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Abstract

We introduce a lightweight Mask R-CNN model that segments areas with the Ground Glass Opacity and Consolidation
in chest CT scans. The model uses truncated ResNet18 and ResNet34 nets with a single layer of Feature Pyramid Network
as a backbone net, thus substantially reducing the number of the parameters and the training time compared to similar
solutions using deeper networks. Without any data balancing and manipulations, and using only a small fraction of
the training data, COVID-CT-Mask-Net classification model with 6.12M total and 600K trainable parameters derived
from Mask R-CNN, achieves 91.35% COVID-19 sensitivity, 91.63% Common Pneumonia sensitivity, 96.98% true negative
rate and 93.95% overall accuracy on COVIDx-CT dataset (21191 images). We also present a thorough analysis of the
regional features critical to the correct classification of the image. The full source code, models and pretrained weights
are available on https://github.com/AlexTS1980/COVID-CT-Mask-Net.

1 Introduction

Most Deep Learning algorithms predicting COVID-19 from chest CT scans use one of the three approaches to classifica-
tion: general-purpose feature extractor such as ResNet or DenseNet, or a specialized one, like COVIDNet-CT mapping
the input to the predicted class, [GWW20, BGCB20, LQX+20, YWR+20, SZL+], a combination of feature extraction and
a semantic segmentation/image mask, [JWX+20, WGM+20, ZZHX20] and a combination of regional instance extraction
and global (image) classification, [TS20a, TS20b].

Each approach has certain drawbacks regardless of the achieved accuracy of the model. These drawbacks include a small
size of the dataset [BGCB20], limited scope (only two classes: COVID-19 and Common Pneumonia (CP), COVID-19 and
Control, COVID-19 and non-COVID-19), [SZL+, ZZHX20], large training data requirement [GWW20], large model size
[LQX+20, TS20a]. In [TS20a] the drawback of using a large amount of data was addressed by training a Mask R-CNN
[HZRS16] model to segment areas with lesions in chest CT scans. Then, the model was augmented with a classification
head that predicts the class of the image. This allowed for using a much smaller dataset for training than, e.g. [GWW20]
at the cost of the size of the model, which has 34.14M total and 2.45M trainable parameters.

In this paper we overcome this drawback by attempting several variants of two different backbone models, ResNet18
and ReNet34 [HZRS16] with a single Feature Pyramid Network (FPN) layer connected to the last backbone layer.
The sizes of models vary from 4.02M to 24.63M parameters (segmentation model) and 4.25M to 24.86M (classifi-
cation model), with only 0.6M trainable parameters in the classification model in [TS20a]. Segmentation models
with a truncated ResNet34+FPN backbone (last block of layers deleted) with 11.74M parameters achieved a mean
average precision (mAP) of 0.4476, which is at par with the top 25 results of MS COCO segmentation leaderboard,
https://cocodataset.org/#detection-leaderboard. The classification model using this backbone, with 11.74M total
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(a) ResNet18/34+FPN architecture. The original models have the same architecture as in [HZRS16]. Both models have the same
number of blocks, but blocks are of different size, with ResNet34 having twice as many layers in each block as ResNet18. Green: full
backbone ResNet model, red: first truncated model, yellow: second truncated model. Feature Pyramid Net [LMB+14] (FPN) consists
of one input and one output layer and is always connected to the last layer in the backbone net.

(b) COVID-CT-Mask-Net with the ResNet backbone net. ResNet+FPN is presented in Figure 1a. RPN and RoI are connected to the
FPN feature output only (one feature layer). Mask modules are deleted from the model.

Figure 1: Architecture of the backbone nets (Figure 1a) and the lightweight COVID-CT-Mask-Net (Figure 1b). Best
viewed in color.

parameters, of which only 0.6M are trainable, achieved a 91.76% COVID-19 sensitivity and 92.89% overall accuracy.
An even smaller model, truncated ResNet18+FPN (6.12M parameters in the segmentation model and 6.35M in the
classification model, of which also 0.6M are trainable) achieved mAP of 0.3932, COVID-19 sensitivty of 91.35% and
overall accuracy of 93.95%.

2 Data and Models

We use the same datasets and train/validation/test splits as in [TS20a, TS20b] for a fair comparison. The raw chest CT
scan data is taken from CNCB-COVID repository, [ZLS+20], http://ncov-ai.big.ac.cn/download. For the segmen-
tation problem, the train/validation split is 500/150. All results reported in Table 2 were obtained on the validation
split. The train/validation/test splits for the classification model are taken from COVIDx-CT [GWW20]: 3000 images
were sampled randomly from the train split (over 60000 images) and used to train all COVID-CT-Mask-Net classifiers.
Validation and test splits were used in full (21036 and 21192 images resp.).
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Model
#Total #Trainable

Training Validation Test
Ratio

parameters parameters Test/Train
Mask R-CNN (ResNet50+FPN) 31.78M 650 - 100 0.16
Mask R-CNN (ResNet18+FPN) 14.52M

650 - 100 0.16

Mask R-CNN (ResNet18T1+FPN) 6.12M
Mask R-CNN (ResNet18T2+FPN) 4.02M
Mask R-CNN (ResNet34+FPN) 24.63M
Mask R-CNN (ResNet34T1+FPN) 11.45M
Mask R-CNN (ResNet34T2+FPN) 4.68M
COVID-CT-Mask-Net (ResNet50+FPN) 34.14M 2.36M 3K 20.6K 21.1K 7.06
COVID-CT-Mask-Net (ResNet18+FPN) 14.75M

0.6M 3K 20.6K 21.1K 7.06

COVID-CT-Mask-Net (ResNet18T1+FPN) 6.35M
COVID-CT-Mask-Net (ResNet18T2+FPN) 4.25M
COVID-CT-Mask-Net (ResNet34+FPN) 24.86M
COVID-CT-Mask-Net (ResNet34T1+FPN) 11.74M
COVID-CT-Mask-Net (ResNet34T2+FPN) 4.92M
COVIDNet-CT (best) [GWW20] 1.8M 1.8M 60K 20.6K 21.1K 0.353
COVNet [LQX+20] 25.61M 25.61M 3K 370 438 0.129
ResNet18 [BGCB20] 11.69M 11.69M 528 90 0.170

Table 1: Comparison of the models’ sizes and data splits used for training, validation and testing. T1 and T2 refer to the
truncated models (1 and 2), see Figure 1a. FPN is used in all our models because it helps with the reduction in the total
number of parameters and improves the final result. The number of trainable parameters in the classifiers with ResNet18
and ResNet34 backbones varies insignificantly.

Apart from the subtraction of the global mean and division by the global standard deviation, no other data ma-
nipulations were applied to either dataset.

The main contribution of this paper is the training of the lightweight segmentation and classification models with
ResNet18+FPN and ResNet34+FPN backbones to produce results that beat or approach those of the full-sized
ResNet50+FPN models with 4 FPN layers for both tasks. In all backbone nets the last (problem-specific) fully connected
and average pooling layers were removed. For the full list of model sizes and comparison to the benchmarks, see Table 1.
We consider three versions of each model:

1. Full model. This is the baseline for each experiment, in Figure 1a it is the model that contains all blocks (green),
and FPN module is connected to the last fourth block. FPN input is downsized from 512 to 256 maps.

2. ResNet 18/34T1: the first truncated model. The last ResNet block is removed, FPN is connected to Block 3, and
FPN has the same number of maps (256) as the last block in ResNet.

3. ResNet 18/34T2: the second truncated model. The last two blocks in ResNet are removed, and FPN is connected to
ResNet Block 2. FPN upsizes the input from 128 to 256 maps.

For the training and evaluation of the segmentation model we used only one positive class, ‘Lesion’, obtained by merging
the masks for the Ground Glass Opacity (GGO) and Consolidation (C) areas, see [TS20b]. For the training and evaluation
of the classification model, we use the labeling convention from COVIDx-CT and CNCB: 0 for the Control class, 1 for
Common Pneumonia and 2 for COVID-19.
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(a) CT Scan Slice #88.

(b) CT Scan Slice #107.

(c) CT Scan Slice #48.

(d) CT Scan Slice #46.

Figure 2: Segmentation results of ResNet34T1 model across a number of CT scan slices (different levels of the lungs).
Images in each Figure 2a-2d pertain to the same scan slice. Figures 2a and 2b are COVID-19 positive, Figures 2c and 2d
are Control/Negative. Column 1: Input images superimposed with the final mask prediction, bounding box, class and
confidence scores for each instance. Column 2: Regional (mask) score maps. Outputs from each RoI are independent of
each other, meaning that they were obtained from different RoIs independently and combined in the same score map. To
avoid the image clutter, only the highest-ranking predictions are displayed. Column 3: Ground truth lesion and lungs
masks. Column 4: true labels in dark green (0: Control, 2: COVID-19) and class scores predicted by COVID-CT-Mask-Net
in red. Best viewed in color.
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Model AP@0.5IoU AP@0.75IoU AP@[0.5 : 0.95] Training
ResNet18+FPN 0.3699 0.2898 0.3137 128.75
ResNet18T1+FPN 0.4995 0.3778 0.3932 108.8
ResNet18T2+FPN 0.4993 0.3852 0.3759 126.9
ResNet34+FPN 0.5357 0.3333 0.3465 119.23
ResNet34T1+FPN 0.5988 0.4506 0.4476 134.01
ResNet34T2+FPN 0.4491 0.3118 0.3404 129.2
ResNet50+FPN[TS20b](merged masks) 0.6192 0.4522 0.4468 137.38
ResNet50+FPN[TS20b](separate masks) 0.5020 0.4198 0.3871 145.54

Table 2: Average precision of segmentation models and training time (in minutes). Best lightweight results in bold.

Model COVID-19 Pneumonia Normal Overall Training
ResNet18+FPN 87.51% 77.31% 74.57% 78.18% 151.2
ResNet18T1+FPN 91.35% 91.63% 96.98% 93.95% 106.6
ResNet18T2+FPN 84.05% 85.81% 93.01% 88.66% 113.66
ResNet34+FPN 86.98% 94.27% 71.12% 82.45% 163.81
ResNet34T1+FPN 91.76% 91.70% 94.36% 92.89% 144.73
ResNet34T2+FPN 89.25% 93.32% 92.11% 91.99% 112.6
COVID-CT-Mask-Net

92.68% 96.69% 97.74% 96.63% 430
[TS20b](merged masks)
COVID-CT-Mask-Net

93.88% 95.06% 96.91% 95.64% 460
[TS20b](separate masks)

Table 3: Class sensitivity and overall accuracy results on COVIDx-CT test data (21192 images) and the training time (in
minutes). Best lightweight results in bold.

3 Experimental results

For the explanation of the accuracy metrics and comparison, see [LMB+14], as we adapt MS COCO’s average precision
(AP) at two Intersect over Union (IoU) threshold values and mean AP across 10 IoU thresholds between 0.5 and 0.95 with
at 0.05 step. To test the models we used RoI and RPN NMS threshold of 0.75 and confidence score threshold of 0.75. The
hyperparameters of the classification model are the same as in the best model in [TS20b], with the NMS threshold of 0.75
and RoI scoreθ = −0.01, except that we reduce the RoI batch size from 256 to 128 and the total model size from 34.14M
and the number of trainable parameters from 2.45M (ResNet50+FPN) to 6.12M and 0.6M respectively (ResNet18T1+FPN)
with only about 2% drop in the COVID-19 sensitivity and 1.5% drop in overall accuracy. For the comparison to larger
models, see [TS20b].

Results for training full and truncated lightweight models are presented in Table 2. The best segmentation model we
trained, ResNet34 with a deleted last block (ResNet34T1+FPN) with 11.45M parameters achieves mAP of 44.76% and
marginally outperforms the best model in [TS20b], ResNet50+FPN with merged masks, which is almost 3 times larger.
The classification model derived from it also achieves the highest COVID-19 sensitivity among the lightweight models,
91.76%. The second-best segmentation model, ResNet18T1+FPN, achieves 0.4269 overall accuracy, with only 6.12M
parameters. The classification model derived from it achieves the highest overall accuracy of 93.95% and the second-best
COVID-19 sensitivity among the lightweight models of 91.35%. High segmentation performance does not immediately
translate into the equally strong advantage in classification, but overall the models that did best for the segmentation
task also achieved the highest accuracy in COVID-19 sensitivity, overall accuracy and true negative rate.

We experimented with a number of additional hacks for each model:
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(a) COVID-19

(b) Common Pneumonia

(c) Control (Negative)

Figure 3: Distribution of the confidence score and scatterplot of the area vs the confidence score in a CT slice with
COVID-19 (Figure 3a), Common pneumonia (Figure 3b) and Control (Figure 3c). Columns 1 and 2: top 16 predictions in
each image, Columns 3 and 4: all 128 predictions in each image. Best viewed in color.

Figure 4: Boxplots of the number of RoIs for each class with scores>RoI scoreθ . Sample size:1425.
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1. Replacement of softmax with sigmoid activation function for the outputs of RoIs (segmentation model, test stage).
Faster R-CNN implementation [RHGS15] uses softmax for scoring C outputs of each RoI (C:total number of
classes, including background). The score of each non-background prediction is compared to the score threshold
(RoI scoreθ = 0.75) to decide whether to keep this prediction or discard, so obviously it is very unlikely to get more
than a single prediction out of each RoI. At the same time, even low-ranking predictions are tested for Non-max
suppression (0.75 in all models). Replacing softmax with sigmoid makes predictions independent of each other
in each RoI, and hence have a higher chance of being accepted as a prediction. This approach did not yield a
consistent improvement across all models, so we left it out of the final result.

2. Removal of empty boxes/replication of the predictions (classification model). Deletion of empty boxes (bounding
boxes with the area of 0) improved the models’ predictive power, but reduced the output size of the pre-defined RoI
batch size (128), which is converted to a feature vector in the classification module S, and hence must remain fixed
(see [TS20a] for details of batch to feature method). To resolve the problem, we applied a hack at this stage: the
missing predictions (difference between the pre-defined RoI batch size and the current output) are sampled from
the valid predictions maintaining their ranking order. What this means is that each sampled prediction is inserted
in the batch between the box selected for replication and the next prediction. For example, if the predictions are
[3, 1, 2] and the first and the last ones are sampled for replication, the batch becomes [3, 3, 1, 2, 2]. This maintains
the order of ranking of the predictions in the sample, which is what the classifier learns to predict the class of the
input image.

3. Removal of small areas in the data (segmentation model). Most areas with GGO and C are small, see [ZZX+20,
ZYW+20, TS20a] for the detailed discussion of the distribution of lesions in chest CT scans. Training the seg-
mentation model to predict small lesion areas leads both to lower precision at test stage, and lower COVID-19
sensitivity of the classification model. We decided to merge all GGO and C patches of less than 100 pixels with the
background. As a result, the model’s accuracy improved, as the predictions were not biased towards very small
areas.

3.1 Identification of areas critical for COVID-19 prediction.

Apart from the CT scan segmentation and classification, deep learning models can help explain factors associated with
COVID-19, e.g. in the form of attention maps [YMK+20, YWR+20] or using specialized tools like GSInquire [GWW20]
that identify critical factors in CT scans. The advantage of using instance segmentation models like Mask R-CNN is the
detection, scoring and segmentation of isolated areas (instances) that contribute to the condition (class of the image).
This is a more accurate and explicit approach than either feature maps in vanilla convnets, that merely indicate the
strength of presence of nameless features, or full-image pixel-level score maps in FCNs, that do not distinguish between
different instances of the objects belonging to the same class. Mask R-CNN independently evolves separate instances of
regional predictions that can overlap, both at bounding box and mask level.

This is illustrated in Figure 2 for the output of ResNet34T1 model. Figures 2a and 2b are COVID-19 positive, Fig-
ures 2c and 2d are COVID-19 negative (Control, no lesions at slice level), which is reflected in column 3 (column 3: no
lesion mask). The first column is the input image overlaid with bounding box predictions for the lesion areas with a box
confidence score and mask predictions for the object in the bounding box. Mask predictions are usually normalized using
sigmoid function, with a threshold of 0.5 that serves as a filter for the foreground (i.e. all pixels with scores exceeding the
threshold are considered foreground/instance), but for the (combined) mask score map in column 2 in Figure 2, we used
raw (before sigmoid normalization) scores from Mask R-CNN. Each prediction is done by Mask R-CNN independently, i.e.
the full path of extracting the RoI from the FPN layer using RoIAlign ([HGDG17]), predicting bounding box coordinates,
filtering it through the de-convolution layer to obtain a fixed-size (28 × 28) mask score map with pixel logits that is then
resized to the size of the bounding box prediction is done independently for each object. Looking at the combined mask
score maps, it becomes clear how COVID-CT-Mask-Net learns to use the score information. Each score map for the
negative images contains only one prediction with a very low confidence score (< 0.01), for which COVID-CT-Mask-Net
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Class 0.2 0.5 0.9
COVID-19 42.71 ± 61.06 17.87 ± 27.39 2.40 ± 5.55
CP 0.65 ± 3.15 0.15 ± 1.25 0.03 ± 0.30
Normal 0.11 ± 1.25 0.016 ± 0.32 0 ± 0.00

Table 4: Mean number of RoIs exceeding the RoI scoreθ for each class + 0.95% CI

outputs large logit values for Class 0 (Figure 2, column 4). Score maps for COVID-19 images contain a number of large
high-scoring predictions. The total number of predictions in each image is the same due to the RoI scoreθ = −0.01, we
plotted only a small number of the highest-scoring RoIs to avoid image cluttering.

3.2 Distribution of observations in the RoI output batch.

The analysis of the mask score maps in column 2, Figure 2 illustrates the effectiveness of the RoI batch to feature vector
method, which is the main idea behind the transformation of Mask R-CNN into the classification model. Both the
location (bounding box coordinates) and the importance (confidence score) of the areas critical to the COVID-19 diagnosis
are output by RoI and accepted by the classification module S in the decreasing order/rank of their importance/confidence
scores. Since the RoI batch size is fixed regardless of the RoIs’ confidence scores, S can learn this ranking, and, eventually,
associate a number of RoIs located in the critical areas (see [ZZX+20, ZYW+20] for the analysis of COVID-19 vs Common
Pneumonia chest CT scans) with the particular image class.

To demonstrate this, we plot the histograms of the confidence scores and the scatterplots of the confidence scores
vs RoI area (bounding box size) in three difference CT scan slices, one for each class in Figure 3. Top 16 regions (columns
1-2) in Figure 3a are dominated by several mid-size (≈1000 pixels) high-scoring (≥ 0.95) critical areas, and the full
batch (128 regions) in Columns 3-4 follows what seems to be a Exponential distribution. Therefore, despite the fact
that the majority of regions have a very low score (regardless of the size), there is a sufficient number of high-scoring
regions in the batch for the model to learn the true class. Common Pneumonia distribution is presented in Figure 3b:
there’s a small number of mid to large (2000-4000 pixels) low to mid scoring regions with the scores between 0.1 and 0.3,
but the majority of RoIs have a score close to 0. The distribution of Control(Negative), Figure 3b is also distinct: the
highest-scoring box (0.001) is very large (≈8000 pixels), and the rest of the batch have scores practically indistinguishable
from 0 regardless of the size.

For a rigorous validation of the method, we also analyze the statistical distribution of the RoIs in the test sample
(n = 1425) extracted from the test split, in which all 3 classes are equally represented (475 slices per class). We consider 3
RoI scoreθ :0.2, 0.5, 0.9. Each image is fed through COVID-CT-Mask-Net, and at the batch construction stage we extract the
number of RoIs with confidence score exceeding these thresholds. Boxplots in Figure 4 and Table 4 present the mean and
95% confidence intervals (CI) for each class/threshold and Table 5 presents the results of one-sided Kolmogorov-Smirnov
test comparing each pair of distribution at significance level α = 1%. This tests the hypothesis if the first distribution is
less than the second and rejects it for p-values less than α. The only result that is not statistically significant is CP vs
Normal, which explains a larger number of confusions and requires further investigation.

The value of this result is that, contrary to [LFBL20, ZYW+20], who showed that the differences in many COVID-
19 and CP correlates are not statistically significant, the differences in the ranks of RoIs are mostly statistically significant
across all 3 classes. Results in Figures 3 and 4 and Tables 4 and 5 were obtained with ResNet34T1+FPN.

4 Conclusions

We presented several variants of lightweight segmentation and classification models based on Mask R-CNN with
ResNet18+FPN and ResNet34+FPN backbone networks. With as few as 11.74M total and 600K trainable parame-
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Class 0.2 0.5 0.9
COVID-19/CP 0.96/1e-10 0.92/1e-10 0.63/1e-10
COVID-19/Normal 0.98/1e-10 0.94/1e-10 N/A
CP/Normal 0.18/2e-08 0.067/0.091 N/A

Table 5: One-sided Kolmogorov-Smirnov Test Results for the scores exceeding the preset RoI scoreθ . Score/p-value. The
result not statistically significant at α = 1% in bold.

ters, COVID-CT-Mask-Net classification model with ResNet34T1+FPN backbone achieves a 91.76% COVID sensitiv-
ity and 92.89% overall accuracy across three classes (COVID-19, Common Pneumonia, Control). The model with
ResNet18T1+FPN backbone with 6.35M parameters achieves the COVID-19 sensitivity of 91.35% and overall accuracy of
93.95%. The smallest model with ResNet18T2+FPN backbone with just 4.25M parameters achieves a 84.05% COVID-19
sensitivity and 88.66% overall accuracy. We also presented an in-depth analysis of the mask score maps across all three
image classes and the distribution of the features of the predicted critical areas (confidence score, size). We demonstrated
the ability of Mask R-CNN to explicitly detect and segment areas critical for the accurate prediction of COVID-19 and
other classes.
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