period of 5 months, from February 2020 to June 2020.
In addition to anonymizing the data, the data provider obfuscates home locations to the census block
group level to preserve privacy. Data was shared in 2020 under a strict contract with Cuebiq through their
Data for Good program where they provide access to de-identified and privacy-enhanced mobility data for
academic research and humanitarian initiatives only. All researchers were contractually obligated to not
share data further or to attempt to de-identify data. Mobility data is derived from users who opted in
to share their data anonymously through a General Data Protection Regulation (GDPR) and California
Consumer Privacy Act (CCPA) compliant framework.

Our sample dataset achieves broad geographic representation for our two populations, in the New York
and Seattle metropolitan areas, defined as the Core Based Statistical Areas (CBSA) by the US Census
[1]. CBSA are areas that are socioeconomically related to an urban center. This provides a self-contained
metropolitan area in which people move for work, leisure or other activities. Some of the CBSAs we
consider span several states. For example the New York CBSA contains areas of the state of Connecticut,
New Jersey, Philadelphia, and New York. The population and number of anonymous devices detected
in the real data by census area are highly correlated for both census county subdivision regions, with
a ρ = 0.796 (Pearson correlation) with a CI between 0.783 and 0.807 for the New York region, and a
ρ = 0.948 (Pearson correlation) with a CI between 0.937 and 0.957 for the Seattle region.

1.1 Stays

From the data we extract “stays”, as the places where anonymous users stayed (stopped) for at least 5
minutes. Each device frequently broadcast its location to a central server by sending its latitude, longitude,
device ID, and the exact date and time of the event. When a person spends significant time at a single
location, measurement uncertainty will cause a number of events to be scattered around the actual location.
To map these events to a single stay with an accurate time and location, we use the Infostop algorithm [2].
First, to extract the locations of stays, the algorithm clusters consecutive events together if the locations
are less than 25 meters apart. The location of this cluster is computed by taking the median of the latitudes
and longitudes. Moreover, to better estimate the location of places that are visited frequently by the same
user, the algorithm also checks whether different clusters appear within 25 meters of each other and assigns
a single consistent location to all connected clusters by recomputing the median latitude and longitude.
Finally, a stay is registered whenever at least two subsequent events are registered at one of these locations
where the first and last event respectively mark the start and end time of the stay. The minimum duration
of a stay is set to 5 minutes to make sure we are only including actual contact between people instead of
people that, for example, pass each other on an intersection.

Some of the stays happen within or close to places (Points of Interest). We use a dataset of 86k Points
of Interest (POI) in the New York metropolitan area and 36k Points of Interest in Seattle metropolitan
area collected using the Foursquare API. We attributed a stay to the closest POI up to a distance of
50m, otherwise that stay is discarded. In general, the distance of stays to POIs is much smaller (average
distance is 19.43 meters). We have also checked that our results do not depend significantly on the 50
meters threshold (see Supp. Section 7). Stays are then aggregated at place level. Finally we estimate
the home Census Block Group of the anonymous users as that in which they are more likely located
during nighttime. This results in a dataset of the places people stayed including the points of interest that
anonymous users visited and the most likely census block group of where the device owner lives.

In Supp. Figure 1 we can see the daily evolution of the average number of stays per person for New
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Supplementary Figure 1: The comparative evolution over time for New York and Seattle metropolitan areas
of the average number of stays per person. Vertical red dashed line indicates when National Emergency
(N.E.) is established.

York and Seattle. Two weeks before we can see that Seattle started to see a small change in the mobility
behaviour, however, for New York City we can start to see that pattern one week before the national
emergency. After the national emergency there is an abrupt decrease for both cities. Two weeks after
the national emergency the average number of stays per person stabilized and starts to an slightly and
steady increase, Seattle starts to recover one week before than New York. Eleven weeks after the national
emergency, the average number of stays per person has recovered slightly, but it did not recover its basal
state for both cities.

As we mentioned above Points of Interest (POIs) are categorized using the Foursquare taxonomy of
places which has ten main categories. In our database the New York metropolitan has 572,197 POIs that are
distributed as follow Art & Museum (2.1%), College (2.9%), Entertainment (7.6%), Exercise (2.8%), Food
& Beverage (17.7%), Grocery (2.6%), Health (7.5%), Other Places (11.3%), Outdoors (8.2%), Religious
(1.8%), School (2.3%), Service (16.6%), Shopping (8.3%), Sport & Events (0.6%) and Transportation
(6.9%). For the Seattle metropolitan area POIs we have 69,906 POIs that are distributed as follow Art
& Museum (2.7%), College (2.3%), Entertainment (7.1%), Exercise (2.7%), Food & Beverage (14.5%),
Grocery (2.1%), Health (8.1%), Other Places (13.4%), Outdoors (7.8%), Religious (1.7%), School (1.6%),
Service (18.2%), Shopping (8.3%), Sport & Events (0.8%) and Transportation (7.8%). There are also 638
subcategories, see [3] for a complete list of them. We manually curated every subcategory in the taxonomy
to be reassign to twelve new principal categories. Arts & Museums, City & Outdoors, Entertainment, Food
& Beverages, Grocery, Health, Service, Shopping, Sports (individual), Sports (teams), Transportation and
Workplace.

We can see in Supp. Figure 2 the daily evolution of the total number of stays to each category and
their fraction distribution. Supp. Figure 2 (a) for New York and (c) for Seattle represent the total number
of stays at the community and the workplace layer, we can see a similar pattern as in in Supp. Figure 1
(a) before and after the national emergency. Supp. Figure 2 (b) for New York and (d) for Seattle show
normalized number of stays. We can see a reduction of non-essential places after the national emergency
due to the social distancing policies.

Finally, in Supp. Figure 3, we can see the comparison of the average time per stay for each city and
category before and after the national emergency. There is a significant decrease in time spent per stay for
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Supplementary Figure 2: The comparative evolution in the community and workplace layer over time of
the total number of stays in the community and workplace layer for each place category (a) for the New
York Metropolitan Area and (c) for the Seattle Metropolitan Area and the distribution of stays by place
categories (b) for the New York Metropolitan Area and (d) for the Seattle Metropolitan Area.

nearly each category in both cities. However, the grocery and the transportation categories are those with
the smallest change in the average time for both cities. Moreover, the shopping category does not barely
change in New York, but it does in Seattle. On the other hand the Food & Beverages category decrease
in New York, but it does not in Seattle.

2 Network structure

2.1 Agents

Our population consists of two different sub-populations, adults and children. Adults are sampled from
anonymous individuals in the mobility data collected by Cuebiq, each adult is associated with a home
location assigned to a US Census block group which is provided by our location data provider. With this
data we designed a population building pipeline that consists of three steps.

• First step, we build synthetically the number of households, their size and the presence of children
based on our adult population and the US Census [4] tables B11016 (Household Type by Household
Size) [5] and B11003 (Family Type by Presence and Age of Own Children) [6]

• Second step, we assign adults to households and in case of presence of children we generate them up
to reach the size of the household assigned in the first step.
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Supplementary Figure 3: Average time per stay for each place category before and after the National
Emergency (N.E.) for (a) the New York Metropolitan Area and for (b) the Seattle Metropolitan Area.

• And final step, we assign ages to nodes using table B01001 (Age by Sex) [7] of age distribution within
the Census Block Group.

Following this process we generate two synthetic populations, one for the New York metropolitan area
and the other one for the Seattle metropolitan area.

The New York synthetic population consists of 614k agents (3.3% of the population in the New York
metropolitan area), 439k (71%) of them are adults and 174k (29%) are children. Age groups are distributed
as follows: 45,350 (7.3%) agents for the age group between zero and five years old, 129,259 (21.0%) agents
for the age group between six and eighteen years old, 251,175 (40.9%) agents for the age group between
nineteen and fifty years old, 91,443 (14.9%) agents for the age group between fifty one and sixty five years
old, and final group, 97,023 (15.8%) agents for the age group between sixty six and older. In Supp. Figure 4
(a) we can see the comparison of our synthetic population age distribution against the US census data. All
agents together form 290,369 households distributed as follows: 145,079 (50.0%) households with only one
agent, 55,985 (19.3%) with two agents, 34,647 (11.9%) with three agents, 31,860 (11.0%) with four agents,
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14,190 (4.8%) with five agents, 5,224 (1.8%) with six agents, and finally, 3,384 (0.1%) with seven agents. In
Supp. Figure 4 (b) we can see the comparison of our synthetic households population distribution against
the US census data.

The Seattle synthetic population consists of 142k agents (3.6% of the population in the Seattle metropoli-
tan area), 103k (72%) of them are adults and 38k (28%) are children. Age groups are distributed as follows:
10,635 (7.5%) agents for the age group between zero and five years old, 27,772 (19.5%) agents for the age
group between six and eighteen years old, 61,039 (42.9%) agents for the age group between nineteen and
fifty years old, 22,491 (15.8%) agents for the age group between fifty one and sixty five years old, and
final group, 20,263 (14.2%) agents for the age group between sixty six and older. In Supp. Figure 4 (c)
we can see the comparison of our synthetic population age distribution against the US census data. All
agents together form 69,232 households distributed as follows: 36,333 (52.5%) households with only one
agent, 12,391 (17.9%) with two agents, 8,341 (12.0%) with three agents, 7,394 (10.7%) with four agents,
2,899 (4.2%) with five agents, 1,127 (1.6%) with six agents, and finally, 747 (0.1%) with seven agents. In
Supp. Figure 4 (d) we can see the comparison of our synthetic households population distribution against
the US census data.
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Supplementary Figure 4: Age groups and households demographics compared against the US Census data.
(a) Age groups distribution and (b) households size distribution for the New York Metropolitan Area. (c)
Age groups distribution and (d) households size distribution for the Seattle Metropolitan Area.

2.2 Contacts

Our network in New York has a total number of 270,785,550 unique contacts, 146,598,503 (54.1%) and
105,129,317 (38.8%) of daily contacts in the community and the workplace layer, respectively, both layers
where built using the mobility data from February 15 to June 1st, 641,049 (0.2%) and 18,416,681 (6.8%)
are synthetically built for the household and school layers, respectively. On the other hand, in Seattle has a
total number of 50,506,786 unique contacts, 20,892,401 (41.4%) and 26,582,687 (52.6%) of daily contacts in
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the community and the workplace layer, respectively, both layers where built using the mobility data from
February 15 to June 1st, 219,635 (0.4%) and 2,812,063 (5.6%) are synthetically built for the household and
school layers, respectively. The community layer is based on estimation of co-presence of two devices in
Points of Interest visited by the anonymous users (see Supp. Section 1)

Contacts are built differently in different layers:

• Community weighted contact network. The community network is approximated using 5
months of data observation in the New York and the Seattle metropolitan areas from anonymized
users. In this layer each agent in our synthetic population represents an anonymous individual of the
real population. Contacts are built by estimating co-location of two individuals in the same setting.
We use a large database of 572,197 places in the NY and 69,906 in the ST from the Foursquare API.
Specifically, the weight, ωCijt, of a link between individuals i and j within the community layer at day
t is computed according to the expression:

ωCijt =

n∑
p

Tipt
Tit

Tjpt
Tjt

, ∀i, j

where Tipt is the total time that individual i was observed at place p in day t and Tit is the total time
that individual i has been observed at any place set within the community layer that day t. Note
that while the mobility data set we use is large, co-location events between individuals are still quite
sparse. Because of this sparsity, and to protect individual privacy in our analysis, we have adopted
this probabilistic approach to measure co-presence in all locations mapped in the dataset. Since
agents are representative of the different census areas and groups of the metro areas, our probabilistic
approach is a good proxy for the real probability of co-presence between those groups/areas when
networks are scaled up to the total population of the New York and Seattle metropolitan areas,
that is approximately 18,351,295 and 3,979,845 inhabitants respectively. Finally, for robustness and
computational reasons, we have included only links for which ωCijt > 0.001.

• Workplace weighted contact network. For privacy reasons, our data is obfuscated around home
and workplaces to the level of Census Block Groups. To get a proxy of contacts at the workplace,
we assume that all workers in the same Census Block Groups have a probability to interact. To
account for the potential number of working places in that area, we weight that probability by the
number of POIs at the same census block group. Therefore, the contact weight, ωWijt, of a link between
individuals i and j within the same workplace at day t is given by:

ωWijt =
∑

α∈CBG

ωiαtωjαt
NPOI(α)

, ∀i, j

where NPOI(α) is the number of POIs in census block group α, ωiαt is the probability of observing
an individual at her workplace within census block group α at day t. As before, we have included
only links for which ωWijt > 0.001.

2) Household weighted contact network. We first identify individuals’ approximate home place
as their most likely visited census block group at night. Then we assign a type of household based
on Table B11016: Household Type by Household Size from US Census 2018[5], and mix individuals
that live in the same block according to statistics of household type and size. Finally, children are
assigned to households. We also assign individuals an age group based on Table B01001: Sex by age
from the US Census 2018 [7]. To assign weights, we assume that the probability of interaction within
a household is proportional to the number of people living in the same household (well-mixing).
Therefore, the weight, ωHij , of a link between individuals i and j within the same household is given
by:

ωHij =
1

(nh − 1)

7



where nh is the number of household members. This fraction is assumed to be the same for all
individuals in the population. We assume this layer is static throughout our period.

• School weighted contact network. To calculate the weights of the links at the school layer, we
mix together all children that live in the same school catchment area. Interactions are considered
well-mixed, hence, the probability of interaction at a school is proportional to the number of children
at the same school. Therefore, the weight, ωSij , of a link between children i and j within the same
school is given by:

ωSij =
1

(ns − 1)

where ns is the number of school members. This layer is removed on March 16 in both metropolitan
areas to account for the imposed school closure.

To calibrate the relative importance of each layer in the spreading process we further re-normalize each
network so that the average degree in each layer is 4.11 in the household layer, 11.41 in the education layer,
8.07 in the workplace layer and 2.79 in the community layer [8].

3 SARS-CoV-2 transmission model

The values of all the disease parameters used for simulating the transmission dynamics are given in
Supp. Table 1. Supp. Figure 5 shows the numerical distributions of these parameters as resulting from
simulations of the model, computed for the case of New York with R0 = 3.4 (see Supp. Section 4).
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Supplementary Figure 5: Numerical distributions of the model parameters extracted from the simulations
performed for New York with R0 = 3.4. The generation time distribution is well fitted by a gamma
distribution with shape = 2.01 and rate = 0.32.

4 Calibration

The model has two free parameters: (1) the number of infected individuals in each city on the first day for
which we have data to build the interaction networks (02/17/2020) and (2) the value of R0.

Simulations are initialized with 1 infected individual and then they run using the information from
the first week available (02/17/2020 to 02/23/2020) in a loop until the number of latent individuals in
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Parameters Description Age group Value Ref.

r relative infectiousness of asymptomatic individuals - 50% †

k proportion of pre-symptomatic transmission - 50% [9]

ε−1 incubation period (gamma distributed) - shape = 2.08 [10]
rate = 0.33

p proportion of asymptomatic - 40% [9]

γ−1 pre-symptomatic period - 2 days [11]

µ−1 time to isolation - 2.5 days

δ−1 days from isolation to death - 12.5 [9]

IFR infection fatality ratio 0-9 0.00161% [12]‡
10-19 0.00695%
20-29 0.0309%
30-39 0.0844%
40-49 0.161%
50-59 0.595%
60-69 1.93%
70-79 4.28%
≥ 80 7.80%

Tn Notification of death - 7 days [9]

θ outdoor transmissibility - 0.05 [13]

Supplementary Table 1: Baseline set of parameters. †: assumed ;∗: calibrated to the generation time Tg;
‡ Only applied to symptomatic individuals. As such, a correction factor of 1/(1-p) is applied to all age
groups.
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the population matches the values estimated by the GLEAM model [14]. In particular, 292 in New York
City and 39 in Seattle. Then, time is reset and the simulation runs on calendar time from 02/17/2020 to
06/01/2020 (each step corresponds to 1 day).

We use an Approximate Bayesian Computation (ABC) rejection algorithm to obtain the posterior
distribution of R0. We sample R0 from a uniform prior in the range 1.5 to 4.5 and compare the output of
the model with the weekly estimated number of deaths as a consequence of COVID-19 for each city [15].
The obtained posterior distribution P (R0 = x|E) is shown in Supp. Figure 6.
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Supplementary Figure 6: Posterior distribution of R0 given the number of weekly deaths in each region as
evidence.

5 Effective reproduction number

The effective reproduction number can be estimated using case count data as reported by the authorities.
In [16], the authors estimated this quantity from 14/03/2020 for different areas of the world using the
daily positive increase cases from Johns Hopkins University Center [15] and the EpiEstim method [17].
However, while in a simulation all the information regarding the infection process is available, in real data
usually only the date of infection notification is available. Since the time between the notification of an
infection and the date of actual infection can differ by several days, the authors propose to shift the curve
by 5 days (note that in countries that report this quantity the value changed over time [18]). As we show
in Supp. Figure 7, our model results match pretty well with the data, even though it seems that the shift
of the curve should be slightly larger than 5 days. This is consistent to what has been observed in some
European countries during the first wave [19].

6 Superspreading events

In heterogeneous population it is possible for an infected individual to produce an usually large number of
secondary cases. This is known as a super-spreading event (SSE). To define a SSE we follow Lloyd-Smith
et al [20]:

1. Estimate the effective reproduction number, R
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Supplementary Figure 7: Effective reproduction number in both areas as obtained by our model and
estimated by [16].

2. Compute a Poisson distribution with mean R

3. Define a SSE as any infected individual who infects more than the 99-th percentile of the Poisson
distribution.

In Supp. Figure 8 we test the hypothesis of the 20/80 rule according to which 20% of the infected
individuals produce 80% of the infections. Note that this does not imply that said 20% of individuals are
super-spreaders. In fact, the large majority of them do not produce any secondary infections, inline with
what has been observed in highly detailed empirical studies [21].

In Supp. Table 2 we report the probability of having a SSE within each category before and after the
declaration of the National Emergency. We observe a drastic reduction of the probability after 03/13.

7 Sensitivity analysis

7.1 Distance to POIs

While constructing the network, we attributed a stay to a given POI if it was no further than 50 meters
from the POI center. In this section we test more strict conditions for that attribution, i.e. a threshold of
just 10 meters. Note that this more strict condition for attribution lowers the number of potential visitors
to the POI but also lowers the distance between people in the venue, making physical contact more likely.
In Supp. Figure 9 we show the results for this scenario.

A more restrictive definition of stay yield a much sparser network in the community layer, while it does
not affect the rest of the system. We can see that to obtain the observed number of deaths under these
conditions, the value of R0 must be much larger. This is related to the fact that the disease is specially
dangerous for the elderly. Since those individuals interact mostly in the community layer (since they do
not attend schools nor workplaces), and this layer is now sparser, we need to increase the transmissibility
for the disease to reach those individuals. As a consequence, this also increases the transmission in the
rest of the layers, yielding a larger overall prevalence. Nevertheless, the distribution of infections across
settings is fairly similar, signaling that the results are robust to this definition.
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Supplementary Figure 8: Individuals are ranked according to the number of infections they produce. The
cumulative fraction of infections found in both cities is compared with the one that would be obtained in
a completely homogeneous system.

7.2 Model parameters

To test the dependency of the results with the values assumed in the model, we have explored three
different scenarios: larger transmissibility during the pre-symptomatic phase (k = 0.75), Supp. Figure 10;
longer time from death to notification (Tn = 14 days), Supp. Figure 11; and larger outdoor transmission
(θ = 0.10), Supp. Figure 12. The results are consistent in all cases with only slight variations on the value
of R0.
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Probability of a supers-preading event (%)

Category
New York Seattle

Before 03/13 After 03/13 Before 03/13 After 03/13

Arts/Museum 7.32 [7.22-7.42] 0.53 [0.51-0.54] 0.65 [0.51-0.81] 0.05 [0.01-0.10]
Entertainment 2.20 [2.12-2.22] 0.15 [0.15-0.16] 2.91 [2.71-3.12] 0.32 [0.23-0.39]
Excercise 1.82 [1.80-1.84] 0.38 [0.38-0.39] 1.53 [1.40-1.66] 0.64 [0.55-0.73]
Food/Beverage 0.54 [0.53-0.55] 0.19 [0.19-0.19] 0.29 [0.26-0.33] 0.27 [0.25-0.29]
Grocery 3.10 [3.08-3.13] 1.49 [1.48-1.49] 0.97 [0.85-1.10] 1.40 [1.36-1.45]
Health 0.15 [0.14-0.16] 0.13 [0.13-0.13] 0.00 [0.00-0.01] 0.10 [0.08-0.12]
Other 1.47 [1.45-1.50] 0.10 [0.10-0.10] 0.46 [0.35-0.57] 0.03 [0.01-0.05]
Outdoors 0.01 [0.01-0.02] 0.00 [0.00-0.00] 0.00 [0.00-0.00] 0.00 [0.00-0.00]
Service 0.66 [0.65-0.67] 0.21 [0.21-0.21] 0.07 [0.04-0.10] 0.18 [0.17-0.20]
Shopping 1.92 [1.90-1.94] 0.96 [0.95-0.96] 0.13 [0.10-0.17] 0.21 [0.20-0.23]
Sports/Events 8.32 [8.19-8.44] 4.10 [3.95-4.22] 0.54 [0.37-0.72] 0.03 [0.00-0.08]
Transportation 0.30 [0.29-0.32] 0.07 [0.06-0.07] 0.00 [0.00-0.00] 0.01 [0.00-0.03]
All 1.80 [1.79-1.81] 0.80 [0.79-0.80] 1.33 [1.29-1.38] 0.53 [0.52-0.54]

Supplementary Table 2: Probability that an individual will cause a super-spreading event as defined in [20].
We aggregate all the infections produced by each individual within each category for the given period of
time, and compute the fraction of individuals who produce a super-spreading event out of the total number
of individuals infecting someone in that category. In brackets the 95% C.I. computed using a bootstrap
percentile method is shown.
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Supplementary Figure 10: Main results in New York with larger pre-symptomatic transmissibility: (a)
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Supplementary Figure 11: Main results in New York with longer time to death notification: (a) estimated
R0; (b) number of deaths (fit); (c) estimated Rt; (d) prevalence; (e) distribution of infections; (f) proportion
of infections per layer; (g) infections per setting; (h) normalized infections per setting.
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Supplementary Figure 12: Main results in New York with larger outdoor transmissibility: (a) estimated R0;
(b) number of deaths (fit); (c) estimated Rt; (d) prevalence; (e) distribution of infections; (f) proportion
of infections per layer; (g) infections per setting; (h) normalized infections per setting.
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