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ABSTRACT 
Background 
Most respiratory viruses show pronounced seasonality, but for SARS-CoV-2 this still needs to 
be documented.  
Methods 
We examined the disease progression of COVID-19 in 6,914 patients admitted to hospitals in 
Europe and China. In addition, we evaluated progress of disease symptoms in 37,187 
individuals reporting symptoms into the COVID Symptom Study application.  
Findings 
Meta-analysis of the mortality risk in seven European hospitals estimated odds ratios per one 
day increase in the admission date to be 0.981 (0.973-0.988, p<0.001) and per increase in 
ambient temperature of one degree Celsius to be 0.854 (0.773-0.944, p=0.007). Statistically 
significant decreases of comparable magnitude in median hospital stay, probability of transfer 
to Intensive Care Unit and need for mechanical ventilation were also observed in most, but 
not all hospitals. The analysis of individually reported symptoms of 37,187 individuals in the 
UK also showed the decrease in symptom duration and disease severity with time. 
Interpretation 
Severity of COVID-19 in Europe decreased significantly between March and May and the 
seasonality of COVID-19 is the most likely explanation.  
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Background 
Over a million of COVID-19 related deaths have been reported until October 1st 2020, but a 
significant number of people (over 80% in some populations) infected with SARS-CoV-2 
manage to contain infection in their upper respiratory tract and despite being PCR positive 
for the viral RNA do not develop any visible symptoms (1). So far, very little attention has 
been given to the effects of environmental conditions on the individual course of the diseases.  

The first study of the environmental effects on the COVID-19 infection rate in 30 Chinese 
provinces found significant negative associations with temperature and relative humidity in 
Hubei province with the decrease of cases by 36%-57% for every 1 °C and  11%-22% for every 
1% increase in relative humidity, these associations were inconsistent in other provinces (2). 
Negative effects on COVID-19 transmission with warmer temperatures were also observed in 
Turkey (3), Mexico (4), Brazil (5) and United States (6), while similar association with humidity 
was reported in Australia, but with temperature having no effect on the virus transmission 
(7). The study from Brazil observed flattening of the temperature effect on the virus 
transmission at 25.8°C thus suggesting that warmer weather will not cause the transmission 
decline which is in accordance with the studies from Iran and Spain where they observed no 
changes in transmission rates under different temperatures and humidity (8,9). These studies 
are inconsistent and do not give clear evidence as to whether there is an association between 
the temperature, humidity and virus transmission, the global view seems to give a clearer 
conclusion; all the three studies which conducted analysis at the global level found an 
association between higher humidity, warmer temperatures and lower transmission rate 
(10). However, climate-dependent epidemic modelling suggested that the absence of 
population immunity is a much stronger factor in viral transmission and that summer weather 
will not substantially limit the spread of COVID-19 pandemics (11). This is consistent with high 
numbers of infected individuals in tropical countries and the increase of cases in the south of 
United States in the second half of June 2020. 

Recent studies report increasing numbers of SARS-Cov2 positive asymptomatic individuals 
(1), but it is not clear whether the apparent increase in people with mild or no symptoms is 
due to the change in the extent of testing, or some other characteristic of the SARS-CoV-2 
virus. Aiming to evaluate the association of humidity and ambient temperature with the 
severity of the COVID-19 disease, we analysed individual-patient data for 6,914 patients with 
COVID-19 admitted to hospitals in Bergamo, Italy: Barcelona, Spain; Coburg, Germany; 
Helsinki, Finland; Milan, Italy; Nottingham, United Kingdom; Warsaw, Poland; Zagreb, Croatia 
and Zhejiang province, China since the beginning of the pandemics and compared it to 
environmental temperature and calculated indoor humidity. Furthermore, we analysed 
information about COVID-19 severity from the COVID Symptom Study application that is 
collecting information of 37,187 individuals in the UK. 
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Methods 
 
Studied cohorts 
We collected information about hospital admission, discharge dates, admission to intensive 
care unit (ICU), need for mechanical ventilation and type of discharge (alive or dead) for 5229 
successive patients hospitalized for COVID-19 in six European Hospitals and 13 hospitals in 
Zhejiang province, China since the beginning of the pandemics (Table 1). We included patients 
with confirmed diagnosis of COVID-19 at the time of admission. We confirmed that patients 
had a positive result on polymerase chain reaction testing of a nasopharyngeal sample and/or 
a clinically/radiologically diagnosis of COVID-19. Patients were not followed after discharge, 
but COVID-19 related early readmissions were considered as part of the COVID-19 course. 
The study protocol conformed to the ethical guidelines of the 1975 Declaration of Helsinki. In 
Zhejiang hospitals, ASST Papa Giovanni XXIII° Hospital in Bergamo, Hospital del Mar in 
Barcelona and Helsinki University Hospital local ethics committees approved this 
retrospective study of COVID-19 patient data. For REGIOMED Hospital in Coburg, Ethics 
committee of the Bavarian state physician´s association approved the study. In Nottingham 
University Hospital's trust, ASST GOM Niguarda, Warsaw and Zagreb this information was 
released as public statistical information. 
 
Table 1. Basic information about included patients 

Cohort 
name 

Hospital name Total 
number of 

patients 

Included in 
the study 

Sex (f/m) Age 
(median, 

range) 
Barcelona Hospital del Mar 1999 1786 969 / 817 57 (17 – 101) 
Bergamo ASST Papa Giovanni 

XXIII° Hospital 
2249 995 265 / 730 70 (6 – 95) 

Coburg REGIOMED 89 89 48 / 41 75 (18 – 98) 
Helsinki  100 100 44 / 56 54.5 (16 – 

84) 
Milan Asst GOM Niguarda 713 685 242 / 443 63 (0 – 96) 
Nottingham Nottingham 

University Hospitals 
795 795 356 / 439 75 (0 – 102) 

Warsaw Central Clinical 
Hospital of Ministry 
of the Interior and 
Administration 

122 122 45 / 77 69 (19 – 96) 

Zagreb Clinical Hospital 
Dubrava & 
University Hospital 
for Infectious 
Diseases 

237 237 93 / 144 63 (22 – 99) 

Zhejiang  610 608 297 / 311 49 (18 – 93) 
 
COVID Symptom Study application 
The COVID Symptom Study app(12) developed by Zoe with scientific input from researchers 
and clinicians at King’s College London and Massachusetts General Hospital, 
(https://covid.joinzoe.com/) was launched in the UK on Tuesday the 24th March 2020, and in 
3 months reached  more than 3.9 million subscribers. It enables capture of self-reported 
information related to COVID-19 infections, as reported previously (12). Importantly, 
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participants enrolled in ongoing epidemiologic studies, clinical cohorts, or clinical trials, can 
provide informed consent to link data collected through the app in a HIPPA and GDPR-
compliant manner with extant study data they have previously provided or may provide in 
the future. The Ethics for the app has been approved by King’s College London ethics 
Committee (REMAS ID 18210, review reference LRS-19/20-18210) and all users provided 
consent for non-commercial use. For this work we included participants from the United 
Kingdom who started reporting with a healthy status and subsequently developed symptoms 
leading to suspect COVID-19 following the disease score presented in Menni et al. (12) In 
order to get an estimate of disease duration, the time for disease end corresponded to either 
the last day of report before stopping using the app, or the first healthy day when followed 
by 6 consecutive days of healthy reporting. To avoid censoring, only participants with a 
disease duration of less than 30 days and with a disease onset occurring before the 17th May 
were included in the analysis (37,187 individuals). Severity score was calculated as a weighted 
average of symptoms at disease peak using as weight the normalised ratio in symptom 
frequency at disease peak between people reporting hospital visit after disease onset and 
those that did not.   
 
Data related to seasonal changes 
Ambient temperature data was obtained from the Climate Data Online (National Centers for 
Environmental Information (NCEI) database): https://www.ncdc.noaa.gov/cdo-web/ 
 
Statistical Methods 
The data collated from 7 cohorts are summarised in Table 1. Patients without information 
about outcome were excluded from the analysis. Logistic regression was used to estimate the 
effect of admission date and local ambiental temperature on mortality change. The following 
patient characteristics, and hospitalization episode co-variates were explored: 
Died/discharged outcome was used as dependent variable and admission as independent 
variable along with age (in years) and gender (female/male). We them used the same 
approach for estimating the effect of ambient temperature on need for admission to ICU, and 
for mechanical ventilation therapy. A linear model was then used to estimate the effect of 
ambient temperature on the hospital stay length (in days) as dependent variable, and 
admission date as independent variable along with age and gender. Prior the analysis data 
transformation was undertaken with hospital length of stay increased by 1 (due to zeros) and 
log10 transformed (Zero days in hospital stay correspond to hospitalization with a length lower 
than 24 hours). Linear regression using median duration as dependent variable and 2-week 
period as independent variable was fitted to assess change over time. 

For each dependent variable, raw data were presented with bar plots (death, ICU and 
mechanical ventilation) or box-and-whiskers plots (hospital length of stay) for patients in two-
week groups. Fill of bars and boxes reflects the number of patients admitted to hospital in 
particular two-week group. With groups of less than 5 patients individual data points were 
plotted. 

Coefficients estimated in logistic regressions and linear regression were combined using an 
inverse variance-weighted meta analyses methods where given the heterogenity of cohorts 
random effects models were used (R package “metaphor”).  

Results of the meta-analysis were presented as forest plots, created using R package 
“ggplot2”. All statistical analyses were performed in R programming software (version 3.6.3), 
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with exception of logistic and linear regressions on Milano cohort data which are performed 
in Stata Statistical Software (version 12) and the COVID Symptom Study cohort for which 
linear regression were performed using python statsmodels package (version 0.11.1). 
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Results 
Aiming to evaluate seasonal nature of COVID-19, we evaluated disease course in 6,914 
individuals from nine cohorts admitted to hospitals in Europe and China (Table 1). To avoid 
sampling bias, all hospitalizations that resulted in either death, or medical discharge were 
included in the analysis. Actual numbers of patients who died and patients who recovered 
(grouped in two-week intervals) since the beginning of the epidemics, until the final follow up 
date for reliable data capture reporting final outcome was available are presented in Figure 
1A for each of the hospitals. Meta-analysis of the effect of admission date on the mortality is 
presented in Figure 1B. The most significant change was observed in Barcelona, where 
mortality odds decreased by 4.1% per day (p<0.001). Weighted average decrease in mortality 
odds across all studied hospitals was 1.9% per day (p<0.001). Our model included age as a co-
variate, so this change is unlikely to be accounted for by change in age of patients. To further 
confirm that age was not underlying the observed changes we analysed age of patients 
admitted to hospitals in different periods and demonstrated that change in the age of 
patients was not a factor that could explain the observed decrease in mortality 
(Supplementary Figure 1). 
 
 
 
 
 
 
 
 
 
 
 
 
 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 14, 2020. ; https://doi.org/10.1101/2020.07.11.20147157doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.11.20147157
http://creativecommons.org/licenses/by/4.0/


 9 

 
Figure 1. Mortality in people admitted in hospitals with COVID-19. A – hospitalization 
outcome (death/discharge) depending on the admission date (grouped in two-week intervals) 
since the beginning of the pandemics; B - Meta-analysis of the effects of admission date on 
the mortality (presented as odds ratios per one day increase in admission date). In Helsinki 
there were only 2 deaths and in Zhejiang hospitals 4 deaths, so they were not included in the 
meta-analysis. OR – odds ratio, CI – confidence interval.  
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Since there is no standard measure or classification of COVID-19 severity used across all 
hospitals, to further evaluate disease severity, we analysed secondary outcomes. We 
compared the duration of hospitalization, need for intensive care unit (ICU) and separately 
mechanical ventilation. Strong and statistically significant decrease in the duration of 
hospitalization was observed in Barcelona, Coburg, Milano, Nottingham and Zagreb. In 
Helsinki, Warsaw and Zhejiang the change was in the same direction but was not statistically 
significant. The only outlier was Bergamo, where the change was in the opposite direction, 
but the change was not statistically significant (Supplementary Figure 2). In meta-analysis the 
decrease in lengths of hospitalization was statistically significant (10^b=0.995; CI=0.991,-
0.998); p=0.007). The odds to need of intensive care decreased in all hospitals in Europe and 
was individually statistically significant in all hospitals beside Bergamo, Helsinki and Zagreb 
(Supplementary Figure 3). Meta-analysis of European hospitals estimated that the odds to 
need the intensive care decreased by 2.2% per day of change in the admission date 
(OR=0.978; CI=0.962-0.993; p=0.008) and the odds to need mechanical ventilation decreased 
2.1% (OR=0.979; CI=0.964-0.994; p=0.008) per day of change in the admission date 
(Supplementary Figure 4).  

While all hospitals in Europe were basically displaying the same trend of decreasing COVID-
19 severity with time, in Zhejiang hospitals there was either no change, or the changes 
trended non-significantly in opposite direction to European centres. The most notable 
difference between COVID-19 pandemics in Europe and in China was that while in China the 
epidemic was entirely during winter, in Europe it covered both winter and spring periods. To 
evaluate whether weather was an important factor, we correlated the observed changes with 
local ambient temperature. Minimal and maximal local temperatures for all hospitals a 
presented in Supplementary Figure 5. To evaluate whether the change in temperature may 
have been responsible for the observed changes in disease severity, we modelled mortality 
with ambient temperature instead of admission date. The results presented in Figure 2 
suggest strong effect of ambient temperature on the mortality risk (OR=0.854 per one-degree 
Celsius; CI=0.773-0.944; p=0.007). 

To further verify the change of COVID-19 with time we analysed individual symptom data for 
37,187 participants of the Covid Symptom study app. Although there is also a sampling bias 
in that study, it is a different from bias in hospitalization, so it was reassuring to observe a 
gradual decrease in duration of symptoms and COVID-19 severity in April and May (Figure 3). 
An assessment of the slope of duration as function of time (2 ISO week) showed a significant 
decrease in duration (B=-0.7 p=0.006). Regarding severity, while not overall significant (-
0.0014 p=0.836), the trend towards a decrease was stronger when considering the latest 
period (point 1 to the end slope=-0.0112 p=0.116)   
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Figure 2. Meta-analysis of the effects of temperature on mortality (presented as odds ratios 
per one-degree Celsius increase in average daily temperature during hospitalization). In 
Helsinki there were only 2 deaths and in Zhejiang hospitals 4 deaths, so they were not 
included in the meta-analysis. OR – odds ratio, CI – confidence interval. 
 
 
 

 
 
Figure 3. Data from 37,187 individuals suspected COVID positives (I+) recording symptoms in 
the COVID Symptom Study application in the United Kingdom suggest that both severity 
(measured as weighted sum of symptoms accounting for difference at disease peak 
between those reporting hospital visit and those who don’t) and duration of disease 
symptoms slightly decrease in the United Kingdom. (Median values and interquartile ranges 
are shown). Imputed status defined as per the application of the predictive model described 
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by Menni et al. (12) was chosen over definite PCR diagnostic in order to avoid confounding 
factor of test access policy changes.   
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Discussion 

By analysing hospital records of 6,914 patients admitted to eight European hospitals we 
observed strong and statistically significant decrease in COVID-19 mortality and severity with 
time. Possible change in the average age of patients in different stages of the pandemic is the 
first obvious explanation for the decreased severity, since age is the strongest predictor of 
COVID-19 severity (with up to 100-fold difference in mortality risk (13)). However, age was 
included in our model as a co-variate and furthermore the average age of patients did not 
change with time (Supplementary Figure 2), so we excluded this hypothesis. An alternative 
explanation could be that there was change in policies for admission and/or release of COVID-
19 patients during the evaluated period – possibly due to ‘overwhelming’ of medical facilities. 
This might have been particularly relevant in the situation of limited hospital capacity, when 
hospitalization may have been preceded with a triage process to identify patients who might 
benefit from hospitalization, admission to ICU or mechanical ventilation. However, the only 
hospital in our cohort that reached full capacity was Bergamo, while all others operated well 
below the maximal capacity for either hospitalization, or ICU, which suggests that changes in 
hospital admission policy were not a major driver behind the observed change in COVID-19 
mortality and severity. This conclusion is further supported by concurrent decrease in 
duration and severity of symptoms of non-hospitalized individuals reporting symptoms in the 
COVID-Symptom Study Application (Figure 3). Change in COVID-19 management, also, could 
have resulted in decreased severity. However, all these changes were hospital-specific and in 
the analysed period the most effective improvement in therapy was the introduction of 
dexamethasone, which was reported to reduce mortality from 24.6% to 21.6% (14). As we 
are learning more about COVID-19, patients are receiving better and better treatment, but 
the progress so far was not too large, which is particularly evident from the increased 
mortality in the second wave in Australia (case fatality rate, CFR  was 0.5% in the first wave 
(15) and 3.1% in the second wave (16)). Therefore, it is hard to imagine that minor 
modifications in patient management could have significantly contributed to the observed 
decrease in disease mortality and severity in Europe. 

After excluding these three causes for a Europe-wide decrease in disease severity and 
mortality in the period from March to June, the change in season surfaced as the most 
probable explanation since in all studied locations ambient temperature increased 
considerably in that period (Supplementary Figure 5). Exchanging hospital admission date 
with local temperature (Figure 2) showed that temperature strongly correlated with decrease 
in COVID-19 mortality. Since reverse causation is not possible, it is reasonable to conclude 
that COVID-19 as a disease has a strong seasonal nature. Despite the fact that most human 
coronaviruses are highly seasonal (17), the seasonal nature of COVID-19 is frequently 
challenged with the fact that numerous cases have been reported in tropical countries and 
that virus evidently can also be efficiently transmitted in hot and humid climates. However, 
in all these countries the disease mortality and severity are very low (e.g. Singapore reported 
26 deaths and over 44,000 confirmed infections), which actually suggests that there may be 
seasonal or climate related differences in severity of COVID-19. It is possible that the same is 
the case for other respiratory viruses that show strong seasonality, but asymptomatic people 
are generally not tested for the presence of viral RNA in the nose, thus viral transmission, 
outside of their season, was not observed. The notable exception which confirms this 
hypothesis was the 2009 swine flu pandemics in England when numerous PCR tests were also 
performed in the summer. These tests revealed infection in over 250,000 people in the 
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summer wave, but with much lower mortality than in the wither wave (18). The large increase 
in the number of people with positive SARS-CoV-2 PCR tests in Europe in late summer and 
early autumn 2020 is not accompanied with the corresponding increase in deaths. The 
increase of number of cases and change in the age distribution of patients (19) have been 
suggested as possible explanation for the missing deaths. However, in Australia that has 
reverse seasons the situation was opposite, and the mortality was much higher in the second 
(winter) wave of pandemics. Despite increased testing and global increase in the knowledge 
how to treat patients CFR in the second (winter) wave was six times higher than in the first 
(summer) wave (“winter” CFR was 3.1% (16) compared to “summer” CFR that was only 0.5% 
(15)). 

It is very difficult to prove causality in an observational study, in particular when many 
correlated factors are changed in the same time, but the observed decrease in COVID-19 
severity with the end of winter fits very well with the known effects of outside temperature 
on indoor humidity and consequential restoration of mucosal barrier function, which is often 
impaired by dry air during the heating season (20). Most respiratory viruses peak in winter 
and fluctuation of temperature and humidity have been proposed as the most potent drivers 
of seasonality, especially in the context of the epidemics in the winter season (17). However, 
the peak of infection and the severity of the disease are not always full aligned. For example 
although infection rates of rhinoviruses peak in spring and fall, the disease severity increases 
in winter (21). Seasonal appearance of respiratory viruses is often attributed to seasonal 
indoor crowding and effects of temperature and humidity on stability of viral particles (22), 
with effect of low air humidity on the mucosal barrier often neglected.  

While often considered to be a physical barrier, mucus is actually an active biological barrier 
that crosslinks viruses and bacteria to mucins, a group of highly glycosylated proteins that are 
secreted to our mucosal barriers where they self-assemble into long polymers(23). Mucin 
glycans mimic cell surface glycosylation and by acting as a decoy for viral lectins trap viral 
particles, which are then transported out of airways by mucociliary clearance(24). 
Furthermore, since all envelope viruses are highly glycosylated, a number of lectins like trefoil 
factors (TFF) are secreted to mucous where they crosslink viruses by binding to glycans on 
both viruses and mucins (25). However, this barrier is functional only if it is well hydrated to 
both maintain its structural integrity and enable constant flow of mucus that remove viruses 
and other pathogens from our airways (24). If exposed to dry air, these barriers dry out and 
cannot perform their protective functions (26).  

Animal experiments demonstrated the importance of humidity for both transfection of 
respiratory viruses and disease severity (27–29), while population-level studies in the United 
States indicated the importance of humidity for influenza transmission (30). One of these 
studies demonstrated that increasing relative humidity from 20% to 50% can significantly 
decrease mortality from influenza infections (29). In another study humidification of air in 
obstructive sleep apnea patients reduced nasal symptoms by 60% (31), which all suggest that 
protective effects of humidity on mucosal barrier may be a dominant molecular mechanism 
behind seasonality of respiratory viruses. 

A large part of human inter-individual differences are glycan-based and glycan diversity 
represent one of the main defences of all higher organisms against pathogens (32). Glycans 
(which are covalently attached to most proteins) are chemical structures that are being 
inherited as complex traits, which enables diversity and significant inter-individual differences 
(33). SARS-CoV-2 spike glycoprotein is heavily glycosylated (34) and it was reported to bind to 
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glycosaminoglycans (35) and sialylated glycans (36). ABO blood antigens are also glycans and 
are probably the best known example of glycan diversity; interestingly, people with blood 
type A and, thus, having one N-acetylgalactosamine more than type O are more susceptible 
to COVID-19. (37). All this suggest that, like most other viruses, SARS-CoV-2 is also dependent 
on glycans for transmission, which further support the importance of mucins and functional 
mucosal barrier in COVID-19. 

Mucociliary dysfunction and respiratory barrier impairment promotes both initial infection 
and expansion of viruses within the airways of an infected individual(29). Dry air inhalation 
significantly decreases nasal mucociliary transition time (NMTT) in heathy individuals(38), 
affecting the duration of viral exposure on nasal mucosa. Nasal epithelial cells are the main 
portal for the initial infection and transmission of SARS-CoV-2(39). Patients who developed 
clinically relevant infection after experimental transnasal viral challenge (Rhinovirus or Infl. B) 
had reduced epithelial barrier function (increased transepithelial resistance, reduced number 
of ciliated cells and increased NMTT compared to those who were not infected or had a mild 
form (40). However, experimental viral infection in vitro resulted only in decreased number of 
ciliated cells, without affecting tight junction proteins expression (41). This controversy 
between in vivo and in vitro experiments suggests the importance of immune response in the 
control of epithelial barrier function (42). Recent studies on the interaction between climate 
changes and respiratory barrier dysfunction, indicated not only higher incidence of viral 
infection but also higher vulnerability of nasal mucosa through increased incidence of 
nosebleed in the emergency departments in the conditions of low temperature and low 
humidity (43). Recently published study that exposed volunteers to respiratory syncytial virus 
(RSV), one of the pathogens responsible for the common cold, demonstrated  that pre-
existing inflammation in the respiratory mucosa was a risk factor for infection (44), which 
further supports the importance of mucociliary dysfunction and respiratory barrier 
impairment for infection with respiratory viruses. 

Limitations 
Potential sampling bias is the main limitation of this study. By focusing on individual 
progression of the disease in already hospitalized patients we excluded effects of the 
unknown number of true infections on national mortality rates, and we still cannot exclude 
the possibility that some other unidentified external factors (including confinement and social 
distancing, improvement and compliance of prevention and environmental hygiene protocols 
and even decreased air-pollution could have progressively affected the severity of patients 
arriving to the hospital) were affecting composition of hospitalized patient cohorts and 
contributing to the decreased COVID-19 severity and mortality.  Therefore, it is important 
that tracking of individual symptoms in 37,187 UK patients are showing the same trend, since 
these are individuals voluntary reporting symptoms and potential sampling bias there is 
independent from bias in hospitalization. The choice to include imputed positives was mostly 
motivated by the restriction in testing access that were observed over the first wave before 
being relaxed in May and June. Accounting only for PCR tested positive reporting to the app 
would have unduly biased the results towards higher severity in the early days. We adopted 
instead the model developed by Menni et al. (12) that achieved a reasonable performance in 
prediction of positive cases (ROC-AUC 76%). 

Conclusions 
Our data suggest that, in addition to affecting viral transmission, environmental factors also 
play an important role in already infected patients. Severity of COVID-19 decreased with the 
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onset of spring, which paints a grim picture for the incoming winter and suggest that both 
disease severity and mortality may increase significantly. Since many hospitals have very dry 
air in winter, providing humidified air to patients in early stages of the disease may be 
beneficial. Considering the evident detrimental effect of dry air on our mucosal barrier and 
its role as the first line of defence against infection (45), in situation of rapidly progressing 
COVID-19 pandemics it would be essential to actively promote universal humidification of dry 
air in all public and private heated spaces as well as active nasal hygiene and hydration (46). 
Humidity should also be monitored in cooled buildings with limited access to outside air, since 
air-conditioning is also an effective dehumidification and can result in very dry air.  
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Supplementary Figure 1. Changes in age of admitted patients with time. A – age boxplots 
depending on the admission date (grouped in two-week intervals) since the beginning of the 
pandemics. Lower and upper limits of box present first and third quartile, respectively, and 
line within the box is median. Whisker lines extend to the minimum and maximum value 
within ‘inner fence’ defined as 1.5 times interquartile range bellow 1st and above 3rd 
quartile, respectively. Outliers are presented with dots. If two-week interval had 5 or less 
values data were presented with dots instead of boxplots; B - Meta-analysis of the effects of 
admission date on the mortality (presented as odds ratios per one day increase in admission 
date). In Helsinki there were only 2 deaths and in Zhejiang hospitals 4 deaths, so they were 
not included in the meta-analysis. OR – odds ratio, CI – confidence interval. 
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Supplementary Figure 2. Hospital stay of subjects admitted in hospitals with COVID-19. A -
number of days stayed in hospital depending on the admission date (grouped in two-week 
intervals) since the beginning of the pandemics. Lower and upper limits of box present first 
and third quartile, respectively, and line within the box is median. Whisker lines extend to the 
minimum and maximum value within ‘inner fence’ defined as 1.5 times interquartile range 
bellow 1st and above 3rd quartile, respectively. Outliers are presented with dots. If two-week 
interval had 5 or less values data were presented with dots instead of boxplots; B - Meta-
analysis of the effects of admission date on the hospital stay (presented as times change in 
duration per each one day increase in admission date). Zhejiang hospital in which all patients 
were admitted during winter was excluded from the meta-analysis. b – regression coefficient 
(back transformed), CI – confidence interval.  
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Supplementary Figure 3. Admission to the Intensive care unit (ICU risk) in people admitted in 
hospitals with COVID-19. A – proportion of people who were ever admitted to ICU depending 
on the admission date (grouped in two-week intervals) since the beginning of the pandemics; 
B - Meta-analysis of the effects of admission date on the ICU admission (presented as odds 
ratios per one day increase in admission date). Effect of the admission date was not calculated 
for Warsaw because all subjects were all in ICU. Time period of Zhejiang did not include both 
cold and warm weather and because of that results were not included in meta-analysis. OR – 
odds ratio, CI – confidence interval. 
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Supplementary Figure 4. Mechanical ventilation (ventilation risk) in people admitted in 
hospitals with COVID-19. A – Proportion of people who needed mechanical ventilation 
depending on the admission date (grouped in two-week intervals) since the beginning of the 
pandemics; B - Meta-analysis of the effects of admission date on need for mechanical 
ventilation (presented as odds ratios per one day increase in admission date). Time period of 
Zhejiang did not include both cold and warm weather and because of that results were not 
included in meta-analysis. OR – odds ratio, CI – confidence interval.  
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Supplementary Figure 5. Daily ambient temperatures in the study period. Solid black line – 
average daily temperature, red line – daily maximum, blue line – daily minimum. Dashed 
black line – locally estimated scatterplot smoothing of daily average temperature. Data 
were obtained from the Climate Data Online (National Centers for Environmental 
Information (NCEI) database): https://www.ncdc.noaa.gov/cdo-web/ 
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