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 2 

ABSTRACT 27 

The need to identify and effectively treat COVID-19 cases at highest risk for severe disease is 28 

critical. We identified seven common genetic variants (three novel) that modulate COVID-19 29 

susceptibility and severity, implicating IFNAR2, CCHCR1, TCF19, SLC6A20 and the hyaluronan 30 

pathway as potential therapeutic targets. A high genetic burden was strongly associated with 31 

increased risk of hospitalization and severe disease among COVID-19 cases, especially among 32 

individuals with few known risk factors.33 
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 3 

MAIN TEXT 34 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)[1] causes coronavirus disease 35 

2019 (COVID-19)[2], which has lead to >1.5 million recorded deaths worldwide since December 36 

2019 [3]. Reported risk factors for severe COVID-19, defined here as death or hospitalization 37 

combined with respiratory failure [4], include male sex, older age, race, obesity, kidney, 38 

cardiovascular and respiratory diseases [5-8]. Corticosteroids, repurposed anti-viral medicines, 39 

and antibody therapies have been authorized to treat COVID-19 [9-12]. Presently, excess mortality 40 

due to COVID-19 is high and the urgent need for therapies that treat or prevent severe disease 41 

remains. Further, identifying individuals at highest risk of adverse outcomes may help prioritize 42 

individuals for vaccines [13, 14] or monoclonal antibody treatments[15, 16], which are currently 43 

in short supply. In this study, we used human genetics to identify potential therapeutic targets for 44 

severe COVID-19 and developed genetic risk scores to identify individuals at highest risk of severe 45 

disease with greater precision than can be attained with clinical and demographic variables alone. 46 

 47 

We performed genetic association studies of COVID-19 outcomes across 11,356 individuals with 48 

COVID-19 and 651,047 individuals with no record of SARS-CoV-2 infection aggregated from 49 

four studies (Supplementary Table 1) and four ancestries (Admixed American, African, 50 

European and South Asian). Of the COVID-19 cases, 2,175 (19%) were hospitalized and 847 (7%) 51 

had severe disease; hospitalized patients were more likely to be older, of non-European ancestry 52 

and to have pre-existing cardiovascular and lung disease (Supplementary Table 2). Using these 53 

data, we defined two groups of COVID-19 outcomes: five phenotypes related to disease risk and 54 

two phenotypes related to disease severity among COVID-19 cases (Supplementary Table 3). 55 

For each phenotype, when >30 cases were available, we performed ancestry-specific genetic 56 
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analyses in each study (Supplementary Table 4) and then combined results across studies and 57 

ancestries using a fixed-effects meta-analysis.  58 

 59 

To identify genetic variants that modulate disease severity following SARS-CoV-2 infection, we 60 

first focused on replicating eight independent associations (r2<0.05) with disease risk reported in 61 

recent GWAS that included >1,000 cases [17-20] (Supplementary Table 5); we hypothesized 62 

that some of these published risk variants could also modulate disease severity. After accounting 63 

for multiple testing, six variants had a significant (P<0.0012) and directionally consistent 64 

association with at least one of our five disease risk phenotypes (Supplementary Table 6): 65 

rs73064425 in LZTFL1 (strongest in contrast between COVID-19 hospitalized  cases vs. COVID-66 

19 negative or unknown controls; MAF=7%, OR=1.42, P=7x10-11); rs2531743 near SLC6A20 67 

(COVID-19 positive vs. COVID-19 negative; MAF=42%, OR=1.06, P=9x10-4); rs143334143 in 68 

the MHC (COVID-19 severe vs. COVID-19 negative or unknown; MAF=7%, OR=1.36, P=6x10-69 

4); rs9411378 in ABO (COVID-19 positive vs. COVID-19 negative or unknown; MAF=23%, 70 

OR=1.12, P=6x10-10); rs2109069 in DPP9 (COVID-19 positive vs. COVID-19 negative or 71 

unknown; MAF=31%, OR=1.06, P=10-4); and rs2236757 in IFNAR2 (COVID-19 hospitalized  vs. 72 

COVID-19 negative or unknown; MAF=29%, OR=1.13, P=2x10-4). Effect sizes were comparable 73 

across ancestries (Supplementary Table 7). Having established these variants as bona fide risk 74 

factors for COVID-19, we then asked which (if any) were also associated with severity amongst 75 

COVID-19 cases. We found that four of the six variants were significantly (P<0.05) associated 76 

with worse outcomes among infected individuals (Figure 1A). The exceptions were rs9411378 in 77 

ABO and rs2531743 near SLC6A20, which did not associate with COVID-19 severity (Figure 1B). 78 

Collectively, these results pinpoint four variants associated with worse disease outcomes, 79 
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including respiratory failure and death. These variants can be used to identify individuals at risk 80 

of severe COVID-19 and suggest that nearby genes may represent targets for therapeutic 81 

intervention.  82 

 83 

We next looked for novel genetic associations with severe COVID-19. Across our two severity 84 

phenotypes (hospitalized vs. non-hospitalized cases; severe vs. non-hospitalized cases), we found 85 

no new associations at P<5x10-8 (Supplementary Figure 1), indicating that these analyses were 86 

underpowered for genome-wide discovery. To increase power, we combined results from our 87 

COVID-19 hospitalization phenotype (2,175 cases vs. 651,047 controls) with those from two 88 

published GWAS[19, 21], for a combined sample size of 5,461 hospitalized cases and 661,632 89 

controls with no record of SARS-CoV-2 infection. In this larger analysis of disease risk, seven loci 90 

reached genome-wide significance (Figure 2), including the four highlighted by the replication 91 

analysis above (LZTFL1, MHC, DPP9 and IFNAR2) and three novel associations (Table 1): 92 

rs79833209 near CCNG1 (5q34; MAF=2%, OR=1.54, P=2x10-8); rs4782327 in ACSF3 (16q24.3; 93 

MAF=22%, OR=1.17, P=8x10-9); and rs12461764 in FPR1 (19q13.41; MAF=35%, OR=1.18, 94 

P=10-8). Consistent associations were observed across studies and ancestries for the three novel 95 

variants (Supplementary Figure 2). We then assessed the association between each novel variant 96 

and disease severity and found that for all three, the risk allele was overrepresented (P<0.05) 97 

amongst hospitalized and severe COVID-19 cases, relative to non-hospitalized cases (Figure 1C). 98 

To further study the association between the three variants and worse disease outcomes, we 99 

constructed a continuous score that combined nine different measures of severity self-reported by 100 

4,448 COVID-19 cases from the AncestryDNA study. Lower severity scores were enriched for 101 

asymptomatic cases and lower symptom severity, while higher scores were associated with 102 
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 6 

increased symptom severity and elevated hospitalization rates (Supplementary Figure 3).  The 103 

mean severity score was elevated for carriers of each of the three novel risk alleles 104 

(Supplementary Table 8). Therefore, the three putative novel susceptibility loci we identified for 105 

COVID-19 risk are also associated with increased risk of severe disease. 106 

 107 

Collectively, our association analyses highlighted seven common variants (four known, three 108 

novel) associated with COVID-19 susceptibility (P<5x10-8), as well as disease severity among 109 

cases (P<0.05). As all seven variants are either intronic or intergenic, it is not immediately clear 110 

how these variants influence gene function. To help identify gene targets and thus potential 111 

therapeutic targets for severe COVID-19, we searched for functional protein-coding variants 112 

(missense or predicted loss-of-function) in high LD (r2>0.95) with each variant. We found six 113 

functional variants in three genes: two missense variants in IFNAR2, a component of the 114 

heterodimeric type-1 interferon receptor; three missense and a stop-gain variant in CCHCR1, a P-115 

body protein associated with cytoskeletal remodeling and mRNA turnover [22, 23], which can 116 

interact with human papillomavirus-16 [24, 25]; and a missense variant in TCF19, a transcription 117 

factor associated with hepatitis B [26, 27] (Supplementary Table 9). These data indicate that the 118 

risk variants identified in IFNAR2, CCHCR1 and TCF19 may have functional effects on these 119 

genes. Next, we asked if the sentinel risk variants co-localized (r2>0.95) with published sentinel 120 

expression quantitative trait loci (Supplementary Table 10), specifically focusing on 168 genes 121 

in cis (± 500 kb). We observed evidence for co-localization for IFNAR2, TCF19 and SLC6A20 122 

(Supplementary Table 11). SLC6A20 encodes a proline transporter that binds the host SARS-123 

CoV-2 receptor, angiotensin-converting enzyme 2 [28]. Our results suggest that higher SLC6A20 124 

expression in the lung (and potentially increased viral uptake) is associated with higher risk of 125 
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 7 

severe disease (Supplementary Table 11). In contrast, for IFNAR2, our analysis suggests that 126 

severe COVID-19 is associated with lower expression in immune cells and lung tissue 127 

(Supplementary Table 11), consistent with the deficient interferon response observed in severe 128 

COVID-19 patients [29]. Collectively, these analyses identified four specific putative effector 129 

genes in COVID-19 risk loci (IFNAR2, CCHCR1, TCF19 and SLC6A20), though functional 130 

studies are required to confirm these predictions. 131 

 132 

Co-localization analyses did not identify any likely target genes for the three new risk variants. 133 

However, we note that two of these (rs12461764 and rs79833209) are near genes related to 134 

hyaluronan (HA), a major component of the lung extracellular matrix (Supplementary Figure 2): 135 

HAS1 (16 Kb away) and HMMR (160 Kb away), which respectively encode HA synthase 1 and a 136 

cell-surface receptor for HA. This observation is noteworthy because elevated HA (i) has been 137 

reported in the lungs of COVID-19 patients [30, 31]; and (ii) is associated with inflammation and 138 

other infections [31], including influenza [33]. Furthermore, Hmmr-deficient mice are protected 139 

in acute fibrotic lung injury models [34]. If confirmed, these findings would support the use of 140 

hyaluronidases in reducing accumulation of HA and preventing long-term lung damage in 141 

COVID-19 patients [35]. 142 

 143 

The second aim of this study was to determine if genetics can help identify individuals at high risk 144 

of severe disease, who may be prioritized for prophylactic or therapeutic interventions. 145 

Specifically, we focused on the four variants (in/near LZTFL1, MHC, DPP9 and IFNAR2) with 146 

confirmed association with COVID-19 susceptibility and that also modulate COVID-19 severity. 147 

Using these variants, we created a weighted genetic risk score (GRS) for individuals with COVID-148 
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 8 

19 and then compared the risk of hospitalization and severe disease between those with a high 149 

GRS and all other cases, after adjusting for established risk factors (e.g. age, sex, comorbidities). 150 

When considering COVID-19 cases of European ancestry (N=9,277), we found that having a high 151 

GRS (top 10%) was associated with a 2.0-fold increased risk of hospitalization (95% CI 1.66-2.55, 152 

P=3x10-11; Supplementary Figure 4A) and 1.8-fold increased risk of severe disease (95% CI 153 

1.40-2.41, P=10-5; Figure 3A). A consistent pattern was observed in other ancestries, though 154 

sample sizes were considerably smaller (Supplementary Tables 12 and 13). Lastly, we compared 155 

the effect of the GRS between individuals with and without established risk factors for severe 156 

COVID-19. We found that a high GRS (top 10%) was strongly associated with risk of severe 157 

disease among individuals with one (OR=3.26, 95% CI 2.03-5.23, P=10-6) or two (OR=2.19, 95% 158 

CI 1.29-3.72, P=0.004) established risk factors (Figure 3B and 3C; Supplementary Table 14). 159 

In contrast, there was a much weaker association between a high GRS and risk of severe disease 160 

among individuals with many (three or more) risk factors (OR=1.26, 95% CI 0.75-2.11, P=0.388), 161 

although evidence for heterogeneity of GRS effect with number of risk factors was not significant 162 

(P=0.16). Similar results were observed for risk of hospitalization (Supplementary Figure 4B 163 

and 4C; Supplementary Table 14). Collectively, these results demonstrate that a GRS calculated 164 

using variants associated with disease risk and severity can be used to identify COVID-19 cases 165 

at high risk of developing poor disease outcomes. This is important as many of these individuals 166 

might not be prioritized for prophylactic or therapeutic interventions according to current 167 

guidelines[35]. 168 

 169 

In summary, we confirmed four common variant associations with COVID-19 susceptibility and 170 

further show that they modulate disease severity and are likely to influence the function of 171 
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 9 

IFNAR2, CCHCR1, TCF19 and SLC6A20. We also identified three novel associations with disease 172 

severity, which potentially provide genetic evidence for a role of hyaluronan in severe COVID-173 

19. Lastly, we show that a genetic risk score based on the four common variants that we validated 174 

can be used to identify individuals at high risk of poor disease outcomes. Collectively, our analyses 175 

point to potential novel therapies and help identify patients at high risk of severe COVID-19.  176 
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 10 

ONLINE METHODS 177 

Participating Studies 178 

AncestryDNA COVID-19 Research Study. AncestryDNA customers over age 18, living in the 179 

United States, and who had consented to research, were invited to complete a survey assessing 180 

COVID-19 outcomes and other demographic information. These included SARS-CoV-2 swab and 181 

antibody test results, COVID-19 symptoms and severity, brief medical history, household and 182 

occupational exposure to SARS-CoV-2, and blood type. A total of 83,930 AncestryDNA survey 183 

respondents were selected for inclusion in this study [36, 37]. Respondents selected for this study 184 

included all individuals with a positive COVID-19 test together with age and sex matched controls.  185 

DNA samples were genotyped as described previously[36]. Genotype data for variants not 186 

included in the array were then inferred using imputation to the Haplotype Reference Consortium 187 

(HRC) reference panel. Briefly, samples were imputed to HRC version 1.1, which consists of 188 

27,165 total individuals and 36 million variants. The HRC reference panel does not include indels; 189 

consequently, indels are not present in the imputed data. We determined best-guess haplotypes 190 

with Eagle version 2.4.1 and performed imputation with Minimac4 version 1.0.1. We used 191 

1,117,080 unique variants as input and 8,049,082 imputed variants were retained in the final data 192 

set. Variants with a Minimac4 R2<0.30 were filtered from the analysis. For this study, an additional 193 

continuous severity phenotype was defined for a semi-overlapping set of in 4,448 survey-194 

respondents that reported a positive COVID-19 test. The continuous severity score was derived by 195 

computing the first principal component across nine survey fields related to COVID-19 clinical 196 

outcomes. Six of the nine questions were binary: hospitalization, ICU admittance with oxygen, 197 

ICU admittance with ventilation, septic shock, respiratory failure, and organ failure due to 198 

COVID-19. Binary responses were encoded as 0 for “No” and 1 for “Yes”. Three symptom 199 
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 11 

questions related to shortness of breath, fever, and nausea/vomiting symptoms were encoded as a 200 

unit-scaled variable based on the following mapping: 0=“None”, 0.2=“Very mild”, 0.4=“Mild”, 201 

0.6=“Moderate”, 0.8=“Severe”, and 1.0=“Very Severe”. The three symptoms were chosen based 202 

on prior literature indicating their positive association with COVID-19 hospitalization[37]. The 203 

resulting score was standardized prior to association analysis. 204 

 205 

Geisinger Health System (GHS). The GHS MyCode Community Health Initiative is a health 206 

system-based cohort from central and eastern Pennsylvania (USA) with ongoing recruitment since 207 

2006. A subset of 144,182 MyCode participants sequenced as part of the GHS-Regeneron Genetics 208 

Center DiscovEHR partnership were included in this study. Information on COVID-19 outcomes 209 

were obtained through GHS’s COVID-19 registry. Patients were identified as eligible for the 210 

registry based on relevant lab results and ICD-10 diagnosis codes; patient charts were then 211 

reviewed to confirm COVID-19 diagnoses. The registry contains data on outcomes, comorbidities, 212 

medications, supplemental oxygen use, and ICU admissions. DNA from participants was 213 

genotyped on either the Illumina OmniExpress Exome (OMNI) or Global Screening Array (GSA) 214 

and imputed to the TOPMed reference panel (stratified by array) using the TOPMed Imputation 215 

Server. Prior to imputation, we retained variants that had a MAF >= 0.1%, missingness < 1% and 216 

HWE p-value > 10-15. Following imputation, data from the OMNI and GSA datasets were merged 217 

for subsequent association analyses, which included an OMNI/GSA batch covariate, in addition 218 

to other covariates described below.  219 

 220 

 221 
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Penn Medicine BioBank (PMBB) study.  PMBB study participants are recruited through the 222 

University of Pennsylvania Health System, which enrolls participants during hospital or clinic 223 

visits. Participants donate blood or tissue and allow access to EHR information[38]. The PMBB 224 

COVID-19 registry consists of patients who have positive qPCR testing for SARS-COV-2. We 225 

then used electronic health records to classify COVID-19 patients into hospitalized and severe 226 

(ventilation or death) categories. DNA genotyping was performed with the Illumina Global 227 

Screening Array, and imputation performed using the TOPMed reference panel as described for 228 

GHS above.  229 

 230 

UK Biobank (UKB) study. We studied the host genetics of SARS-CoV-2 infection in participants 231 

of the UK Biobank study, which took place between 2006 and 2010 and includes approximately 232 

500,000 adults aged 40-69 at recruitment. In collaboration with UK health authorities, the UK 233 

Biobank has made available regular updates on COVID-19 status for all participants, including 234 

results from four main data types: qPCR test for SARS-CoV-2, anonymized electronic health 235 

records, primary care and death registry data. We report results based on the 12 September 2020 236 

data refresh and excluded from the analysis 28,547 individuals with a death registry event prior to 237 

2020. DNA samples were genotyped as described previously [39] using the Applied Biosystems 238 

UK BiLEVE Axiom Array (N=49,950) or the closely related Applied Biosystems UK Biobank 239 

Axiom Array (N=438,427). Genotype data for variants not included in the arrays were inferred 240 

using three reference panels (Haplotype Reference Consortium, UK10K and 1000 Genomes 241 

Project phase 3) as described previously [39]. 242 

 243 

COVID-19 phenotypes used for genetic association analyses 244 
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We grouped participants from each study into three broad COVID-19 disease categories 245 

(Supplementary Table 1): (i) positive – those with a positive qPCR or serology test for SARS-246 

CoV-2, or a COVID-19-related ICD10 code (U07), hospitalization or death; (ii) negative – those 247 

with only negative qPCR or serology test results for SARS-CoV-2 and no COVID-19-related 248 

ICD10 code (U07), hospitalization or death; and (iii) unknown – those with no qPCR or serology 249 

test results and no COVID-19-related ICD10 code (U07), hospitalization or death. We then used 250 

these broad COVID-19 disease categories, in addition to hospitalization and disease severity 251 

information, to create seven COVID-19-related phenotypes for genetic association analyses, as 252 

detailed in Supplementary Table 3. For association analysis in the AncestryDNA study, we 253 

excluded from the COVID-19 unknown group individuals who had (i) a first-degree relative who 254 

was COVID-19 positive; or (ii) flu-like symptoms.  255 

 256 

Genetic association analyses 257 

Association analyses in each study were performed using the genomewide Firth logistic regression 258 

test implemented in REGENIE [40]. In this implementation, Firth’s approach is applied when the 259 

p-value from standard logistic regression score test is below 0.05. We included in step 1 of 260 

REGENIE (i.e. prediction of individual trait values based on the genetic data) directly genotyped 261 

variants with a minor allele frequency (MAF) >1%, <10% missingness, Hardy-Weinberg 262 

equilibrium test P-value>10-15 and linkage-disequilibrium (LD) pruning (1000 variant windows, 263 

100 variant sliding windows and r2<0.9). The association model used in step 2 of REGENIE 264 

included as covariates age, age2, sex, age-by-sex, and the first 10 ancestry-informative principal 265 

components (PCs) derived from the analysis of a stricter set of LD-pruned (50 variant windows, 5 266 
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variant sliding windows and r2<0.5) common variants from the array (imputed for the GHS study) 267 

data.  268 

 269 

Within each study, association analyses were performed separately for four different ancestries 270 

defined based on the array data (African [AFR], admixed American [AMR], European [EUR] and 271 

South Asian [SAS]). We retained association results for variants with an imputation information 272 

score ³0.3 and MAC ³5, and either (i) MAF>0.5% or (ii) a protein-altering consequence (i.e. 273 

pLOF, missense or splice variants). Results were subsequently meta-analyzed across studies and 274 

ancestries using an inverse variance-weighed fixed-effects meta-analysis.  275 

 276 

Identification of putative targets of GWAS variants based on colocalization with eQTL 277 

We identified as a likely target of a sentinel GWAS variant any gene for which a sentinel 278 

expression quantitative trait locus (eQTL) co-localized (i.e. had LD r2 > 0.95) with the sentinel 279 

GWAS variant. That is, we only considered genes for which there was strong LD between a 280 

sentinel GWAS variant and a sentinel eQTL, which reduces the chance of spurious colocalization. 281 

Sentinel eQTL were defined across 174 published datasets (Supplementary Table 10), as 282 

described previously[41]. We did not use statistical approaches developed to distinguish 283 

colocalization from shared genetic effects because these have very limited resolution at high LD 284 

levels (r2 > 0.8)[42]. 285 

 286 

Genetic risk score (GRS) analysis of COVID-19 hospitalization and severity 287 

First, in each study (AncestryDNA, GHS, UKB and PMBB), we created a GRS for each COVID-288 

19 positive individual based on variants that were reported to associate with COVID-19 289 
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susceptibility in previous GWAS and that we (i) independently replicated; and (ii) found to be 290 

associated with COVID-19 severity. We used as weights the effect (beta) reported in previous 291 

GWAS (Supplementary Table 5). Second, we ranked COVID-19 individuals based on the GRS 292 

and created a new binary GRS predictor by assigning each individual to a high (top 5%) or low 293 

(rest of the population) percentile group. Third, for studies with >100 hospitalized cases, the we 294 

used logistic regression to test the association between the binary GRS predictor and risk of 295 

hospitalization (hospitalized cases vs. all other cases), including as covariates age, sex and ten 296 

ancestry-informative PCs. In addition to age and sex, we included as additional covariates 297 

established clinical risk factors for COVID-19 that were significantly associated in each respective 298 

study: BMI, smoking status, hypertension and chronic kidney disease for GHS; BMI, smoking 299 

status, hypertension and chronic obstructive pulmonary disease in Europeans of the UKB; 300 

hypertension, CKD, COPD, diabetes in AncestryDNA. We repeated the association analysis (i) 301 

using different percentile cut-offs for the GRS (5%, 10%, 20%, 30% and 40%); and (ii) to test the 302 

association with disease severity (severe cases vs. all other cases). 303 

 304 

Results availability 305 

All genotype-phenotype association results reported in this study are available for browsing using 306 

the RGC’s COVID-19 Results Browser (https://rgc-covid19.regeneron.com). Data access and use 307 

is limited to research purposes in accordance with the Terms of Use (https://rgc-308 

covid19.regeneron.com/terms-of-use). 309 

 310 
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FIGURES 321 

 322 

 323 

Figure 1. Comparison of effect sizes across COVID-19 susceptibility and severity outcomes 324 

for six previously reported (A, B) and three novel (C) risk variants.  325 

(A, B) Six variants that were reported to associated with COVID-19 susceptibility in previous 326 

studies and replicated in our analysis. Of these, four variants also associated with disease severity 327 

among COVID-19 cases (in/near LZTFL1, CCHCR1, DPP9 and IFNAR2; panel A), whereas two 328 

variants did not (in ABO and SLC6A20, panel B).  329 

(C) Three novel risk variants for COVID-19 discovered in the trans-ancestry meta-analysis of risk 330 

of COVID-19 hospitalization across six studies (AncestryDNA, GHS, UKB, PMBB, 331 

Ellinghaus[19] et al. and Pairo-Castineira et al.[18]). 332 
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 334 

Figure 2. Summary of association results from the trans-ancestry meta-analysis of risk of 335 

COVID-19 hospitalization. The meta-analysis included results from six studies (AncestryDNA, 336 

GHS, UKB, PMBB, Ellinghaus et al. [19] and Pairo-Castineira et al.[18] and four ancestries (AFR, 337 

AMR, EUR and SAS), totaling 5,461 hospitalized cases and 661,632 controls with no record of 338 

SARS-CoV-2 infection.  339 

  340 
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 341 

Figure 3. Association between a four-SNP genetic risk score (GRS) and risk of severe disease 342 

among COVID-19 cases of European ancestry. 343 

(A) Association between high genetic risk and severe disease. Overall risk of severe disease is 344 

shown for individuals in the top GRS percentile, agnostic to the number of clinical risk factors 345 

present. The association was tested in two studies separately (AncestryDNA and UKB studies) 346 

using logistic regression, with established risk factors for COVID-19 included as covariates (see 347 

Methods for details). Results were then meta-analyzed across studies, for a combined sample size 348 

of 8,423 COVID-19 cases, including 744 with severe disease. N in red: number of COVID-19 349 

cases in the top GRS percentile. N in grey: number of COVID-19 cases in the rest of population. 350 

(B) Rate of severe disease in UK Biobank and AncestryDNA study, after stratifying by the number 351 

of clinical risk factors and genetic risk score. High genetic risk: top 10% of the GRS. Low genetic 352 

risk: bottom 90% of the GRS (i.e. all other COVID-19 cases). 353 
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(C) Association between high genetic risk (top 10% of GRS vs. all other COVID-19 cases) and 354 

severe disease, after stratifying by the number of pre-existing clinical risk factors. The association 355 

was tested in the UK Biobank and AncestryDNA studies, with results combined using inverse-356 

variance meta-analysis.  357 
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TABLES 359 

 360 

Table 1. Top associations identified in the trans-ancestry meta-analysis of risk of COVID-19 361 

hospitalization. The meta-analysis included results from six studies (AncestryDNA, GHS, UKB, 362 

PMBB, Pairo-Castineira et al.[18] and Ellinghaus et al. [19]) and four ancestries (AFR, AMR, 363 

EUR and SAS), totaling 5,461 hospitalized cases and 661,632 controls with no record of SARS-364 

CoV-2 infection.  365 

 366 
  367 

rsID Position hg38
Effect 
allele

Odds ratio 
(LCI,UCI)

P-value
Effect allele 
frequency

N cases (N with 0|1|2 
copies of the effect allele)

N controls (N with 0|1|2 
copies of the effect allele)

Nearest 
gene

rs73064425 3:45859597 T 1.716 (1.589, 1.854) 5.42E-43 0.074 5461 (4205|1165|87) 661632 (568579|88970|4081) LZTFL1
rs143334143 6:31153649 A 1.335 (1.233, 1.447) 1.29E-12 0.072 5461 (4525|881|52) 661632 (569685|88265|3678) CCHCR1
rs2277732 19:4723658 A 1.225 (1.166, 1.287) 8.40E-16 0.300 5461 (2371|2411|677) 661632 (325425|276058|60146) DPP9

rs13050728 21:33242905 T 1.210 (1.153, 1.270) 1.24E-14 0.315 5461 (2237|2491|729) 661632 (311728|283741|66160) IFNAR2

rs79833209 5:163300447 T 1.544 (1.326, 1.796) 2.02E-08 0.022 5387 (5072|308|4) 652327 (624117|27910|296) CCNG1
rs4782327 16:89117727 G 1.171 (1.110, 1.236) 8.15E-09 0.216 5461 (3109|2002|346) 661632 (407670|222489|31470) ACSF3

rs12461764 19:51739497 G 1.181 (1.116, 1.250) 1.11E-08 0.346 3785 (1431|1770|582) 653252 (279857|295218|78176) FPR1

Previously reported associations

Novel associations
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SUPPLEMENTARY FIGURES 368 

Provided in a separate file. 369 

 370 

Supplementary Figure 1. Summary of association results from the meta-analysis of two 371 

phenotypes related to disease severity among COVID-19 cases. (A) Phenotype COVID-19 372 

positive hospitalized (N=2,052) vs COVID-19 positive and not hospitalized (N=9,098). (B) 373 

Phenotype COVID-19 positive severe (N=815) vs COVID-19 positive and not hospitalized 374 

(N=8,999). 375 

 376 

Supplementary Figure 2. Three novel loci identified in the trans-ancestry meta-analysis of 377 

risk of COVID-19 hospitalization. (A) rs79833209 (5:163300447:C:T, effect allele C) in 5q34, 378 

near CCNG1. (B) rs4782327 (16:89117727:G:C, effect allele G) in 16q24.3 in ACSF3. (C) 379 

rs12461764 (19:51739497:G:T, effect allele G) in 19q13.41 near FPR1. RR: number of individuals 380 

homozygous for reference allele. RA: number of heterozygous individuals. RA: number of 381 

individuals homozygous for alternative (effect) allele. AAF: alternative allele frequency. OR: odds 382 

ratio. 383 

 384 

Supplementary Figure 3. Association between the continuous severity score and key 385 

individual measures of severity in the AncestryDNA study. The continuous severity score was 386 

derived from the first principal component across nine survey fields related to COVID-19 clinical 387 

outcomes, including three symptoms, hospitalization, ICU admittance, and other severe 388 

complications due to COVID-19 illness (Methods). Plots reflect mean symptom severity (top three 389 

panels) or incident prevalence (bottom three panels) for several fields as a function of ascending 390 
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severity decile. Symptom information was encoded as follows: 0=None, 0.2=Very Mild, 0.4=Mild, 391 

0.6=Moderate, 0.8=Severe, and 1.0=Very Severe. A paucisymptomatic case corresponds to 392 

reporting symptoms of mild intensity or less for any of the symptom severity questions.  393 

 394 

Supplementary Figure 4. Association between a four-SNP genetic risk score (GRS) and risk 395 

of hospitalization among COVID-19 cases of European ancestry. 396 

(A) Association between high genetic risk and hospitalization. Overall risk of hospitalization is 397 

shown for individuals in the top GRS percentile, agnostic to the number of clinical risk factors 398 

present. The association was tested in three studies separately (AncestryDNA, GHS and UKB 399 

studies) using logistic regression, with established risk factors for COVID-19 included as 400 

covariates (see Methods for details). Results were then meta-analyzed across studies, for a 401 

combined sample size of 9,277 COVID-19 cases, including 1,832 who were hospitalized. N in red: 402 

number of COVID-19 cases in the top GRS percentile. N in grey: number of COVID-19 cases in 403 

the rest of population. 404 

(B) Rate of hospitalization in UK Biobank and AncestryDNA study, after stratifying by the number 405 

of clinical risk factors and genetic risk score. High genetic risk: top 10% of the GRS. Low genetic 406 

risk: bottom 90% of the GRS (i.e. all other COVID-19 cases). 407 

(C) Association between high genetic risk (top 10% of GRS vs. all other COVID-19 cases) and 408 

hospitalization, after stratifying by the number of pre-existing clinical risk factors. The association 409 

was tested in the UK Biobank and AncestryDNA studies, with results combined using inverse-410 

variance meta-analysis.  411 

  412 
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SUPPLEMENTARY TABLES 413 

Provided in a separate file. 414 

 415 

Supplementary Table 1. Breakdown of COVID-19 status across the four studies included in 416 

the analysis. 417 

 418 

Supplementary Table 2. Demographics and clinical characteristics of study participants. 419 

 420 

Supplementary Table 3. Definitions used for the seven COVID-19 phenotypes analyzed. 421 

 422 

Supplementary Table 4. Genomic inflation factor (lambda) across the seven COVID-19 423 

phenotypes analyzed. 424 

 425 

Supplementary Table 5. Eight variants associated with COVID-19 susceptibility in previous 426 

GWAS. 427 

 428 

Supplementary Table 6. Association between eight published risk variants for COVID-19 429 

and five disease susceptibility phenotypes in this study. P-values shown in red were significant 430 

after correcting for the 40 tests performed (P<0.00125). 431 

 432 

Supplementary Table 7. Comparison of effect sizes between ancestries for the six published 433 

risk variants that were validated in this study. 434 

 435 
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Supplementary Table 8. Association between a COVID-19 severity score and seven variants 436 

(four known, three novel) associated with both disease risk and severity. 437 

 438 

Supplementary Table 9. Missense or predicted loss-of-function variants in high linkage 439 

disequilibrium (LD, r2>0.95) with sentinel GWAS variants. 440 

 441 

Supplementary Table 10. Published gene expression datasets used to identify sentinel 442 

expression quantitative trait loci (eQTL) that co-localized (LD r2>0.95) with sentinel GWAS 443 

variants. 444 

 445 

Supplementary Table 11. Expression quantitative trait loci (eQTL) that co-localized (LD 446 

r2>0.95) with sentinel GWAS variants. 447 

 448 

Supplementary Table 12. Association between a four-SNP genetic risk score (GRS) and risk 449 

of hospitalization among COVID-19 cases. 450 

 451 

Supplementary Table 13. Association between a four-SNP genetic risk score (GRS) and risk 452 

of severe disease among COVID-19 cases. 453 

 454 

Supplementary Table 14. Association between a four-SNP genetic risk score (GRS) and risk 455 

of hospitalization and severe disease, after stratifying COVID-19 cases by the number of pre-456 

existing clinical risk factors for severe COVID-19.  457 
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Figure 1. Comparison of effect sizes across COVID-19 
susceptibility and severity outcomes for six previously 
reported (A, B) and three novel (C) risk variants.
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Figure 2. Summary of association results from the trans-ancestry meta-analysis of risk of COVID-19 hospitalization. The meta-analysis
included results from six studies (AncestryDNA, GHS, UKB, PMBB, Ellinghaus et al. [19] and Pairo-Castineira et al. [18]) and four ancestries
(AFR, AMR, EUR and SAS), totaling 5,461 hospitalized cases and 661,632 controls with no record of SARS-CoV-2 infection.
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Figure 3. Association between a four-SNP genetic risk score (GRS) and risk of
severe disease among COVID-19 cases of European ancestry.
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