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Abstract

We address the estimation of the effective reproductive number Rt based on serolog-
ical data using Bayesian inference. We also explore the Bayesian learning paradigm
to estimate Rt. We calculate Rt for the top five most affected principal regions
of Mexico. We present a forecast of the spread of coronavirus in Mexico based
on a contact tracing model using Bayesian inference inspired in a data-driven ap-
proach. We investigate the health profile of individuals diagnosed with coronavirus
in order to predict their type of patient care (inpatient or outpatient) and survival.
Specifically, we analyze the comorbidity associated with coronavirus using Machine
Learning. We implemented two classifiers, the first one, to predict the type of care
procedure a diagnosed person with coronavirus presenting chronic diseases will ob-
tain: outpatient or hospitalized. Second one, a classifier for the survival of the
patient: survived or deceased. We present two techniques to deal with these kinds
of unbalanced dataset related with outpatient/hospitalized and survived/deceased
cases, occurring in general for these type coronavirus datasets in the world, in order
obtain to a better performance for the classification.

Keywords: Bayesian inference, machine learning, COVID-19, contact tracing, data-
driven

1 Introduction

Different mathematical models for disease transmission have been proposed to predict and
control disease spread since the emerging and re-emerging of infectious diseases represent
a major threat to public health and may cause big economic and social losses. Vaccina-
tion is the principal control measure for reducing the spread of many infectious diseases
[32, 37]. Some recent epidemics of H1N1, Ebola, MERS-CoV needed strong government
interventions for fast eradication [12]. Based on past pandemics, scientists had worn that
another pandemic could strike at any moment. Therefore, a big effort to study the impact
of control measures to eradicate the outbreak of an epidemic has been done for taking
an immediate response for a possible influenza pandemic crisis [38]. Mathematical mod-
els include compartmental epidemic models, which are deterministic systems of ordinary
and partial differential equations or stochastic difference equations [14]. For some dis-
eases such as influenza, typhoid fever, anthrax, diphtheria, tetanus, cholera, hepatitis B,
pertussis, pneumonia, and coronavirus the process of transmission between individuals
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take place because an initial inoculation of a small amount of pathogen units. Then, the
pathogen reproduces fast within the host during a period of time, called incubation time.
During this period, pathogen affluence is enough low for activating the transmission to
other susceptible [36]. Many mathematical models assume that the disease incubation is
negligible, once a individual is infected, i.e., this infected individual becomes infectious
instantaneously. A compartmental model based on these assumptions are named SIR or
SIRS [47], depending on whether the acquired immunity is permanent or temporal. For
viral infections such as rubella, and measles, the infected individual acquires permanent
immunity. However, many diseases, such as influenza, typhoid fever, anthrax, diphtheria,
tetanus, cholera, hepatitis B, pertussis, pneumonia and coronavirus have an incubation
(latent) period of time before the hosts become infectious [7]. Also, diseases with long
immune period include polio, chicken-pox, whooping cough, smallpox and dengue fever.
In order to take into account this incubation period of the disease, another population
compartment, named exposed class, E, is incorporated into these type of models, SIR and
SIRS. Then, a susceptible individual who has been just infected, first goes through the
exposed class during a incubation period of the disease, after that, the exposed individual
becomes infectious. The resulting models are of SEIR or SEIRS type. We point out that
there exists more literature on SIR and SEIR models than SIRS and SEIRS models, i.e.,
those which permanent immunity is not assumed. We refer the reader to [30, 46, 63] for
references on SEIRS models and [6, 36, 39, 40, 42, 43] for references on SEIR models.

Numerous efforts to forecast and mathematical control models for disease transmission
have been proposed since the re-emerging of the coronavirus named SARS-CoV-2 [4, 21,
26, 28, 44, 61, 64]. The first coronavirus outbreak, named SARS-CoV, where SARS stands
for Severe acute respiratory syndrome, caused an pandemic with different incidences in the
29 countries around the world. A Bayesian compartment (SEIR: Susceptible, Exposed,
Infected and Removed) model was presented to study the spread of the first coronavirus
in 2002 [50]. The mean incubation period was 5.3 days (%95 Credible Interval 4.2 − 6.8
days), which is close to the latter coronavirus mean incubation period, reported as 5.1.
Also the reported mean recovery period, from symptom onset to recovery, was 21 days
(%95 Credible Interval 16−26 days), which is higher compared to the second coronavirus
recovery period, reported around 14 days. A social distance as a control strategy of SARS
was explored in [23]. The basic and effective reproductive numbers of SARS-Cov were
estimated in [45]. Also, a spatiotemporal analysis of SARS-CoV was presented in [16].
We point out that other type of coronavirus emerged in 2015 in the Republic of Korea,
named Middle East Respiratory Syndrome Coronavirus (MERS-CoV). After 17 years of
the first apparition of SARS-CoV (November, 2002), another virus strain has emerged,
called SARS-CoV-2. Since the second coronavirus outbreak, also named COVID-19, in
Wuhan City in December of 2019, many attempts to predict the dynamics of coronavirus
pandemic have been presented , some with a Bayesian inference approach [10, 20, 26]. A
wide range of predictions have been presented in model calibrations using confirmed-case
data since the nonidentifiability in theirs models [56].

The remainder of this paper is organized as follows. Section 2 describes some formu-
lations to estimate the basic and the effective reproductive numbers, R0 and Rt. Section
3 describes the mathematical formulation of the contact tracing model for coronavirus
disease and the Bayesian inference framework to predict the dynamics its spread. Sec-
tion 4 describes a clinical analysis of data set [1] using Machine Learning. Each section
presents the mathematical framework and numerical results. Discussion and conclusions
are presented in the last section 5.
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2 Estimation of reproductive numbers R0 and Rt

The basic reproductive number of a disease, R0, is the expected number of secondary
infectious cases generated by an average infected person in an entirely susceptible pop-
ulation. The reproductive number R0 quantifies how many susceptible persons are on
average infected by one infected person. If one infected person infect on average more
than other person, then there exists an epidemic outbreak, in other words, the diagnostic
infected people grow exponentially. Thus, R0 = 1 is the threshold value of the spread
or decline of an epidemic. Estimation of R0 can be done in two ways, either by infer-
ring it from observed case numbers, or by following infection chains step by step. Here,
we will discuss the former. Estimating R0 using diagnosed cases can be done by some
approaches as follows. Taking into account a latent period of the disease, i.e. during
this stage, pathogen abundance is too low for active transmission to other susceptible
hosts, although the pathogen is still present. The SEIR model takes into account this
latent period. Thus, the COVID may be modeled with a SEIR model. The disease-free
equilibrium point for I is given by

I∗ =
µ

β
(R0 − 1). (1)

Doing an equilibrium analysis similar to the Box 2.4 of [36], the eigenvalues at the disease-
free equilibrium allows us to describe the increase in prevalence during the invasion phase:

ISEIR(t) ≈ I(0) exp

(
1

2

[√
4(R0 − 1)αγ + (α + γ)2 − (α + γ)

]
t

)
, (2)

where I is the number of infected people, α is the rate the latent individuals become infec-
tious and γ is the rate that infectious individuals become recovered and the reproductive
number R0 is

R0 =
αβ

(α + µ)(γ + µ)
, (3)

which is the product of the transmission coefficient(contact rate) β, the probability for the
infected fraction becoming infective, α/(α+µ), and the average infectious period 1/(γ+µ),
here µ is the birth rate. We have ignored the natural death rate to obtain (2) since we will
use this approximation considering only the early stage of the epidemic and to simplify
the equation. Next, we estimate R0 within the first 65 days of the epidemic using the least
squares method. Here, we used the function least squares from scipy Python package with
argument loss=soft l1. Using the parameter values α = 1/5.1, α = 1/14, µ = 1/(75×365),
we obtain the estimation of R0 equal to 2.6232. Figure 1 show the fit of the early pandemic
(65 days).

3

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 14, 2020. ; https://doi.org/10.1101/2020.12.11.20231829doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.11.20231829
http://creativecommons.org/licenses/by-nc-nd/4.0/


0 10 20 30 40 50 60
Time (days)

0

250

500

750

1000

1250

1500
I(t)
fit

Figure 1: Fit of the early outbreak using (2)
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Figure 2: Histogram of the seropostive and
seronegative ages of tested people

Next, we will use the mean age at infection. An indicator of prevalence of an epidemic is
the host’s mean age at infection, A (if the infected individual does not obtain immunity,
then one would use the mean age at first infection). Calculating the mean time an
individual remains susceptible, i.e., the mean time from birth to infection, the average
period spent in the susceptible class is approximated by the inverse of the force of infection,
1/βI∗. Upon substituting for I∗ form equation (1), we obtain an expression for the mean
age at infection:

A ≈ 1

µ(R0 − 1)
. (4)

The above equation can be rephrased as R0 − 1 = L/A, where L is the host’s life ex-
pectancy. Using the host’s life expectancy of Mexico [2] L = 75.41 (both sexes), and
calculating the mean age at infection L = 45.17 from data set [1], we estimate R0 using
(4) as R0 = 2.66. Another alternative for calculating R0 is to use the package [53] written
in R language. Authors in [3] have reported the value of R0 for the outbreak in the whole
Mexico country as R0 = 2.7 (2.5, 3.2) and 2.3 (2.0, 2.6) for the outbreak the exponential
growth and maximum likelihood method, respectively, using this package.

In contrast to R0, the effective reproductive number, Rt measures the number of
secondary cases generated by an infected person once an epidemic is underway. We present
an approach to estimate the effective reproductive number Rt. This approach uses the
seroprevalence data via the equilibrium point relation for susceptibles S∗ = 1/R0, i.e.,
R0 is estimated as the inverse of the inverse of the proportion of our sample that are
seronegative (susceptible). This sample may not represent the entire population, because
the level of seroprevalence is expected to increase with age. Therefore, one may use the
age-dependent nature of the likelihood of being susceptible. For an individual of age a,
the standard SEIR model predicts that the probability an individual is still susceptible
is given by P (a) ≈ exp(−aµ(R0 − 1)). Thus, knowing the ages of the serological sample,
we can construct the likelihood that the data comes from a disease with a particular R0

value, and then find the R0 that maximizes this likelihood. If we have n individuals who
are susceptible (seronegative) of ages a1, . . . , an, and m individuals who are seropositive
at ages b1, . . . , bm, then the likelihood is:

L(R0) =
n∏
i=1

exp(−aiµ(R0 − 1))
m∏
i=1

[1− exp(−biµ(R0 − 1))]. (5)
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We have used the package t-walk [24] to estimate R0 maximizing the likelihood L of
(5). The serological information [1] could be thoght to be biased since the tests done in
Mexico have not been randomly, they have been programmed once a individual presents
symptoms of coronavirus, but the results indicate that the sample scan has covered a
huge range of age. The average age of seropositive is equal to 45 years and its standard
deviation around 16 years. As an alternative to the approach described above, we applied
the Bayesian Learning paradigm (BLP) [29] for the the time series of serological data set
y. Assume we observe the first set of serological data at day 1, noted y1, and calculate the
posterior density, πP (θ|y1), from the likelihood function (5) along with the specific prior:

π1(θ|y1) ∝ L(R0|y)πp(R0). (6)

Next, we observe a second data at day 2, noted y2, independent of the first set but from
the same data-generating process. To estimate the posterior π2(θ|y2, y1), we consider the
previous posterior as a prior and proceed to calculate using a likelihood density from the
second data, thus, instead of using all the data as it was arrived at once at a specific
day t, we update the posterior L(R0|yt+1, yt) considering the posterior of one day before,
noted π(R0|yt), as a prior of the current day and repeat it until we arrive at the last day
of our estimation:

L(Rt+1|yt+1, yt) ∝ L(yt+1|Rt+1)π(Rt|yt), (7)

in other words: “Today’s posterior is tomorrow’s prior” [58]. Although, using the BLP
is an approximation of the above approach, the BLP represents an enormous advantage
considering a large scanned population during a pandemic, e.g., Mexico currently has
tested more than one million of people. Without following the BLP, the computational
time consumption is around two days (without splitting dates and saving the results).
We point out that t-walk is not parallelized at the moment. The computational time
consumption using the BLP is around 90 mins for the country and less than an hour
for the top five most affected states in Mexico. We start formula (5) from March 21st
in order to have enough sample size, and finishes on August 16th. Figure 2 shows the
histogram of the seropostive and seronegative ages of tested people in Mexico. We can see
in this figure that this histogram is similar to a Normal distribution histogram. Figure 3
shows the Effective reproductive number for the top five most affected regions, it starts on
March, 21st and finishes on August 16th. The transparent bands represent the spread of
the posterior distribution of (5). Figure 4 shows the Effective reproductive number for the
top five most affected regions, it starts on March, 21st and finishes on August 16th using
the Bayesian Learning Paradigm, it starts on March 21st and finishes on August 16th.
The transparent bands represent the spread of the posterior distribution of (5). Figure
5 shows the Effective reproductive number for the whole Mexico country, it starts on
March, 21st and finishes on August 16th. The transparent bands represent the spread of
the posterior distribution of (5). Another alternative to estimate R0 is recently presented
in [59], in this work. it is considered also the imported cases.
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Figure 3: Effective reproductive number for the top five most affected regions, it starts on March, 21st
and finishes on August 16th. Blue solid line is the median estimate and the transparent bands represent
the 95% Highest-Posterior Density (HPD) interval
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Figure 4: Effective reproductive number for the top five most affected regions using the Bayesian Learning
Paradigm, it starts on March, 21st and finishes on August 16th. Blue solid line is the median estimate
and the transparent bands represent the 95% Highest-Posterior Density (HPD) interval

0 25 50 75 100 125 150
Time (days)

1.00

1.25

1.50

1.75

2.00

2.25

2.50
Rt

Mexico Country
Mexico Country by Bayes Learning

Figure 5: Effective reproductive number for the whole country, it starts on March, 21st and finishes
on August 16th. Blue solid line is the median estimate and the transparent bands represent the 95%
Highest-Posterior Density (HPD) interval
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3 Bayesian forecasting

3.1 Model formulation

Effective Vaccination [17], early detection, proper treatment, isolation, quarantine, educa-
tional campaign are some control strategies to wane infectious diseases. With the aim to
study the effect of contact tracing in the propagation of an infectious disease, we formulate
a contact tracing model. Here, it is assumed that the disease transmits horizontally, i.e.,
vertical transmission is neglected. The horizontal transmission can occur either by direct
contact, e.g, touching, licking, biting, or by indirect contact with no physical contact, e.g,
vectors or fomites.

The frameworks ’Susceptible-Infectious-Removed’ (SIR) and ’Susceptible-Exposed-
Infectious-Removed’ (SEIR) have been used in most current studies of COVID-19 trans-
mission dynamics. Inspired in a full data-driven approach, we have tried to use all the
reliable data available for forecasting the spread of the coronavirus disease, keeping in
mind that simple model may fit better than complex ones [56]. Next, we formulate a
mathematical model considering isolation due to contact tracing as suggested in [36] and
the models proposed in [3, 23, 56]. This model analyzes the significance of isolate the
probable infected individuals. The total population N , is divided in the following seven
epidemiological classes SsEIQR: susceptible S, suspects (susceptible quarantined) s: peo-
ple who have had contact with an infectious person or with someone who had contact
with an infectious person), exposeds E, people who have contracted the virus but are not
yet infectious, the undetected infectives A, asymptomatic people, sick people reported in
quarantine I (these individuals are isolated at home or in the hospital), recovered people
R, and the last state variable P denoting the deceases by coronavirus. We assume the
disease transmission rate, λ, is decomposed in two parts, the disease transmission rate
by symptomatic people and by asymptomatic people; λ = βa + βs. We assume that a
fraction q of the contacts whom infected individuals have had recently, are sought and
isolated. We model contact tracing by forcing a fraction q of those who have recently had
contact with an infectious individual to be quarantined where they will spend an average
1/τ days. importantly, we assume that these individuals are quarantined before they
have a chance to generate any subsequent infection. Because of this latter assumption,
contact tracing does not need to be recursive. The parameter α−1 and γ−1 represents
the mean latent period and the recovery period, respectively. The parameter ρ represents
the proportion between the symptomatic class and the asymptomatic class. Finally, the
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parameter σ denotes the death rate by the disease. Our model reads as follows

dS

dt
= −((1− q)βsI + βaA)S

N
+
qβsIS

N
+ τs

ds

dt
=
qβsIS

N
− τs

dE

dt
=

((1− q)βsI + βaA)S

N
− αE

dA

dt
= ραE − γA

dI

dt
= (1− ρ)αE − (γ + σ)I

dR

dt
= γ(E + I)

dD

dt
= σI

(8)

The total population N(t) is determined by N(t) = S(t) + s(t) +E(t) +A(t) + I(t) +
R(t) + D(t). We point out that a more complex model is suggested in [36], considering
stages in the exposed and infectious compartments but considering to decompose the force
of transmission λ. A contact tracing model to explore for future work is in [27] where
propose a very interesting and robust force of transmission λ dependent of time and with a
delay. A sensitivity analysis shows that λ is the highest sensible parameter in this kind of
compartment models, therefore, it is very important to select this parameter adequately.
Another interesting options of contact tracing models are in [15]. A robust review of
contact tracing models is in [41] and quarantine models in [34]. A detailed mathematical
analysis of type of SEIR models are in [13, 33].

Parameter Description Value
βs transmission rate of the disease by simptomatics to be estimated
βa transmission rate of the disease by asimptomatics to be estimated
ρ the fraction of asymptomatics/symptomatics to be estimated

1/γ recovery period (days) to be estimated
σ death rate by the disease to be estimated
q fraction of Suspects to be estimated

1/τ period of quarantined (days) 14
1/α latent period (days) 5.1
E0 initial condition for exposed class E(0) to be estimated
A0 initial condition for asymptomatic class A(0) to be estimated
I0 initial condition for symptomatic class I(0) to be estimated

Table 1: Parameters of the contact tracing model (8).

3.2 Parameter estimation

For the parameter estimation we used the daily updated data [1]. From the mathematical
point of view, the parameter estimation of a system of ordinary differential equations is
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regarded as an inverse problem. Fitting curve or estimation the parameters of a model
is considered an inverse problem from the mathematical point of view. Typically, an op-
timization method, e.g., the Landweber in [5, 18, 54, 55, 60], or faster methods such as
the Levenberg-Marquardt or Conjugate Gradient methods, and regularization techniques,
such as Tikhonov, Sparsity or Total Variation, are used to solve this inverse problem. In
this manuscript, we used Bayesian inference to solve the inverse problem since it is a tool
which combines uncertainty propagation of measured data with available prior information
of model parameters. Also, it is numerically more stable approach than classical methods,
since classical methods rely on the starting parameter point must be relatively close to
the true one, otherwise the solution obtained corresponds to a local minimum. Moreover,
classical methods gives only a point estimate solution instead of a band of the solutions
using Bayesian inference, i.e., in a Bayesian framework, one works with credible intervals.
Some references of using Bayesian inference are in [3, 8, 9, 10, 11, 14, 17, 21, 22, 31, 48, 62].
A Bayesian framework to model the spread of the first coronavirus,i.e., SARS-CoV, was
presented in [50]. Using Bayesian inference, solutions of the inverse is obtained from
the posterior distribution of the parameters of interest, an a solution of interest is ob-
tained using the Maximum a Posterior, called MAP. This MAP gives the parameter
value for which the posterior density is maximal. Also, one can calculate the median
and quantiles from this posterior sample. As already mentioned, the Bayesian frame-
work provides a natural and formal way to quantify the uncertainty of the quantities
of interest. Denoting the state variable x = (S(t), s(t), E(t), I(t), Q(t), R(t), P (t)) ∈
(L2([0, T ])

n
, i.e., n denotes the number of state variables, here n = 7, and the parameters

θ = (β, q, δ, α, γ, σ, s(0), E(0), I(0), Q(0)) ∈ Rm, i.e., m denotes the dimension number of
parameters to estimate, here m = 10, we can write the model (8) as the following Cauchy
problem

ẋ = ϕ(x, θ) (9a)

x(0) = x0. (9b)

Problem (9), defines a mapping Φ(θ) = x from parameters θ to state variables x, where
Φ : Rm

+ → (L2([0, T ])
n
, where R+ denotes the nonnegative real numbers. We assume that

Φ has a Fréchet derivative, i.e., the mapping F ′(θ) : Rm
+ → (L2([0, T ]))

n
, is injective, thus

the forward problem (9) has a unique solution x for a given θ. The Fréchet derivative of Φ,
denoted by Φ′, results to be the usual derivative for the system (8) since the domain and
range of Φ′ are finite dimensional spaces. Usually, not all states of the system can actually
be directed measured, i.e., the data consists of measurements of some state variables at a
discrete set of points t1, ..., tk, e.g. in epidemiology, these data consist of number of cases of
confirmed infected people. This defines a linear observation mapping from state variables
to data Ψ : (L2([0, T ]))

n
:→ Rs×k, where s ≤ n is the number of observed variables and

k is the number of sample points. Let F : Rm → Rs×k be defined by F (θ) = Ψ(Φ(θ)),
called the forward problem. The inverse problem is formulated as a standard optimization
problem

min
θ∈Rm
‖F (θ)− yobs‖2, (10)

such that x = Φ(θ) holds, with yobs is the data which has error measurements of size
η. Problem (9) may be solved using numerical tools to deal with a nonlinear least-
squares problem or the Landweber method or the combination of both. We implement
Bayesian inference to solve the inverse problem (10) in this manuscript. From the Bayesian
perspective, all state variables x and parameters θ are considered as random variables
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and the data yobs is fixed. For random variables x, θ, the joint probability distribution
density of data x and parameters θ, denoted by π(θ, x), is given by π(θ, x) = π(x|θ)π(θ),
where π(x|θ) is the conditional probability distribution, also called the likelihood function,
and π(θ) is the prior distribution which involves the prior information of parameters θ.
Given x = yobs, the conditional probability distribution π(θ|yobs), called the posterior
distribution of θ is given by the Bayes’ theorem:

π(θ|yobs) ∝ π(yobs|θ)π(θ), (11)

If additive noise is assumed:
yobs = F (θ) + η,

where η is the noise due to discretization, model error and measurement error. If the
noise probability distribution πH(η) is known, θ and η are independent, then

π(yobs|θ) = πH(yobs − F (θ)).

All the available information regarding the unknown parameter θ is codified into the a
prior distribution π(θ), it specifies our belief in a parameter before observing the data.
All the available information regarding the way of how was obtained the measured data
is codified into the likelihood distribution π(yobs|θ). This likelihood can be seen as an
objective or cost function, as it punishes deviations of the model from the data. To solve
the associated inverse problem (11), one may use the maximum a posterior (MAP)

θMAP = max
θ
π(θ|x), θCM = E [π(θ|x)] .

We used the data set yobs = (s̃, Q̃, P̃ ), which correspond to the Suspects, diagnosed Sick
cases and the Deceases, respectively. We mention that we have not used the data column
corresponding to the Recovery people here because in a big range (from the beginning) of
days this data was not been collected. A Poisson distribution with respect to the time is
typically used to account for the discrete nature of these counts. However, the variance of
each component of the data set yobs is larger than its mean, which indicates that there is
over-dispersion of the data. Thus, a more appropriate likelihood distribution is to use the
Negative Binomial, since it has an additional parameter that allows the variance to exceed
the mean [8, 17, 52]. In fact the Negative Binomial is a mixture of Poisson and Gamma
distributions, where the rate parameter of the Poisson distribution itself follows a Gamma
distribution [25, 52]. We mention there exists different mathematical expressions for the
Negative Binomial depending on the author or source, they are equivalent. Because of
this multiple representation of the NB in the literature, one must assure to use the NB
distribution accordingly to the source. Here, we have used the following expression for
the Negative Binomial distribution

NB(y|µ, φ) =
Γ(y + φ)

Γ(y)Γ(φ)

(
µ

µ+ φ

)y (
φ

µ+ φ

)φ
, (12)

where µ is the mean of the random variable y ∼ NB(y|µ, φ) and φ is the overdispersion
parameter, i.e.,

E[Y ] = µ, Var(Y ) = µ+
µ2

φ
.
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We recall that Poisson distribution has mean and variance equal to µ, so µ2/φ > 0 is
the additional variance of the negative binomial with respect to the Poisson distribution.
Therefore, the inverse of the parameter φ controls the overdispersion, this is important
when selecting its support for parameter estimation. Also, there exists alternative forms
of the Negative Binomial distribution. In fact, we have used the first option neg bin of
the Negative Binomial distribution of Stan [19]. We acknowledge that some scientists
have had success with the second alternative representation of the NB distribution [31].
We assume independent Negative Binomial distributed noise η, i.e., all dependency in
the data is codified into the contact tracing model. In other words, the positive definite
noise covariance matrix η is assumed to be diagonal. Therefore, using Bayes formula, the
likelihood is

π(θ|s̃, Ĩ , D̃) ∝ π(s̃|θ)π(Ĩ|θ)π(D̃|θ)π(θ).

As mentioned above, we approximate the likelihood probability distribution corresponding
to Suspects, Diagnosed cases, and Deaths with a Negative Binomial distribution

s̃i ∼ NB(si(θ), φ
2
0), Ĩi ∼ NB(Ii(θ), φ

2
1), D̃i ∼ NB(Di(θ), φ

2
2),

where the index i denotes the number time, in our case the number of days and φ0, φ1

and φ2 are the parameters corresponding to the overdispersion parameter of the Nega-
tive Binomial distribution (12), respectively of each data component. For independent
observations, the likelihood distribution π(y|θ), is given by the product of the individual
probability densities of the observations

π(yobs|θ) =
n∏
i=1

π(s̃i|θ)π(Ĩi|θ)π(D̃i|θ),

where the mean µ of the negative binomial distribution NB(Ii(θ), φ
2
1), is given by the

solution I(t) of the model (8) at time t = ti. Analogously, the mean for the negative
binomial distributions NB(si(θ), φ

2
0) and NB(Di(θ), φ

2
2) are the solutions s(t) and D(t) of

(8) at time ti, respectively. For the prior distribution, we select LogNormal distribution
for the β parameter and Uniform distributions for the rest of parameters to estimate:
q, δ, α, γ, σ, s0, E0, I0, Q0. The hyperparameters and their support corresponding to all the
distributions of the parameters to estimate are given on table .

π(θ) =
n∏
i=1

LN (aβ, bβ)U(aq, bq)U(aδ, bδ)U(aα, bα)U(aγ, bγ) (13)

× U(as0 , bs0)U(aE0 , bE0)U(aI0 , bI0)U(aQ0 , bQ0). (14)

The posterior distribution π(θ|yobs) given by (11) does not have an analytical closed form
since the likelihood function, which depends on the solution of the nonlinear SsEAIRD
model, does not have an explicit solution. Then, we explore the posterior distribu-
tion using the Stan Statistics package [19], general purpose Markov Chain Monte Carlo
Metropolis-Hasting (MCMC-MH) algorithm to sample it, the package t-walk [24]. Both
algorithms generate samples form the posterior distribution π(θ|yobs) that can be used to
estimate marginal posterior densities, mean, credible intervals, percentiles, variances, etc.
We refer to [35] for a more complex MCMC MH algorithms. The dataset in [1] contains the
information regarding the number of diagnosed cases, deaths, and suspects. Figures 6-8
show the results of forecasting the disease using the Stan package. Table 2 shows the pa-
rameter estimated using the Stan package with the quantiles 2.5%, 25%, 50%, 75%, 97.5%.
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We perform 20000 iterations, with 10000 of them as a burnin. We have used the interface
in Python (PyStan). We have used the Hamilton Monte Carlo and No-U-Turn Sampler
(NUTS) algorithms, obtaining similar performance. We point out that using Automatic
Differentiation Variational Inference (ADVI) is much faster than the previous algorithms
mentioned, with also very similar results. Figures 9 and the right column of figure 7 show
corresponding results using the t-walk package (the Python version of it). We performed
600000 iterations with 300000 of them as burnin. Using both packages, we have done
predictions until the day 240, meaning October 16th. Some future work will correspond
to analyze the identifiability of the parameters of model (8), as suggested in [22, 49, 57],
specifically the ρ parameter since this parameter is multiplied by the period of incubation
of the disease, α, thus, estimating both parameters simultaneously may lead to noniden-
tifiability difficulty. In this work, we have assumed the value for the period of incubation
of the disease.
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Figure 6: Credible intervals of parameters of model (8) within 95% Highest-Posterior Density (HPD)
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Figure 7: Left column from top to bottom: The fit for the diagnosed cases, for the deceases and for the
suspects using the Stan package [19]. Right column from top to bottom: The fit for the diagnosed cases,
for the deceases and for the suspects using the package t-walk package [24]. The red bars represent the
observed data, the blue solid lines represent the medians and the shaded area represent the %95 proba-
bility bands for the expected value for the state variables: Infecteds, Deaths and Suspects, respectively.
The solid purple line on the left column is the Maximum A Posteriori (MAP) curve.
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Figure 9: Credible intervals for the estimated parameters within %95 of HPD. Top row from left to right,
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mean 2.5% 25% 50% 75% 97.5%

βs 0.222620 0.044925 0.128393 0.211603 0.312559 0.433075
βa 0.329556 0.299295 0.323674 0.332539 0.338223 0.344950
ρ 0.997225 0.996923 0.997114 0.997219 0.997329 0.997565
γ 0.190190 0.167331 0.186027 0.192736 0.196920 0.199693
σ 0.102499 0.089572 0.097630 0.102195 0.107137 0.116798
q 0.056694 0.019540 0.027548 0.040514 0.066996 0.193501
E0 11780.966835 7526.224012 10093.482221 11627.748681 13273.949132 17010.362332
A0 7182.017997 4917.603144 6872.829362 7445.705247 7765.232788 7977.776073
I0 1.220856 0.130659 0.540569 0.970296 1.627982 3.748581
φ0 4.048778 3.175233 3.712320 4.025514 4.363766 5.062059
φ1 2.589235 2.060252 2.384828 2.576913 2.778927 3.192292
φ2 2.389033 1.868520 2.191568 2.373326 2.573794 2.989858

Table 2: Parameters of the contact tracing model (8).

4 Clinical analysis with Machine Learning

In this section, we describe the comorbidity associated with coronavirus in Mexico us-
ing the data set [1]. We have performed Machine Learning techniques on it as follows.
Firstly, we implemented a predicted classifier for the kind of patient will be, a person
already diagnosed with coronavirus and got one or more of the most relevant chronic dis-
eases (hypertension or diabetes). We have used predictors methods in Machine Learning
such as Logistic Regression, Decision Tree, and K-Neighbors classifiers, the naive Bayes
(Bernoulli), even the powerful ones XGBoost and Random Forest through the SciKit-learn
package. Figure 10 shows the covariance matrix of the most relevant chronic diseases with
respect to the two types of patient: outpatient or hospitalized one. We can see in this fig-
ure that the most relevant chronic diseases with respect to the type of patient(outpatient
or hospitalized) who has been diagnosed with coronavirus in Mexico are hypertension and
diabetes. Table 3 shows the contingency table of these two chronic diseases with respect
to to the type of patient. Figure 11 shows the relation in percent between outpatients
and hospitalized patients. Figure 10 shows the confusion matrix result. We can add more
characteristics like Age(range) to obtain more true negative cases since the differences in
proportion of outpatient and hospitalized decreases. Next, instead of considering the type
of patient (outpatient and hospitalized), we consider if the patient survives or deceases
once diagnosed with coronavirus. Figure 10 shows the covariance matrix of the most rele-
vant chronic diseases with respect to the two types of patient: survived or deceased. One
can see in this figure that the most relevant chronic diseases with respect to the survival
of a person who has been diagnosed with coronavirus in Mexico are hypertension and
diabetes. Figure 14 shows the relation in percent between outpatients and hospitalized
patients. Figure 15 shows the confusion matrix result. Adding more characteristics like
age (range), one obtains similar results to figure 15, i.e., one obtains zero true negative
predictions. We remind that false negative and false positive are the two type of errors of
rejecting the hypothesis when it was actually true and accepting the hypothesis when it
was actually false. Under different circumstances, one type of error may be more critical
than the other. For example, diagnosis of cancer would rather accept false positives than
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false negatives. The main difficulty in trying to predict if a person will survive assum-
ing that he has got either hypertension or diabetes is the rather unbalanced proportion
between the two classes: survived and deceased. Unbalanced data is assumed with a
category less than 20 percent. The lethality of coronavirus in the world is typically not
greater than 15 percent.

Hipertension Diabetes Hospitalized Outpatient
0 0 0.1871 0.8128
0 1 0.4757 0.5242
1 0 0.4069 0.5930
1 1 0.5846 0.4153

Table 3: Patient type

Hipertension Diabetes Deceased Survived
0 0 0.0626 0.9374
0 1 0.2068 0.7931
1 0 0.1936 0.8063
1 1 0.3035 0.6964

Table 4: Survival patient
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Figure 10: Covariance matrix of the most relevant chronic disaseses in Mexico with respect to the type
of patient
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Figure 12: Confusion matrix
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Figure 13: Covariance matrix of the most relevant chronic disaseses in Mexico with respect to the type
of patient
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Figure 15: Confusion matrix

As it can be seen in 15, the true positives are very high but the prediction of true
negatives are zero. We propose two options to deal with this difficulty. First, we have
created a naive Bayes Multi-variate Bernoulli algorithm from scratch as suggested in
[51]. This algorithm was originally proposed as an anti-spam email filter. Analogous
to their description to classify spam emails, a person with vector x = 〈x1, . . . , xm〉,i.e.,
with multiple features but each one is assumed to be a binary-valued variable. In case
of comorbidity, x represents the types of diseases. The decision rule for Bernoulli naive
Bayes is based on the probability that a vector x belongs in category c:

p(c|x) =
p(c)p(x|c)
p(x)

. (15)

Since the denominator does not depend on the category, NB classifies each ”message” in
the category that maximizes the numerator in (15), i.e., p(c)p(x|c). In this case of ”spam
filter”, this is equivalent to classifying a message as spam whenever:

p(cs)p(x|cs)
p(cs)p(x|cs) + p(ch)p(x|ch)

> δ, (16)

with δ = 0.5, where ch and cs denote the ham and spam categories. Here is the important
part doing this algorithm from scratch, that we can vary δ to obtain more true negatives
at the expense of true positives, or viceversa. In our case, we increased the true negatives,
the number of true positives are very high using whatever classifier mentioned. Doing
this, we can tune the threshold number of acceptance on the following formula 16. We
selected δ = 0.45 (instead of 0.5) and obtained the following confusion matrix

As it can be seen in figure 16, the percent of true negatives has increased approximately
to 2.6, also the false negative has decreased, although the false negative has increased too.

Secondly, we propose to use the Synthetic Minority Oversampling Technique (SMOTE)
function to balance the minority class (people who passed away due to coronavirus).
SMOTE briefly consists of synthesizing elements for the minority class, based on those
that already exist. It works randomly picking a point from the minority class and comput-
ing the k-nearest neighbors for this point. The sysnthetic points are added between the
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chosen point and its neighbors. Figure 17 shows the result using the SMOTE technique.
Another perspective in this comorbidity analysis may be to filter the people who were
admitted to the hospital.
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Figure 16: Confusion matrix applying Naive Bayes
with threshold δ = 0.45
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Figure 17: Confusion matrix using the SMOTE

5 Discussion and conclusions

In section 2, we present a formula to estimate the basic and effective reproductive numbers,
R0 and Rt, based on serological data using Bayesian inference and the Bayesian Learning
Paradigm. We present the numerical results for the top five most affected regions in
Mexico and for the whole country. We consider that these results may be reliable since
the age range of scanned people for coronavirus, follows a Normal distribution around the
mean age of the disease in Mexico, thus, the samples of our data are not unbiased.

In section 3, we present a forecast of transmission of the disease using Bayesian in-
ference based on two softwares, the Stan package [19] and the t-walk package [24]. We
show trace plots, credible intervals, bands projections with medians and a MAP curve (for
the t-walk case) and the joint crosstab probability distributions given as a corner. From
figure 7, we can see that the government of Mexico took some measures to control the
transmission of the disease. Also, the value of the parameter, ρ, which refers to the pro-
portion of symptomatics and asymptomatics was around .99, meaning that a big percent
of asymptomatic for this disease.

In section 4, we explore some predictors of type of patient may be outpatient versus
hospitalized and survived versus deceased using Machine Learning. Moreover, we present
two methods to deal with unbalanced data as it is the case in coronavirus dataset in the
world, specially for the case survived/deceased. Firstly, we propose to use the Naive Bayes
method. Secondly, we propose to use the SMOTE technique. Both techniques have their
pros and cons as explained in section 4.
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matemático, 21. 3.2

[6] Alonso-Quesada, G., De la Sen, M., and Ibeas, A. (2017). On the discretization and
control of an SEIR epidemic model with a periodic impulsive vaccination. Commun
Nonlinear Sci Numer Simulat, 42:247–274. 1

[7] Anderson, R. and May, R. (1977). Population biology of infectious diseases: Part I.
Nature, 280:361–367. 1
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