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Abstract—Goal: COVID-19 pandemic has emerged as the most
severe public health crisis in over a century. As of December
2020, there are more than 60 million cases and 1.4 million
deaths. For informed decision making, reliable statistical data
and capable simulation tools are needed. Our goal is to develop
an epidemic simulator which can model the effects of random
population testing and contact tracing. Methods: Our simulator
models each individuals as particles with position, velocity and
epidemic status states on a 2D map and runs a SEIR epidemic
model with contact tracing and testing modules. The simulator
is available in GitHub under MIT license. Results: The results
show that the synergistic use of contact tracing and massive
testing is effective in suppressing the epidemic (the number of
deaths was reduced by 72%). Conclusions: Particle-based COVID-
19 simulator enables the modeling of intervention measures,
random testing and contact tracing, for epidemic mitigation and
suppression.

Index Terms—Epidemic simulator, COVID-19, particle-based
simulation, SEIR model, epidemic control, contact tracing, ran-
dom testing.

Impact Statement- Our particle-based epidemic simulator
calibrated with COVID-19 data models each individual
as a unique particle with location, velocity and epidemic
state, enabling consideration of contact tracing and testing
measures.

I. INTRODUCTION

THE COVID-19 has emerged as the most threatening
health care crisis in over a century, spreading rapidly

throughout the world. The first cases were identified in Wuhan,
China (December 2019), and within months the World Health
Organization declared the disease as a pandemic (11 March
2020) [1]. The propagation of the virus has increased rapidly
in spite of unprecedented government interventions intended
to suppress and mitigate the spread; as of 29 November 2020,
more than 61.6 million cases with 1.44 million deaths have
been reported [2]. However, the actual number of cases is
likely significantly higher due to limited testing and the high
percentage of asymptomatic cases [3].

Propagation was accelerated by the multiple convergent
factors, led first by the fact that it is a novel coronavirus to
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which there is no existing resistance amongst the population,
nor an effective vaccine. Different vaccines against COVID-19
have been developing at a historic rate, but their effectiveness
and safety are still open question [4]. Until such time as a
vaccine emerges, and can be distributed at scale, the only
recourse to retard the spread of the disease is what are known as
non-pharmaceutical interventions (NPIs) such as quarantines,
travel restrictions [5], online education [6], and large-scale
virus testing with comprehensive contact tracing of infected
individuals [7], [8].

The lockdown policies slow down the propagation of the
disease but they also inflict substantial social and economic
damage [9], [10], and when done indiscriminately the negative
effects are non-trivial; interdiction measures should be enacted
in ways that mitigate disease spread while minimizing negative
effects. One way to achieve a more nuanced approach, with
less collateral damage, is the use of computer models and
simulations.

One of the earliest epidemic models, Susceptible-Infected-
Recovered (SIR) [11], divides the population into three com-
partments. In the first compartment, susceptible (S), individuals
are vulnerable but not infected. In the second compartment,
infected (I), individuals are infected and capable to transmit the
disease to the susceptible individuals. The last compartment,
recovered (R), contains individuals who have overcome the dis-
ease. The recovered individuals are assumed to have acquired
some level of immunity to the disease, thus they have a lower
probability of reinfection compared to susceptible individuals.

The compartmental models were widely used in modeling
the spread of the COVID-19 [12]–[14]. Despite their popu-
larity, the compartmental models have several limitations due
to the simplifying assumptions that do not represent actual
viral propagation. For instance, compartmental models do not
consider each individual separately. Therefore, the mobility
and current epidemic state of each individual, the moments
of getting infected and recovered are omitted. As a result,
the contact tracing and testing policies at the individual level
cannot be implemented.

A number of works on epidemic simulation at the individual
level can be found in the literature. For instance, a particle-
modeling approach based on the Monte Carlo algorithm was
developed to simulate the spread of the COVID-19 [15]. The
results show that periodic lockdown and strict social distancing
might help to keep the infection rate under control. A stochastic
agent-based model was employed for simulating the COVID-
19 in France [16]. An SEIR agent-based model was imple-
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Fig. 1. Visualization of the particles on the map including their
epidemic states.

mented to analyze different social distancing interventions in
[17]. An agent-based simulation was implemented by Bicher
et al. [18] to estimate the effectiveness of contact tracing
policies.

In this work, we have developed a particle-based simulator
which models each individual as a unique particle with a
location, velocity and epidemic state (see Fig. 1). To the best
of our knowledge, it is the first particle-based SEIR model,
with contact tracing and testing modules, that was calibrated
with actual COVID-19 data. The particles randomly move on a
square 2D map, and become infected if they enter proximity of
an infectious particle closer than a predefined physical distance.
The contact tracing module is based on the use of a mobile app
and it stores the list of contacts for each particle such that if
the particle is determined to be infected then all particles in the
list are quarantined or isolated. The testing module simulates
the massive random testing of the population. The module
considers test sensitivity and specificity [19]. This way, the
simulator is able to simulate different scenarios and mitigation
policies.

The rest of the paper is organized as follows: In Section
II, we introduce our method of implementing the particle
simulator. In Section III, we calibrate the particle simulator
using real COVID-19 data. Afterward, we simulate the model
using different contact tracing ratios and daily number of tests
per thousand people. In Section IV, we discuss the simulation
results, and the Section V concludes our work.

II. MATERIALS AND METHODS

A. Particle Model

In this work, each individual is considered as a particle ?

and modeled as
? =

[
G, E, 4, C, 0, CB

]
(1)

where G ∈ R2 is the position of a particle on the map (see
Fig. 1), E ∈ R2 is the particle velocity, 4 is the epidemic state
of the particle (i.e. susceptible, exposed, infected, recovered,
dead, quarantined, isolated, or severe infected), C is the time of
the particle in the current epidemic state and it is incremented
by the sampling time ΔC at each iteration of the simulation, 0
denotes the availability of the contact tracing application, CB is
COVID-19 test result of the particle.

The current position and velocity of = particles are stored
in matrices ^ ∈ R=G2 and \ ∈ R=G2, and constrained by −1 ≤
G8 9 ≤ 1, −E<0G ≤ E8 9 ≤ E<0G for all particles 8 = 1, ..., = and
two dimensions 9 = 1, 2. The initial values are set randomly
by taking into account the imposed constraints. The velocity
matrix \ ∈ R=G2 is updated at each iteration ^ (1 ≤ ^ ≤ )/ΔC)
in the simulation as

\+ = \+−1 +_(X+ −0.5) (2)

where X+ ∈ R=G2 is a matrix of uniformly distributed random
numbers in the interval [0, 1], and _ is a momentum that
allows to control velocity change. Velocities are reset to zero
if they exceed the maximum allowed speed E<0G . In addition,
dead, quarantined, isolated, and severe infected (hospitalized)
particles are considered not moving, i.e. their velocities are
also set to zero.

Then, the position matrix ^ ∈ R=G2 is updated as

^+ = ^+−1 +\+ΔC

G8 9 =

{
G8 9 , if ‖G8 9 ‖ ≤ 1
−G8 9 , otherwise

(3)

such that if particles reach one of the borders of the map
they appear on the opposite side. This is necessary to keep
all particles always inside the map.

B. Particle-Based SEIR Simulator

The particle-based simulator consists of four superstates:
Susceptible (SB), Exposed (EB), Infected (IB), and Recovered
(RB). Transitions between states are shown in Fig. 2. The
Exposed superstate (EB) is composed of Exposed (E) and
Quarantined (Q) states. The Quarantined (Q) state consists of
True Quarantined (TQ) and False Quarantined (FQ) substates.
Similarly, the Infected superstate (IB) consists of Infected (I),
Isolated (Iso), and Severe Infected (SI) states. The Isolated
(Iso) state also contains two subtstates: True Isolated (TIso)
and False Isolated (FIso). To avoid confusions between the
superstates (e.g. EB) and states (e.g. E), we will refer to only
states further. Also, when particles transition from the current
superstate to another, their time C in the current superstate is
reset to zero and starts over in the new superstate. The time
is not changed if transitions occur between states of the same
superstate.
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Fig. 2. The statechart of the particle-based SEIR epidemic simulator.

In the beginning of the simulation, we randomly assign
a small number of =4 particles to the Exposed state while
other = − =4 particles are in the Susceptible state. The list
and description of simulation parameters are given in Table I.
At each iteration, susceptible particles become exposed when
they come into contact with contagious particles (I, E, TQ,
TIso, and SI). The contact occurs when a distance between
the particles becomes less than the contact threshold GCℎA .
The disease transmission probability for an infected particle
is one while for other contagious particles are defined by the
parameters n4G? for E, n@D0 for TQ and TIso, and nB4E for
SI. The exposed particles transition to the Infected state after
C4G? days. Then, some portion of the infected particles become
severe infected according to the rate of daily transition to severe
infected B8A while others move to the Recovered state after C8= 5
days.

The testing module randomly tests particles in the Suscep-
tible, Exposed, and Infected states at each iteration of the
simulation and changes their test status CB accordingly. The
number of daily tests per thousand people is determined by a
parameter \. The test sensitivity and specificity are defined by
parameters B= and B?, respectively. The exposed and infected
particles that were correctly detected by the test are sent to the
True Quarantined and True Isolated states, respectively. The
susceptible particles that were tested false positive are sent to
the False Isolated state. Infected particles in the True Isolated
state transition to the Severe Infected state according to the B8A
rate while other particles in this state recover after C8= 5 days.
The False Isolated particles do not transition to the Severe
Infected state (i.e. they are actually not infected). Therefore,
transition back to the Susceptible state after C8= 5 days. Particles
in the Severe Infected state die according to the mortality rate

TABLE I. List of simulation parameters and their descriptions.

Parameter Description
= Total number of particles
=4 Initial number of exposed particles
) Simulation length in days
GCℎA Minimum distance to transmit the disease
E<0G Maximum allowed speed of particles
_ Speed gain
B8A Daily rate of Infected/Isolated particles getting Severe Infected
W<>A Severe Infected to Dead transition probability
n4G? Transmission probability of Exposed
n@D0 Transmission probability of Quarantined
nB4E Transmission probability of Severe Infected
C4G? Exposure period in days
C8= 5 Infection period in days
V Ratio of the population using a contact tracing app
\ Number of daily tests per thousand people
B= Sensitivity of tests
B? Specificity of tests

W<>A . The rest transfer to the Recovered state.
The proportion of the population using a contract tracking

app is defined by the parameter V. The contact tracing module
stores for each particle with the app the list of contacted
particles ID (also with the app) and the corresponding contact
time. If a certain particle is determined to be infected (i.e. the
test result was positive), then its list of contacted particles in the
last C8= 5 days are extracted and tested. If a contact of the true
positive tested particle is in the Exposed state then the contact
is sent to the True Quarantined state. If the contact is in the
Infected state then it is sent to the True Isolated state. Contacts
of the false positive tested particle can be only susceptible
particles. Therefore, they are sent to the False Quarantined
state. Then, particles in the True Quarantined state move to
the True Isolated state after C4G? days. Particles in the False
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Quarantined state go back to the Susceptible state.

III. RESULTS

A. Particle-Based SEIR Simulation of Lecco

In this section, we simulate the epidemic in the Lecco
province of Italy. Lecco is located in the Lombardy region
which was the epicenter of the COVID-19 outbreak in Italy. We
chose this province because the epidemic timeline of Lombardy
is well-established, and official statistics of daily epidemic data
for the region and its provinces has been shared with public
since 24 February 2020 [20]. The total number of particles
= was set to 337,000 (i.e. population of Lecco). The other
parameters of the simulation are shown in Table II. In order
to tune parameters of the model, we relied on the officially
reported number of deaths and total cases. However, according
to the seroprevalence survey results presented on 3 August
2020 by the Italian Ministry of Health [21], it was estimated
that 1,482,000 people have encountered the virus in Italy which
is six times larger than the officially registered cases. Therefore,
we assume that the actual number of total cases in Lecco
also six times larger than the registered cases. Because the
daily deaths for provinces are not available in [20], we used
proportional amount from total deaths officially published for
Lombardy region.

We started the simulation on 1 January 2020, based on the
results in [22], with initially 10 exposed particles. The length
of the simulation was 200 days. Regarding the parameters of
the testing module, there was no official data on used test
kits and amount of daily tests per thousand people for Lecco.
Therefore, we estimated the daily tests per thousand people \
as 0.5 for the considered period in the simulation based on
the testing data for whole Italy [23]. For the test sensitivity
B= and specificity B?, we used values of most commonly
manufactured tests kits [24]. In order to imitate the lock-
down in Lecco, we decreased the maximum speed of particles
E<0G and _ according to the timeline of events, and when
the lock-down was lifted on 3 June 2020, we returned them
to their initial values assuming that people started traveling
as usual. However, the contact threshold GCℎA was decreased
slightly assuming that the population started wearing masks
and keeping physical distancing.

The averaged results of ten simulations are shown in Fig.
3 with the standard deviations for the total cases and deaths.
According to the reported data for the province of Lecco [20],
new daily cases increased significantly starting from the middle
of March and remained high until the middle of April. Thus, we
conclude that our simulator predicted the peak of the epidemic
correctly. Also, the average number of total cases was estimated

TABLE II. Simulation Parameters for Lecco.

E<0G (�0HB) _ (�0HB) GCℎA (�0HB) n4G? n@D0 nB4E C4G?
0.02 (0-55) 0.002 (0-55)

0.012 [55-71) 0.0012 [55-71) 8.6e-5 (0-154)
0.006 [71-82) 0.0006 [71-82) 6.9e-5 [154-200) 0.7 0.3 0.3 5
0.004 [82-154) 0.0004 [82-154)
0.02 [154-200) 0.002 [154-200)

C8= 5 B8A W<>A V \ B= B?

14 0.02 0.15 0 0.5 0.95 0.99

approximately more than five times higher than the reported
numbers which is similar to the results of the seroprevalence
test for the whole Italy.

B. Simulations with Contact Tracing and Testing Modules
In this section, we analyze the impact of randomly testing the

population and tracing contacts of positive tested individuals in
reducing the spread of the epidemic. First, we considered the
case of massively testing the population without contact tracing
policy. Thus, we set V to zero and conducted simulations
for different values of \ = {0,5,10,15,20}. The results of the
simulations are shown in the top row of Fig. 4. According to
the results in the Fig. 4a and Fig. 4b, the number of particles in
the Isolated and Quarantined states increases with the increased
value of \. Consequently, the number of infected particles, at
the peak of the epidemic, reduced gradually from 4,925 (\ = 0)
to 3,633 (\ = 5), 2,926 (\ = 10), 2,428 (\ = 15), and to 1,841
(\ = 20) (see Fig. 4c).

Similarly, we examined the effect of the contact tracing
policy without randomized testing of the population. We
set \ to zero and simulated with different values of V =

{0.0,0.25,0.5,0.75,1.0}. In this case, we traced particles that
were in contact only with the severe infected particles (i.e.
hospitalized) because infected and exposed particles can be
found with randomly testing the population. The results of
the simulations are shown in the bottom row of the Fig. 4.
According to the Fig. 4d and Fig. 4e, the number of particles in
the Isolated and Quarantined states increased with the increased
value of V. As a result, the number of infected particles at the
peak of the epidemic, decreased from 4,925 (V = 0) to 4,487
(V = 0.25), 4,019 (V = 0.5), 3,030 (V = 0.75), and to 2,273
(V = 1.0) (see Fig. 4f).

Next, we considered utilization of concurrent contact trac-
ing and massive testing. The considered numbers of daily
tests per thousand people and the contact tracing ratios were
\ = {0,10,20} and V = {0,0.5,1.0}, respectively. According to
the results in Figs. 5a and 5b, for \ = 10 the enabled contact
tracing module increases the number of isolated and quar-
antined particles. However, for \ = 20 the numbers decrease
with the increased contact tracing ratios. The reason is that
the higher number of tests allow to find infected and exposed
particles at the beginning of the epidemic faster, and additional
contact tracing makes this process even faster. Therefore, at
the peak of the epidemic we get a lower number infected and
exposed particles, and as a result less number of isolated and
quarantined particles. Nevertheless, in both cases the contact
tracing module decreased the number of infected and exposed
particles further as shown in Fig. 5c and Fig. 5d. The number of
infected particles, at the peak of the epidemic, dropped from
2,926 (\ = 10, V = 0) to 2,360 (\ = 10, V = 0.5) and 2,071
(\ = 10, V = 1.0). The effect became more pronounced with
increased daily testing. Specifically, the number of infected
particles reduced from 1,841 (\ = 20, V = 0) to 1,547 (\ = 20,
V = 0.5) and to 1,004 (\ = 20, V = 1.0).

IV. DISCUSSION
The simulation results showed that the random testing is

more efficient compared to the contact tracing module in
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End of the simulation: 19/7/2020

3/6/2020: Unrestricted 
travel is allowed.

1/1/2020: Start of the simulation 

24/2/2020: The COVID-19 
data repository was 

launched.

22/3/2020: Factories are closed.

11/3/2020: Bars, restaurants are 
closed.

8/3/2020: Lombardy 
locked down.

2/3/2020: “Red zone” 
in Lombardy.

Fig. 3. The averaged results of ten simulations for the province of Lecco. Upper plot shows the states of the epidemic simulation versus time
and the dates of important NPIs. One standard deviation around the average Total case curve is shaded. Bottom plot shows the number of
Severe Infected particles, the number of deaths in the simulation, and the actual number of deaths attributed to COVID-19. One standard
deviation around the average Dead state curve is shaded.

reducing the number of infected particles when they are used
separately. When we use the contact tracing without random
testing, we trace contacts of severe infected particles. The
exposed and infected particles continue infecting susceptible
particles until they transition to the Severe Infected state.
Therefore, the contact tracing module is not effective alone.
Also, if we look at the zoomed subplots in Fig. 4c and Fig. 4f,
we see that both methods does not preserve from the second
wave of the epidemic after the lifting of restrictions on 3 June
2020.

On the other hand, synergistic use of two modules showed
the most effective results. Namely, the massive testing strate-
gies with \ = 10, V = 0 and \ = 20, V = 0 reduced the total
number of deaths from 630 (\ = 0, V = 0) to 440 (30%) and
294 (53%). Then, in simulations with 50% (V = 0.5) of the
population using the contact tracing app, massive testing \ = 10
and \ = 20 reduced the total number of deaths up to 40%
(374 deaths) and 60% (249), respectively. The reduction in the
number of deaths reached its maximum with the ubiquitous
contact tracing (V = 1.0). The simulations returns 323 (48%
reduction) and 177 (72% reduction) for (\ = 10, V = 1.0) and
(\ = 20, V = 1.0), respectively. Also, if we look at zoomed
subplots in Fig. 5c, d, and e, we see that synergistic use of
two modules allows to prevent the emergence of the second
wave of the epidemic. These results reveal the importance of
immediate isolation of contacts of positive tested particles in

preventing the spread of the epidemic.
Even though the modeling of individuals as particles enables

the implementation of contact tracing and massive testing, our
simulator has several limitations. Firstly, our map is a unit
square with the individuals distributed randomly and moving
freely without obstacles. In real world, there are obstacles, e.g.
buildings and geographic objects such as rivers and mountains.
Also, the population density differs substantially in different
regions of a city or province. The probability of infection is
also lower in open spaces than in confined ones. Secondly, the
mortality rate for COVID-19 is age and gender dependent [25].
Our particles are identical, i.e. demographics properties such as
age and gender are not considered. Presumably, the simulator
can be enriched by adding the demographics profiles and
related risk probabilities for more realistic transitions from the
Severe Infected to Dead state. However, this would increase
the number of simulation parameters significantly and make
the model calibration harder. Thirdly, the simulator also does
not consider the interaction networks of individuals. However,
in reality, individuals have a number of contacts with whom
they interact regularly, e.g. family members, colleagues, and
close friends.

V. CONCLUSION
We developed a particle-based SEIR simulator with contact

tracing and testing regimens. The main advantage of our
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Fig. 4. Simulation results of using only the random testing module: a, b, c, and using only the contact tracing module: d, e, f.

Fig. 5. Simulation results for the different combinations of random testing and contact tracing modules.

simulator as compared to the compartmental SEIR model is
that it models each individual as a particle, thus enabling
more realistic simulation of disease propagation and the impact
of intervention strategies for suppression and mitigation. We
demonstrated that the simulator can model a real epidemic in
accordance with the actual timeline of events and deployment
of intervention strategies. We also investigated the impact of
contact tracing and testing strategies on the propagation of
the disease; results showed that the most effective approach
is an aligned strategy of testing and contact tracing. In future
works, the particle-based simulator can be used to simulate the

spread of the disease in more confined settings, such as inside
of buildings (airports, schools, malls, and etc.) by modeling the
moving particles according to the specific building layouts.
SUPPLEMENTARY MATERIALS

We implemented the simulator in MATLAB R2020. The
source code was uploaded to GitHub1 under MIT license.
Also, we provide a video2 that illustrates a random motion of
a single particle, and also the visualization of particles motion
on the 2D map with corresponding epidemic state transitions

1https://github.com/IS2AI/Particle-Based-COVID19-Simulator
2https://www.youtube.com/watch?v=BJfjmWfi6acfeature=youtu.be
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for three different scenarios. The first scenario for \ = 0, V = 0
shows that the epidemic was suppressed in Lecco only due
to the complete lock-down. The second scenario for \ = 20,
V = 0 illustrates that the lock-down with the additional random
testing strategy can reduce the number of infected particles.
However, in the previous two scenarios, the second wave of
the epidemic starts after lifting lockdown. The third scenario
with \ = 20, V = 1 shows the effectiveness of the additional
contact tracing strategy. This strategy significantly reduces the
number of infected particles and also allows to prevent the
second wave of the epidemic.
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