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One sentence summary 
In some human infections, SARS-CoV-2 viral load rises slowly (over days) and remains near the limit of 
detection of rapid, low-sensitivity tests. 
 
Abstract  
Transmission of SARS-CoV-2 in community settings often occurs before symptom onset, therefore testing 
strategies that can reliably detect people in the early phase of infection are urgently needed. Early detection 
of SARS-CoV-2 infection is especially critical to protect vulnerable populations who require frequent 
interactions with caretakers. Rapid COVID-19 tests have been proposed as an attractive strategy for 
surveillance, however a limitation of most rapid tests is their low sensitivity. Low-sensitivity tests are 
comparable to high sensitivity tests in detecting early infections when two assumptions are met: (1) viral 
load rises quickly (within hours) after infection and (2) viral load reaches and sustains high levels (>105–
106 RNA copies/mL). However, there are no human data testing these assumptions. In this study, we 
document a case of presymptomatic household transmission from a healthy young adult to a sibling and a 
parent. Participants prospectively provided twice-daily saliva samples. Samples were analyzed by RT-
qPCR and RT-ddPCR and we measured the complete viral load profiles throughout the course of infection 
of the sibling and parent. This study provides evidence that in at least some human cases of SARS-CoV-2, 
viral load rises slowly (over days, not hours) and not to such high levels to be detectable reliably by any 
low-sensitivity test. Additional viral load profiles from different samples types across a broad demographic 
must be obtained to describe the early phase of infection and determine which testing strategies will be 
most effective for identifying SARS-CoV-2 infection before transmission can occur.   
 
Introduction 
As of early December 2020, nearly one year after the first COVID-19 outbreak in Wuhan, China, there 
have been more than 65 million cases and 1.5 million deaths globally.1 Transmission of SARS-CoV-2 in 
community settings often occurs before symptom onset,2,3 putting at great risk people who require frequent 
interactions with caregivers, such as residents of nursing homes. Better strategies for using the available 
COVID-19 diagnostic tests are critically needed to decrease overall transmission, thereby reducing 
transmission to these vulnerable populations.4  
 
Transmission from asymptomatic or presymptomatic individuals is considered the Achilles’ Heel of 
COVID-19 infection control.3 In a recent epidemiologic investigation of 183 confirmed COVID-19 cases 
in Wanzhou, China, about 76% of transmissions occurred from individuals without symptoms (either 
asymptomatic or presymptomatic).5 Numerous transmission events originating from individuals without 
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symptoms have been documented in a variety of locations, such as dinner parties,6 skilled nursing 
facilities,2,7 correctional facilities,8 sporting events,9,10 religious ceremonies,6 and spring break trips.11 

The importance of effective testing strategies to quell transmission from individuals without symptoms is 
underscored by an outbreak at an overnight camp in Wisconsin12 where a 9th grade student developed 
symptoms the day after arrival, prompting quarantine of 11 close contacts. All 11 contacts were 
asymptomatic and released from quarantine after receiving negative rapid antigen test results. However, 6 
of the 11 went on to develop symptoms, and an outbreak ensued, with more than 100 additional individuals 
(a total of 3/4 of camp attendees) infected. In contrast, a more successful containment of an outbreak was 
documented in a skilled nursing facility in Los Angeles, where serial surveillance PCR testing was initiated 
immediately after three residents became symptomatic and tested positive.13 PCR results prompted isolation 
of 14 infected individuals without symptoms, which limited the outbreak to a total of only 19 out of 99 
residents over the course of two weeks. These cases demonstrate the value of testing strategies that can 
detect and isolate infected individuals in the early phase in the infection, reducing the potential for 
transmission to others during the elicitation window (the period when a person is infectious but not 
isolating).14  
 
More than 200 in vitro diagnostics have received Emergency Use Authorization (EUA) from the U.S. Food 
and Drug Administration for identification of acute SARS-CoV-2 infection.15 These tests have a wide range 
of sensitivities. The most sensitive tests, with limits of detection (LOD) of 102-103 RNA copies/mL, include 
the RT-qPCR assays. These tests typically involve more intensive sample-preparation methods to extract 
and purify RNA and most are run in centralized laboratories (with a few exceptions of point-of-care tests 
that integrate rigorous sample preparation and RNA detection15,16). At the other extreme are the low-
sensitivity tests (LODs of ~105–107 RNA copies/mL), such as antigen tests or molecular tests that do not 
perform rigorous sample preparation. These tests offer tangible advantages, such as being fast (rapid antigen 
tests yield results in minutes), less expensive to manufacture, and can be deployable outside of laboratories.  
 
Rapid, low-sensitivity tests are clearly a valuable part of the overall infection control strategy; however, the 
use of such tests as a strategy for diagnosing infected persons at the early phase of infection is controversial. 
The U.S. Food & Drug Administration (FDA) has authorized such tests for use in symptomatic populations.  
Data in several reports suggest that such tests may miss presymptomatic and asymptomatic individuals 
early in the infection.12,17 However, logical arguments have also been made,18,19 in favor of widely deploying 
surveillance tests with “analytic sensitivities vastly inferior to those of benchmark tests.”18   
 
Low-sensitivity tests will be equally effective to high-sensitivity tests at minimizing transmission if the 
following two assumptions about the early phase of SARS-CoV-2 infection hold true: (i) viral load 
increases rapidly, by orders of magnitude within hours, and (ii) viral load reaches and sustains high levels 
during the infectious window, such that a rapid low-sensitivity test would have a similar ability to detect 
early-phase infections compared with high-sensitivity tests. These two assumptions have not been tested in 
humans. Viral load at the early phases of SARS-CoV-2 infection remains a knowledge gap necessary to 
inform the use of testing resources to effectively minimize transmission. To fill this knowledge gap, and 
inform selection of diagnostic tests appropriate for identifying infections in the earliest phases, requires 
studies that monitor SARS-CoV-2 viral load with high temporal resolution (beginning at the incidence of 
infection) and in a large, diverse cohort of individuals.   
 
We are conducting a case-ascertained observational study in which community members recently 
diagnosed with COVID-19 and their SARS-CoV-2-presumed-negative household contacts prospectively 
provide twice-daily saliva samples. We are quantifying absolute SARS-CoV-2 RNA viral load from these 
saliva samples using RT-qPCR and RT digital droplet PCR (RT-ddPCR) assays. This article documents 
preliminary results from the study, with the complete SARS-Cov-2 viral load profiles from two cases of 
observed household transmission. 
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Methods 
 
Participant Population 
This study was reviewed and approved by the Institutional Review Board of the California Institute of 
Technology, protocol #20-1026. All participants provided written informed consent prior to participation. 
Individuals ages 6 and older were eligible for participation if they lived within the jurisdiction of a 
partnering public health department and were recently (within 7 days) diagnosed with COVID-19 by a 
CLIA laboratory test or were currently living in a shared residence with at least one person who was recently 
(within 7 days) diagnosed with COVID-19 by a CLIA laboratory test. The exclusion criteria for the study 
included physical or cognitive impairments that would affect the ability to provide informed consent, or to 
safely self-collect and return samples. In addition, participants must not have been hospitalized, and they 
must be fluent in either Spanish or English. Individuals without laboratory confirmed COVID-19 but with 
symptoms of respiratory illness in the 14 days preceding screening for enrollment were not eligible. Study 
data were collected and managed using REDCap (Research Electronic Data Capture) hosted at the 
California Institute of Technology. 

 
Symptom Monitoring  
Participants in the study completed a questionnaire upon enrollment to provide information on 
demographics, health factors, COVID-19 diagnosis history, COVID-19-like symptoms since February 
2020, household infection-control practices and perceptions of COVID-19 risk. Additionally, participants 
recorded any COVID-19-like symptoms (as defined by the U.S. Centers for Disease Control20) that they 
were experiencing on a symptom-tracking card at least once per day. Participants also filled out an 
additional questionnaire at the conclusion of the study to document behaviors and interactions with 
household members during their enrollment.  

 
Collection of Respiratory Specimens 
Participants self-collected saliva samples using the Spectrum SDNA-1000 Saliva Collection Kit (Spectrum 
Solutions LLC, Draper, UT, USA) at home twice per day (after waking up and before going to bed), 
following the manufacturer's guidelines. Participants were instructed not to eat, drink, smoke, brush their 
teeth, use mouthwash, or chew gum for at least 30 min prior to donating. These tubes were labelled and 
packaged by the participants and transported at room temperature by a medical courier to the California 
Institute of Technology daily for analysis.   

 
Nucleic Acid Extraction  
An aliquot of 400 µL from each saliva sample in Spectrum buffer was manually extracted using the 
MagMAX Viral/Pathogen Nucleic Acid Isolation Extraction Kit (Cat. A42352, Thermo Fisher Scientific) 
and eluted in 100 µL. Positive extraction controls and negative extraction controls were included in every 
extraction batch: Positive extraction controls were prepared by combining 200 µL commercial pooled 
human saliva (Cat. 991-05-P, Lee Bioscience) with 200 µL SARS-CoV-2 heat inactivated particles (Cat. 
NR-52286, BEI Resources) at a concentration equivalent to 7500 genomic equivalent units/mL, mixed with 
the buffer from the Spectrum SDNA-1000 Saliva Collection Device. Negative extraction controls were 
prepared by combining 200 µL commercial pooled human saliva and 200 µL Spectrum buffer. Spectrum 
buffer contained components that inactivate the virus and stabilize the RNA, facilitating the study.   

 
Quantification of Viral Load by RT-qPCR  
An aliquot of 5 µL of eluent was input into duplicate 20 µL RT-qPCR reactions (Cat. A15299, TaqPath 1-
Step RT-qPCR Master Mix, CG) with multiplex primers and probes from Integrated DNA Technologies 
(Coralville, IA, USA) targeting SARS-CoV-2 N1 (Cat. 10006821, 10006822, 10006823) and N2 (Cat. 
10006824, 10006825, 10007050), and human RNase P (Cat. 10006827, 10006828, 10007061). Positive 
and negative reaction controls were included on every plate: Templates for positive control reactions 
contained 4 copies per µL of SARS-CoV-2 genomic RNA from nCoV 2019-nCoV/USA-WA1/2020 (Cat. 
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NR-52281, BEI) in 5 µL of nuclease-free water (Cat. AM9932, ThermoFisher Scientific), and negative 
reaction controls contained only nuclease-free water. Reactions were run on a CFX96 Real-time PCR 
System (Bio-Rad Laboratories) according to the amplification protocol defined in the CDC 2019-Novel 
Coronavirus (2019-nCoV) Real-Time RT-PCR Diagnostic Panel, with Ct determination by auto-
thresholding each target channel. Ct values were converted to viral load relative to the resulting value of 
known input of SARS-CoV-2 heat-inactivated particles in the positive extraction control. The conversion 
was done across all qPCR samples, using the average Ct values of the positive control for the two SARS-
CoV-2 gene targets (N1 and N2; each 32.50 and N=11) after auto-thresholding on cycles 10-45. 

 
Quantification of Viral Load by RT-ddPCR  
An aliquot of 5.5 µL from a dilution of the eluent (samples were diluted to be within the range required for 
ddPCR) was input into 22 µL reactions of the Bio-Rad SARS-CoV-2 ddPCR Kit (Cat. 12013743, BioRad 
Laboratories) for multiplex quantification of SARS-CoV-2 N1 and N2 targets, and human RNase P targets. 
Droplets were generated on a QX200 droplet generator (#1864002, Bio-Rad Laboratories) and measured 
using a QX200 Droplet Digital PCR System (#1864001, Bio-Rad Laboratories), with analysis using 
QuantaSoft Analysis Software.  

 
Conversion of Ct Values to Viral Load 
RT-qPCR Ct values from our assay were converted to viral load (copies/mL) using the following equation: 
 

𝑉𝑖𝑟𝑎𝑙 𝐿𝑜𝑎𝑑 ൌ  7500 ∗ ሺ2ଷଶ.ହ଴ି஼௧ሻ 
 
Both the CLIA Laboratory and the laboratory analysis in Kissler et al.21 utilized similar assays to ours, and 
therefore we assumed this same equation could be used to estimate viral load from Ct values from those 
sources. 

 
Sequencing  
Extracted RNA from samples taken from the early, peak, and late infection stages of each of the three 
individuals infected with SARS-CoV-2 was sequenced by the Chan Zuckerberg Biohub (San Francisco, 
CA, USA). All sequences, throughout infection, and across household contacts, were found to be identical.   
 
Results and Discussion  
 
We report a case of SARS-CoV-2 transmission in a household of four individuals, who we refer to as 
Parent-1, Parent-2, Sibling-1, and Sibling-2 (Table S1). Sibling-1 (who reported recent close contact with 
someone infected with SARS-CoV-2) and Sibling-2 returned home together from out-of-state and were 
CLIA-lab RT-qPCR tested for COVID-19 the next day. The following day, Sibling-2’s specimen resulted 
negative, and Sibling-1’s specimen resulted positive, prompting Sibling-1 to isolate and all household 
members to quarantine. Within hours of receiving Sibling-1’s positive-test result, they were enrolled in the 
study. Parent-2 remained SARS-CoV-2-negative in all samples. Parent-1 and Sibling-2 were SARS-CoV-
2-negative upon enrollment and became continuously positive starting ~36 hours after enrollment. Viral 
sequencing determined that the SARS-CoV-2 in samples from Sibling-1, Parent-1 and Sibling-2 shared 
identical sequences to each other, highly supportive of household transmission.  
 
All nucleic acid measurements from saliva samples included human RNase P target measurements (Figure 
S2) as an indicator of sample quality to confirm that viral load dynamics were not an artifact of sample 
collection. RNase P Ct values were consistent across samples from each participant: during the early phase 
of infection (from enrollment to just beyond peak viral load, up to day 8 of enrollment), the 15 samples 
from Parent-1 had an average RNase P Ct value of 27.28 (±1.12 SD), and the 15 samples from Sibling-2 
had an average Ct value of 24.51 (±1.31 SD). Also, a pattern of lower RNase P Ct values (more human 
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material) in morning samples than evening samples is occasionally discernable, although this pattern does 
not appear to dominate viral load signal.  
 
RT-qPCR and RT-ddPCR measurements of viral load from saliva samples provided by the three infected 
individuals (Figure 1) offer three insights.  (i) Presymptomatic viral loads in some humans can rise over the 
course of days not hours, which is slower than expected.18,22  This slow rise increases the utility of sensitive 
tests (such as PCR) to enable earlier detection and isolation of infected individuals before their viral load 
increases to a presumably more infectious level. Sibling-2’s viral load rose slowly—within PCR detection 
range—for 3 days until viral load reached the limit of detection (LOD) for rapid tests. This slow rise also 
makes it more dangerous to assume that most persons with low viral load will not become infectious19 and 
therefore do not need to self-isolate: Sibling-2 produced 6 positive samples in the 103-105 copies/mL range 
presymptomatically before peaking at ~107 copies/mL. (ii) Peak viral load does not always rise above the 
LOD of rapid, low-sensitivity tests, as expected.18,22  Of 88 positive SARS-CoV-2 samples, only one sample 
was well above the LOD range of rapid tests. Furthermore, in Sibling-1, the logical source of the two 
infections, neither the CLIA-lab test nor our testing detected viral loads above 107 copies/mL during the 
presumed period of household transmission.  (iii) The LOD of a test can affect how early in infection we 
can diagnose an infected person, and how consistently we can detect early-phase infections. Of the 52 
positive samples from the first 10 days of the study, 33 were near or above the LOD of the more sensitive 
rapid test (ID NOW, as determined by the FDA) whereas only 3 were near or above the least sensitive LOD 
of 9.3*106 copies/mL (Table S2). Importantly, there were several days during the presymptomatic period 
that Parent-1 and Sibling-2 were detected by RT-qPCR, but may not have been reliably detected by many 
low-sensitivity tests.   
 
The insights from this study are also supported by analysis of data by Kissler et al.,21 reporting longitudinal 
(but less frequent) testing of anterior nares and oropharyngeal swabs from individuals associated with the 
National Basketball Association (Figure S1). In Kissler et al.21, viral loads rose slowly (for up to 5 days in 
some individuals) between the first PCR positive test to the LOD of rapid tests. Few of these samples ever 
reached viral loads well above the LODs of most rapid antigen tests (Table S2).  Low-sensitivity tests have 
a role in the COVID-19 testing strategies, but our limited data from this study and data from Kissler et al.21 
demonstrate clearly that for at least some individuals, low-sensitivity tests will likely be unable to reliably 
diagnose SARS-CoV-2 infection during the early phase of infection.  Our limited data are consistent with 
the use of low-sensitivity tests for point-of-care confirmation of suspected COVID-19 in symptomatic 
individuals, as authorized by the FDA, but not for universal surveillance testing of asymptomatic 
individuals, as has been proposed.18,19,22  
 
Additional studies are urgently needed to address several limitations of this work.  High-frequency viral 
load measurements from the incidence of infection must be observed in a larger, diverse pool of participants 
to infer the distribution of viral load profiles in human SARS-CoV-2 infection. Both saliva and nasal swabs 
have been proposed as sample types for rapid, low-sensitivity tests; however, the LOD of these tests is 
better defined in nasal swabs. Our study only analyzed saliva; although saliva has been demonstrated to be 
a more sensitive sample type than nasopharyngeal swab by some studies,23 other studies have arrived at the 
opposite conclusion.24,25  The details of saliva collection, sample stabilization, preanalytical handling, 
sample-preparation protocols, and timing of sampling may play a role in the apparent sensitivity measured 
in different sample types. No previous study has directly compared saliva with other sample types during 
the early phase of SARS-CoV-2 infection. Quantitative comparisons of multiple respiratory sample types 
(including nasal, oropharyngeal, and nasopharyngeal swabs) at the same time points are needed to clarify 
viral load profiles in different respiratory specimen types. Lastly, to understand the relationship between 
viral load and infectiousness, direct comparisons of RNA viral load to culturable virus titer across the entire 
course of infection are needed. Data to address these limitations are needed to inform optimal testing 
strategies to reduce SARS-CoV-2 transmission.   
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Understanding the kinetics of viral load from the incidence of infection and throughout the infectious period 
for a broad demographic will have implications on SARS-CoV-2 testing policies, including policies around 
travel. For example, several states require recent negative test results for out-of-state visitors prior to arrival. 
Although some states acknowledge the risk of false negative results by low-sensitivity tests and require 
PCR confirmation,19,26 others do not specify the type of negative test result required for arrival.27  If rapid 
low-sensitivity tests are used, they would risk missing presymptomatic individuals before they rise to their 
highest (and presumably most infectious) viral load.  Such false negative tests have the potential to create 
a costly false sense of security; individuals who may have been recently exposed and receive a negative 
result from a low-sensitivity test may be more likely—compared to individuals who did not get a test—to 
come into contact with other members of the community, including the most vulnerable populations.    
 
All tests have value when used properly and within the right strategy, and we anticipate that these 
preliminary results will stimulate studies that will provide a better understanding of SARS-CoV-2 viral load 
in the early stages of infection and lead to the development of effective testing strategies. 
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FIGURE 1. Quantified SARS-CoV-2 saliva viral load after transmission between household contacts relative 
to detection limits of rapid tests. SARS-CoV-2 viral load over time for “Sibling-1” (the household index case), as 
well as “Parent-1” and “Sibling-2.” All three viral sequences were identical. Star indicates the viral load estimated 
from the cycle threshold (Ct) result from the commercial CLIA laboratory test used to diagnose Sibling-1. Diamonds 
indicate conversion from N1 target cycle threshold values obtained by RT-qPCR to SARS-CoV-2 viral load. Bullseyes 
indicate viral load obtained by single-molecule RT droplet digital PCR (RT-ddPCR). Black lines represent periods 
when participants reported no symptoms; orange lines indicate periods when participants reported at least one 
symptom. Vertical bars indicate the before noon (white) and after noon (grey) periods of each day. Pink shading 
indicates the presumed period of the household transmission events. Horizontal blue lines depict the limit of detection 
(LOD) of the Abbott ID NOW (3 x 105 copies/mL) for upper respiratory specimens from U.S. FDA SARS-CoV-2 
Reference Panel Comparative testing data. Horizontal grey bars depict the range of LODs estimated for commercial 
antigen tests for upper respiratory specimens (1.90 x 105 copies/mL to 9.33 x 106 copies/mL; see Table S2).  
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