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Abstract 

Objective Microsatellite instability (MSI) is associated with several tumor types and its status has 
become increasingly vital in guiding patient treatment decisions. However, in clinical practice, 
distinguishing MSI from its counterpart is challenging since the diagnosis of MSI requires 
additional genetic or immunohistochemical tests. In this study, we aimed to establishe an 
interpretable pathological image analysis strategies to help medical experts to identify MSI 
automatically.  

Design Three cohorts of Haematoxylin and eosin-stained whole-slide images from 1033 patients 
with different tumor types were collected from The Cancer Genome Atlas. These images were 
preprocessed and tessallated into small tiles. A image-level interpretable deep learning model 
and a feature-level interpretable random forest model were built up on these files. 

Results Both models performed well in the three datasets and achieved image-level and feature-
level interpretability repectively. Importantly, both from the image-level and feature-level 
interpretability, color features and texture characteristics are shown to contribute the most to the 
MSI prediction. Based on them, we established an interpretable classification framework. 
Therefore, the classification models under the proposed framework can serve as an efficient tool 
for predicting the MSI status of patients. 

Conclusion  This study establishes a interpretable classification framework to for predicting the 
MSI status of patients and provide more insights to pathologists with clinical understanding. 
 
Main Text 
 
Introduction 
 
Microsatellite instability (MSI) is the condition of genetic hypermutability that results from impaired 
DNA mismatch repair. Cells with abnormally functioning mismatch repair are unable to correct 
errors that occur during DNA replication and consequently accumulate errors. MSI has been 
frequently observed within several types of cancer, most commonly in colorectal, endometrial, 
and gastric adenocarcinomas (1). The clinical significance of MSI has been well described in 
colorectal cancer (CC), as patients with MSI-high colorectal tumors have been shown to have 
improved prognosis compared with those with MSS (microsatellite stable) tumors (2). In 2017, the 
U.S. Food and Drug Administration approved anti-programmed cell death-1 immunotherapy for 
mismatch repair deficiency/MSI-high refractory or metastatic solid tumors, making the evaluation 
of DNA mismatch repair deficiency an important clinical task. However, in clinical practice, not 
every patient is tested for MSI, because this requires additional next-generation sequencing (3, 

4),  polymerase chain reaction (5) or immunohistochemical tests (1, 6, 7). Thus, it is in high 
demand for a cheap, effective, and convenient classifier to assist experts in distinguishing MSI vs 
MSS. 
 
Numerous publications have identified histologic features which are more commonly seen in MSI. 
By far, it is a well-known fact that tumors have undifferentiated morphology, poor differentiation 
and the high infiltration of TIL cells are more likely to be MSI (8-11). Unfortunately, it is still 
challenging to distinguish MSS from MSI based on pathologist’s visual inspections from 
pathological images since the morphology of MSS is similar to that of MSI (12). The recent 
technical development of high-throughput whole-slide scanners has enabled effective and fast 
digitalization of histological slides to generate whole-slide images (WSI). More importantly, the 
thriving of various machine learning (ML) methods in image processing, makes this task 
accessible. In recent years, ML has been broadly deployed as a diagnostic tool in pathology (13, 
14). For example, Osamu Iizuka et al. built up convolutional neural networks (CNNs) and 
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recurrent neural networks to classify WSI into adenocarcinoma, adenoma, and non-neoplastic 
(15). The study by Yaniv Bar et al. demonstrated the efficacy of the computational pathology 
framework in the non-medical image databases by training a model in chest pathology 
identification (16). Notably, (17, 18) showed that deep learning model can predict MSI directly 
from Haematoxylin and eosin (H&E) histology and reported the network achieved desirable 
performance in both gastric stomach adenocarcinoma (STAD) and CC (17). These studies attest 
to the great potential of ML methods in medical research and clinical practice. 
 
There is no doubt that the ML revolution has begun, but the lack of the ‘interpretability’ of ML is of 
particular concern in healthcare (19, 20). Here, the ‘interpretability’ means that clinical experts 
and researchers can understand the logic of decision or prediction produced by ML methods (21). 
In essence, it urges ML systems to follow a fundamental tenet of medical ethics, that is, the 
disclosure of necessary yet meaningful details about medical treatment to patients (22). Also 
importantly, interpretability helps clinician understand that the model’s decision would have a 
potential fairness/bias issue because the samples used in training models are not necessarily 
representative of the underlying study population (23). In addition, for both scientific 
reproducibility and medical safety reasons, interpretability allows researchers to know to the 
extent to which small systematic perturbations can alter the predictions to the input data, which 
might be generated by measurement biases. Finally, clinical experts are accessible to potentially 
crucial domain-knowledge hidden in the interpretable ML models (21). Unfortunately to the best of 
our knowledge, most of the existing MSI diagnosis systems, especially deep-learning based 
systems, are non-interpretable. Therefore, there is an urgent need to establish a new research 
paradigm in applying an interpretable ML system in medical pathology field (24-28).  
 
In this study, we used H&E-stained WSI from The Cancer Genome Atlas (TCGA): 360 formalin-
fixed paraffin-embedded (FFPE) samples of CC (TCGA-CC-DX) (29), 285 FFPE samples of 
STAD (TCGA-STAD) (30) and 385 snap-frozen samples of CC (TCGA-CC-KR). H&E stained 
images in these databases have already been tessellated into 108020 (TCGA-STAD), 139147 
(TCGA-CC-KR), and 182403 (TCGA-CC-DX) color-normalized tiles, (17) and all of them only 
target region with tumor tissue. The aims of the study are: (i) to build an image-based ML method 
on MSI classification and post-process the fed image to a heat map to interpret the diagnosis of 
MSI at an image level; (ii) to design a fully transparent feature extraction pipeline and understand 
the pathological features’ importance and interactions for predicting MSI by training a feature-
based ML model.  
 
Results 
 
A Deep Learning Classifier and Image-Level Visual Interpretability 
We used a commonly used end-to-end CNN, Resnet18 (31). To fit this deep learning (DL) model 
for different cancer subtypes, we trained three Resnet18 networks based on 70% tiles randomly 
sampled from three datasets. The remaining 30% tiles in each dataset were used for testing. At 
the testing time, a patient’s slide was predicted to be MSI if at least half of the tiles were predicted 
to be MSI. The patient-level accuracy and area under the curve (AUC) were 0.84 in the KR 
cohort, 0.81 in the DX cohort, and 0.80 in the STAD cohort (Fig. 1b), respectively, in the test set. 
 
Based on the trained DL model, the Gradient-weighted Class Activation Mapping (Grad-CAM) 
was used to make the convolutional based model more transparent by generating localization 
maps of the important regions (32). To unveil the hidden logic behind the DL and provide visual 
interpretability, we deployed Grad-CAM to find out which part of the H&E image supports DL’s 
classification. Two typical images for interpreting DL prediction logic are shown (Fig. 1.a). Our 
pathologist noted that the highlighted region in Fig.1.a tended to be where immune cells are 
mainly concentrated in the tumor organism; meanwhile, we also found that the highlighted region 
presented distinct color and texture characteristics. We were intrigued by this phenomenon and 
further examined this important region in great detail.  
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Transparent Pathological Image Analysis Workflow and Feature-Based Classification 
Model 
The results from Grad-CAM suggested that certain features of the H&E stained images might 
encode essential regions of the tumor organism. To further investigate this, we developed a multi-
step, automatic and transparent workflow (Fig. 2.a). In the first step, we standardized the three 
image datasets by standard image processing techniques (e.g., white balance and brightness 
adjustments). After the image pre-processing, we extracted visible pathological features. 
Motivated by the feedback from Grad-CAM and existing studies, we focused on these H&E 
feature characteristics: global and local color features in RGB and HSV channels, the numbers of 
infiltrating immune cells and tumor cells, the grading of differentiation and the texture features 
from tumor cells. A total of 182 features were extracted from each image tile, and some 
representative ones are displayed in Fig. 2.b. 
We then applied random forest (RF) (33), one of the most popular ML algorithms, to all three 
databases to classify MSI versus MSS on H&E stained histology slides. We randomly selected 
70% of patients in every dataset during training, and all their tiles were used in training while the 
rest tiles were held out and used as test sets. In the test sets of each dataset, true MSS image 
tiles cohort had a median MSS score (the proportion of the prediction result judged to be MSS in 
each decision tree of the forest) that was significantly different from those of MSI tiles (the P-
values of the two-tailed test were 0.02, 0.0024, 0.002 in the three datasets), indicating that our 
models can distinguish MSI from MSS. Since one patient may have many different tiles, we 
obtained the patient-level MSI scores by averaging the RF’s prediction on all its tiles. AUCs for 
MSI detection were 0.78 (95% CI 0.7-0.82) in KR cohort, 0.7 (95% CI 0.65-0.74) in DX cohort, 
and 0.74 (95% CI 0.65-0.79) in STAD cohort (See Fig. 3.b, Fig. S1.b, and Fig. S2.b). These 
results show that visible pathological features can be useful in MSI prediction. 
                 
Feature-Level Visual Interpretability: Feature Importance and Interactions 
One of the attractive advantages of RF is that it can evaluate the importance of the features. 
Therefore, we verify and quantify these features’ power in distinguishing MSI from MSS by 
extracting information from a trained model. A representative pattern can be discovered from the 
visualization of permutation-based feature importance (33, 34) in the KR dataset (Fig. 3). From 
the figure, we can deduce that the texture features play a dominant role. Since the texture 
features reflect the surface’s average smoothness of the tumor cells in one tile, we deduce that 
the characteristics of the tumor surface are an important clinical indicator in automatic MSI 
diagnosis. Color features also have important contributions. In the global color feature, the higher-
order statistics (skew and kurtosis) contribute more than the first-order statistics (mean and 
quantile), indicating that some useful information contributing to classification are hidden in high 
order features. Local color features also deserve our attention. Compared to global color features, 
the local ones were useful in image segmentation by dividing slices into different clusters, and we 
obtained the information in each cluster. Fig. 2.b demonstrates the clinical utility of the clusters as 
they closely reflected tumor tissue versus non-tumor tissue. The number of infiltrating immune 
cells was also important as expected, whereas the differentiation grade contributed the least in 
every dataset.  
It is widely accepted that feature interactions (i.e., the joint effect of features) can be important for 
the complex disease (35-38). Our feature-based RF models also allow us to exploit the pairwise 
feature interactions in MSI classification, and thus, we can attain a more clear understanding of 
the characteristics of MSI tiles and the mechanism of RF. Here, we use conditional minimal depth 
(39) to quantitatively assess feature interaction and then demonstrate the foremost 15 pairwise 
interactions (Fig. 3.c, Fig. S1.c, Fig. S2.c). The feature type with the most effective interaction 
effect with other features in each dataset are: the local color feature in KR, the global color 
feature in DX, and texture features in STAD. The three features enhanced the importance of the 
features interacting with them, even the features themselves may have a weak effect before. It is 
also worthy to note that interactions incline to occur more often between color features and 
texture features or between local color and global color features. To understand how the paired 
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features jointly help the MSI diagnosis, we plot the prediction values of typical feature interaction 
on a grid diagram (Fig. S3). In the KR dataset, a greater immune cell number and a lower value 
of the 75th percentile of red channel lead to a higher probability of MSS. In DX, a higher value of 
the max caliper in tumor cells and a fewer tumor cell number lead to a higher probability of MSS. 
In STAD, a lower value of the optical density range of tumor cells’ nucleus in Hematoxylin stains 
and a higher value of texture feature correlation in eosin stains lead to a higher probability of 
MSS.  
 
Discussion  
 
To our knowledge, this is the first study to not only build up a classification model in distinguishing 
MSI from MSS but also provide a detailed interpretability analysis. Previous studies in 
investigating the pathologic predictors of microsatellite instability through feature extraction and 
logistics regression model suffered from the limited learning capability as well as the small 
sample size, and thus could not achieve satisfactory performance (9). Other works on MSI 
classification paid attention to the enhancement of the prediction accuracy by establishing a DL 
network but did not provide a detailed description of the mechanism behind the model (17). In this 
study, we tackled these problems through using three different cancer types datasets from TCGA 
and following the framework of interpretability with two steps: first, built up a high-performance DL 
network with a visual explanation capacity as model-based interpretability; secondly, we further 
analyzed and confirmed features’ power using a feature-based interpretable model.  
 
To build an interpretable DL network, we trained residual learning CNNs and deployed Grad-CAM 
to the final convolutional layer of the network to produce the heatmap that reflects the highly-
contributed region. Notably, through its coarse localization map of the image's essential regions, 
it provided preliminary insight into highly-contributed pathological features. To understand the 
contribution of the pathological features on MSI classification, we extracted the clinically 
meaningful features, trained an RF classifier based on those features, and assessed the 
importance of those features, and exploited their interaction. Notably, we found that the texture 
and color of the H&E image and the interactions among them were crucial for diagnosing MSI. To 
the best of our knowledge, this has not been noted before. Another interesting fact is that, the 
feature type tend to interact with the other features has a clear difference in the three datasets 
due to the image heterogeneity raised from the diversity of cancer type (CC or STAD) and tissue 
preservation methods (snap-frozen or FFPE) (40), indicating that the feature interaction mode 
was influenced by preservation methods and tumor types. Yet this insight would not be attained 
from “black-box” machine learning method. Moreover, we hypothesized that the dominant-role 
features such as color in RF models were also important in the DL model. To test our hypothesis, 
we eliminated the mean color differences between MSI and MSS groups and reevaluated our DL 
models’ AUCs. Specifically, we calculated the RGB mean value of all tiles in both groups and 
centralized the RGB mean value of every tile into that population mean value. We found that the 
AUCs were reduced by 0.11, 0.12, and 0.14 in DX, KR, and STAD datasets, respectively, 
supporting our hypothesis that color features also contributed to the DL model.  
 
We note that our findings warrant replications through further biological experiments. The H&E 
stain is capable of highlighting the fine structures of cells and tissues. Most cellular organelles 
and extracellular matrix are eosinophilic, while the nucleus, rough endoplasmic reticulum, and 
ribosomes are basophilic. Our study shows that the spectrum, intensity, and texture of colors 
matter in distinguishing MSI from MSS, which needs further validation. We hypothesize that MSI 
tumor usually has distinct color/texture characteristics due to diverse gene mutation pattern (41, 
42). Another limitation of this study is that the cases in TCGA datasets may not be an unbiased 
collection from the real situation since pathologists may only upload the representative ones. 
Although our model performed well in these histopathology images, we should admit that their 
performance in the actual clinical settings requires further research. Another limitation is that our 
study only focused on H&E stained images, and we could not confirm whether the pattern in this 
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study, especially the color features’ contribution, works in other types of histopathology slices. 
The classifier model, under other types i.e., immunochemical stained images, remains to be 
explored and established.  
 
Further, our framework provides a positive feedback cycle in assisting pathologist’s diagnosis of 
MSI (Fig. 4). Specifically, the localization map outputted by our DL models can help experts to 
narrow their focus on the specific region of the whole H&E slide, thereby contributing to a more 
accurate and apprehensible diagnosis with the prediction result of our model. The features’ 
distribution under our interpretable model can provide experts with more insight into analyzing the 
slices of MSI and MSS from clinical perspectives. Further, considering the similar feature 
distribution pattern in three datasets we used, it is possible that after running the same pipeline 
on MSI H&E slides under different cancer types, we can discover a generalization pattern behind 
them. After training on a larger dataset, the accuracy of the identification and the interpretability 
could improve, thereby contributing to accurate sample curation and treatment development of 
this aggressive cancer subtype. 
 
In summary, we developed ML models with decent power in the prediction of MSI. Moreover, our 
models exhibit a visual heatmap demonstrating high-contribution regions for MSI prediction in the 
H&E image. We certified certain pathological features with non-trivial importance in MSI 
classification, which is not explicitly studied in the previous research. Therefore, our study 
facilitates MSI diagnosis based on H&E image and sheds light on the understanding of MSI at 
both image-level and features level. As a by-production of our study, a user-friendly and ongoing-
upgraded web application (http://14.215.135.56:3838/DL/) was developed for world-wide clinical 
researchers. 
 
Materials and Methods 
 
Histopathology Image Sources 
The whole-slide H&E stained histopathology images were obtained from TCGA, including three 
cancer subtype datasets. Dataset DX consisted of 295 MSS patients and 65 MSI patients from 
FFPE samples of CC. Dataset KR contained 316 MSS patients and 72 MSI patients from snap-
frozen samples of CC. Dataset STAD collected 225 MSS patients and 60 MSI patients of FFPE 
stomach adenocarcinoma.  
 
All the images used in our models have already gone through tumor tissue detection and have 
been tessellated into small tiles in J.N. Kather’s work (https://zenodo.org/record/2530835 and 
https://doi.org/10.5281/zenodo.2532612). There are 108020 tiles in TCGA-STAD cohort, 139147 
in TCGA-CC-KR, and 182403 in TCGA-CC-DX. Color normalization has already been performed 
on every tile using the Macenko method (43), which converts all images to a reference color 
space.  
 
Details of DL and Grad-CAM 
We built the Resnet18 in Python 3.7 with TensorFlow-GPU 1.14.0 and Keras 2.3.0. The patient-
level AUCs, ROC curves, and 95% stratified bootstrap CIs for ROC curves were computed and 
visualized by two R packages: pROC (44) and ggplot2 (45). Grad-CAM utilizes the gradient 
information abundant in the last convolutional layer of a CNN and generates a rough localization 
map of the important regions in the image. We apply the rectified linear unit to the linear 
combination of maps to generate localization maps of the desired class. Grad-CAM visualization 
was implemented in Python 3.7 with TensorFlow-GPU 1.14.0 and Keras 2.3.0. 
 
Image Pretreatment 
We apply pretreatments to the tiles before feature extraction. First, in order to avoid the influence 
of color cast, the natural appearance tone of the object is altered in the formation of images when 
exposed in a lightning condition of different color temperature, white balance is performed on our 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 8, 2020. ; https://doi.org/10.1101/2020.12.07.20244616doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.07.20244616
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

7 

 

cohorts. Since every tile has an area without cell organization, i.e., without H&E stained, we could 
view that part as the neutral reference in adjustment. Besides the color cast, overexposure and 
underexposure also may result in the distortion of our features. Still, taking the unstained area as 
the reference, we regulated all tiles into the same level of brightness. In addition, to get the 
location of immune cells’ nuclei, we need to perform color deconvolution (46), an algorithm used 
to separate color space from immunohistochemical staining on every tile of our datasets. To 
realize it, software ImageJ (47) was used with a plugin called Color Deconvolution. Besides, to 
extract the Haralick texture features (48) of tumor cells, we used a positive cell detection plugin in 
QuPath software to locate every tumor cell in each tile and use its batch process to get needed 
features. 
 
Feature Extraction 
In global color feature extraction, the region of interest (ROI) is a stained area. We recorded 
mean value, quantiles (25%, 50%, 70%), and higher-order moments (variance, kurtosis, and 
skewness) in ROI of each channel in RGB and HSV as our global features. Besides, with 
Gaussian mixture model (GMM) model (49), we perform image segmentation to each tile to divide 
the ROI into three clusters and record the corresponding features in every cluster as our local 
features. We located immune cells’ nuclei after color deconvolution according to their size and 
grayscale and calculated the amount as the feature. As for the differentiation degree of tissue in 
tiles, we performed dilation, erosion, and circle Hough transforms (50) to identify outlines similar 
to circle in images, to decide their differentiation degree. Since the more regular shapes exist, the 
more highly the tissue differentiates. Since we have recorded the tumor cell’s location, we extract 
Haralick features of each tumor cell in one tile and adopt the mean value of all cells’ as this tile 
feature via QuPath software (51). Besides, we also recorded the count of a tumor cell as our 
feature. The Wilcoxon rank-sum test is applied to all features, and most of them are significantly 
different between MSI and MSS in image level (Table S1). 
 
Random Forest Model for MSS and MSI Classification 
Our RF method was built and tested using Python version 3.7.1 with RandomForestClassifier in 
sklearn.ensemble library (52). During training, 70% of patients in every dataset were randomly 
selected, and all of their tiles were used in training while the rest tiles were held out and used as 
test sets. There are some anomalous tiles in each dataset, i.e., blurred or color disorder, resulting 
in the loss of the information contained in them. Therefore, we disposed of all of them in every 
dataset. In addition, we also delete the tiles owning an extreme immune cell number (a value that 
significant in 1% level) since an extremely small number may represent the non-tumor area while 
a too large number represents lymphatic concentration area. In each forest, we set 500 trees in 
total and take Gini impurity as the criterion. The minimum number of samples to split an internal 
node is 2, and other parameters follow the default setting. In all cases, training and test sets were 
split on a patient level, and no image tiles from test patients were present in any training sets. We 
used pROC and ggplot2 packages to assess and visualize the model performance. And to further 
analyze the feature importance and interactions between features, we also used R version 3.5.1 
with randomForest package (53) to rebuild that random forest and analyze and visualize the 
relations between different features with randomForestExplainer package (54).  
 
Permutation Feature Importance and Contional Minimal Depth 
Permutation-based feature importance (33) is a widely-used model inspection technique for 
RF. It is defined to be the decline in a model accuracy when one feature’s values are 
randomly shuffled. The shuffle procedure cancels the relationship between the label and the 
feature, and thus, the drop in the model accuracy can serve as a measurement for the 
importance of the feature in RF. An alternative feature importance, minimal depth (39), is 
defined as the depth when a feature splits for the first time in a tree. For example, if a feature 
splits the root node in a tree, then its minimal depth is 0. The mean of minimal depths over all 
trees in a forest can measure the feature importance. The importance ordering of features under 
it keeps highly consistent with the result from the permutation-based method (Fig. S4).  
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To investigate the interaction between two different features, we used a generalization of 
minimal depth, conditional minimal depth, that measures the depth of the second feature in a 
subtree with the root node where the first feature splits (54). Specifically, we recorded all of 
such splits with the first feature and calculated the mean of conditional minimal depths of the 
second features given the first feature. A large gap between the mean of conditional minimal 
depth and the mean of minimal depth implies possibilities for the second feature being used for 
splitting after the first feature. The occurence of the large gap implies the two features have a 
strong interaction. 
                                                        
Ablation Experiment for Deep Learning 
We eliminated the RGB mean differences between MSI and MSS groups in the test set by 
adjusting the mean value in each tile in the test set to the mean value of all the tiles as a whole. 
Then we feed the adjusted tiles in the test set into the trained neural network. The drops of AUCs 
after revaluation can verify the contribution of the RGB feature in the classification of the DL 
network. 
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Figures and Tables 

 

Fig. 1. (a) The original tile and the corresponding heatmap output by the GCAM. (a1) and 
(a2) display tiles from the TCGA-CC-DX dataset labeled with MSI and MSS, respectively. In the 
heatmaps, the brighter region contributes more to the classification. For instance, the red one is 
the most highlighted area, while the blue regions contribute limitedly. (b) Patient-level receiver 
operating characteristic (ROC) curve for classifying MSI versus MSS in the three datasets 
with deep learning. The 95% confidence intervals (CI) were computed by the bootstrap method. 
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Fig. 2. (a) The workflow of studying pathological features in discriminating against MSI 
from MSS. Five main steps - pretreatments, feature extraction, model training, patient-level 
predictions, and feature contributions analysis - were sequentially executed to improve image 
quality, generate pathological features, build statistical model, evaluate model performance, and 
measure features’ contributions, respectively. (b) Typical feature extraction result. (b1) GMM 
model for image segmentation. The figure on the left is a tile from the TCGA-CC-DX dataset, 
and its image-segmentation tiles processed by the GMM method are shown in the figure on the 
right. The green part whose grayscale is the lowest among the three parts tends to be tumor 
tissue, while the blue and red ones represent non-tumor tissue. (b2) Tumor cell detection 
before Haralick texture identification. The figure on the left is an original tile, while the one on 
the right is processed with tumor identification. Each red circle in the tile on the right indicates the 
boundary of one tumor cell. (b3) Infiltrating immune cells detection. The detection of immune 
cells allows us to calculate the connectivity domain. (b4) The grading of differentiation. Detect 
the circularly similar arrangement in one slice and grade the degree of differentiation based on its 
amount.
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Fig. 3.  The visualization of performance and interpretability of the RF in KR dataset. (a) 
The bar plot of permutation-based variable importance. Features are arranged from top to 
bottom in order of importance (the names of the features are provided in the order in Table S2). 
(b) The patient-level ROC curve for classifying MSI versus MSS with random forest. The 
blue bands are 95% confidence interval (CI) computed by the bootstrap method. (c) The bar plot 
of the mean of conditional minimal depth (the top 15 feature pairs of interaction are 
shown). A feature pair of interaction is listed as A × B, where A and B are one of feature type and 
their concrete names are listed in Table S3. Feature pairs are arranged from the bottom to top in 
the order of the occurrences, which are represented by the color intensity of the bars. The bar's 
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length indicates the mean of conditional minimal depth and the distance from the dot to the y-axis 
measures the mean of minimal depth of B. The length of the dot line implies the gap between 
them, measuring the effect of pairwise feature interaction. A large gap implies a strong 
interaction. 
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Fig. 4. The flowchart of the pattern in which our framework can assist the doctor’s 
diagnosis. After surgery or biopsy, the embed cut H&E provided by each patient would go 
through MSI screening with deep learning. The doctor can make a critical diagnosis based on his 
insight combined with the prediction result and the deep learning model's visualization. 
Meanwhile, with the amplifying of the H&E datasets, the random forest could develop a more 
precise and interpretable model, which helps the doctors detect MSI. 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 8, 2020. ; https://doi.org/10.1101/2020.12.07.20244616doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.07.20244616
http://creativecommons.org/licenses/by-nc-nd/4.0/

