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Abstract  

Background 

While major progress has been made to establish diagnostic tools for the identification of SARS-CoV-2 

infection, determining the severity of COVID-19 remains an unmet medical need. There is a limited availability 

of hospital resources in this or any pandemic, and appropriately gauging severity would allow for some patients 

to safely recover in home quarantine, while ensuring that sicker patients get needed care.  

 

Methods 

We here developed a blood-based generalizable host-gene-expression-based classifier for the severity of viral 

infections and validated it in multiple viral infection settings including COVID-19. We used training data 

(N=705) from 21 retrospective transcriptomic clinical studies of influenza and other viral illnesses looking at a 

preselected panel of host immune mRNAs. 

 

Results 

We selected 6 host mRNAs and  trained a logistic regression classifier with a training cross-validation AUROC 

of 0.90 for predicting 30-day mortality in viral illnesses. Next, in 1,417 samples across 21 independent 

retrospective validation cohorts the locked 6-mRNA classifier had an AUROC of 0.91 for discriminating 

patients with severe vs. non-severe infection. Next, in an independent cohort of prospectively enrolled patients 

with confirmed COVID-19 (N=97) in Athens, Greece, the 6-mRNA locked classifier had an AUROC of 0.89 

for identifying patients with severe respiratory failure or 30-day mortality. Finally, we developed an isothermal 

qRT-LAMP (loop-mediated isothermal gene expression) assay for the 6-mRNA panel to facilitate 

implementation as a rapid assay.  

 

Conclusions 

With further study, the classifier could assist in the risk assessment of patients with confirmed SARS-CoV-2 

infection and COVID-19 to determine severity and level of care, thereby improving patient management and 

healthcare burden. 
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Introduction 

The emergence of the SARS-coronavirus 2 (SARS-CoV-2), causative agent of COVID-19, and its rapid 

pandemic spread has led to a global health crisis with more than 54 million cases and more than 1 million 

deaths to date (1). COVID-19 presents with a spectrum of clinical phenotypes, with most patients exhibiting 

mild-to-moderate symptoms, and 20% progressing to severe or critical disease, typically within a week (2-6). 

Severe cases are often characterized by acute respiratory failure requiring mechanical ventilation and sometimes 

progressing to ARDS and death (7). Illness severity and development of ARDS are associated with older age 

and underlying medical conditions (3).  

 

Yet, despite the rapid progress in developing diagnostics for SARS-CoV-2 infection, existing prognostic 

markers ranging from clinical data to biomarkers and immunopathological findings have proven unable to 

identify which patients are likely to progress to severe disease (8). Poor risk stratification means that front-line 

providers may be unable to determine which patients might be safe to quarantine and convalesce at home, and 

which need close monitoring. Early identification of severity along with monitoring of immune status may also 

prove important for selection of treatments such as corticosteroids, intravenous immunoglobulin, or selective 

cytokine blockade (9-11). 

 

A host of lab values, including neutrophilia, lymphocyte counts, CD3 and CD4 T-cell counts, interleukin-6 and 

-8, lactate dehydrogenase, D-dimer, AST, prealbumin, creatinine, glucose, low-density lipoprotein, serum 

ferritin, and prothrombin time rather than viral factors have been associated with higher risk of severe disease 

and ARDS (3, 12, 13). While combining multiple weak markers through machine learning (ML) has a potential 

to increase test discrimination and clinical utility, applications of ML to date have led to serious overfitting and 

lack of clinical adoption (14). The failure of such models arises both from a lack of clinical heterogeneity in 

training, and from the pragmatic nature of the variable selection, which uses existing lab tests which may not be 

ideal for the task. Furthermore, a number of the lab markers are late indicators of severity since by the time they 

become abnormal, patient is already very sick. 

 

The host immune response represented in the whole blood transcriptome has been repeatedly shown to diagnose 

presence, type, and severity of infections (15-19). By leveraging clinical, biological, and technical heterogeneity 

across multiple independent datasets, we have previously identified a conserved host response to respiratory 

viral infections (16) that is distinct from bacterial infections (15-17) and can identify asymptomatic infection. 

Recently, we have demonstrated that this conserved host response to viral infections is strongly associated with 

severity of outcome, including in patients infected with SARS-CoV-2, chikungunya, and Ebola (20). We have 

also demonstrated that conserved host immune response to infection can be an accurate prognostic marker of 

risk of 30-day mortality in patients with infectious diseases (18). Most importantly, we have demonstrated that 

accounting for biological, clinical, and technical heterogeneity identifies more generalizable robust host 

response-based signatures that can be rapidly translated on a targeted platform (19).  

 

Based on these previous results that there is a shared blood host-immune response-based mRNA prognostic 

signature among patients with acute viral infections, we hypothesized that a parsimonious, clinically 

translatable gene signature for predicting outcome in patients with viral infection can be identified. We tested 

this hypothesis by integrating 21 independent data sets with 705 peripheral blood transcriptome profiles from 

patients with acute viral infections and identified a 6-mRNA host-response-based signature for mortality 

prediction across these multiple viral datasets. Next, we validated the locked model in 21 independent 

retrospective cohorts of 1,417 blood transcriptome profiles of patients with a variety of viral infections (non-

COVID). Next, we validated our 6-mRNA model in an independent prospectively collected cohort of patients 

with COVID-19, showing an ability to predict outcomes despite having been entirely trained using non-COVID 

data. Our results suggest there is a conserved host response associated with outcomes in acute viral infections. 

Finally, we showed validity of a rapid isothermal version of the 6-mRNA host-response-signature which is 
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being further developed into a rapid molecular test (CoVerity™) to assist in improving management of patients 

with COVID-19 and other acute viral infections.  
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Materials and Methods 

 

Data collection, curation, and sample labeling 

We searched public repositories (NCBI GEO and EBI ArrayExpress) for studies of typical acute infection with 

mortality data present. After removal of pediatric and entirely non-viral datasets, we identified 17 microarray or 

RNAseq peripheral blood acute infection studies composed of samples from 1,861 adult patients with either 28-

day or 30-day mortality information (Figure 1 and Table 1). We processed and co-normalized these datasets as 

previously described (19). 

 

The number of cases with clinically adjudicated viral infection and known mortality outcome among the public 

samples was too low for robust modeling. Thus, to increase the number of training samples, we assigned viral 

infection status using a previously developed gene-expression-based bacterial/viral classifier, whose accuracy 

approaches that of clinical adjudication. Specifically, we utilized an updated version of our previously described 

neural network-based classifier for diagnosis of bacterial vs. viral infections called ‘Inflammatix Bacterial-Viral 

Noninfected version 2’ (IMX-BVN-2), (18). The idea is that this method would increase the number of 

mortality samples with viral infection, without introducing many false positives. For all samples, we applied 

IMX-BVN-2 to assign a probability of bacterial or viral infection and retained samples for which viral 

probability according to IMX-BVN-2 was ≥0.5. We refer to this assessment of viral infection as computer-aided 

adjudication. Out of 1,861 samples, we found 311 samples which had IMX-BVN-2 probability of viral infection 

≥0.5, of which 9 patients died within 30-day period.  

 

In addition to this public microarray/RNAseq data, we included 394 samples across 4 independent cohorts (19) 

that were profiled using NanoString nCounter, of which 14 patients died (Table 1). Thus, overall we included 

705 blood samples across 21 independent studies from patients with computer aided-adjudication of viral 

infection and short-term mortality outcome. Importantly, none of these patients had SARS-CoV-2 infection as 

they were all enrolled prior to November 2019. 

 

Selection of variables for classifier development  

We preselected 29 mRNAs from which to develop the classifier for several biological and practical reasons. 

Biologically, the 29 mRNAs are composed of an 11-gene set for predicting 30-day mortality in critically ill 

patients  and a repeatedly validated 18-gene set that can identify viral vs bacterial or noninfectious inflammation 

(17-19). Thus, we hypothesized that if a generalizable viral severity signature were possible, we likely had 

appropriate (and pre-vetted) variables here. By limiting our input variables, we also lowered our risk of 

overfitting to the training data. From a practical perspective, first, we are developing a point-of-care diagnostic 

platform for measuring these 29 genes in less than 30 minutes. A classifier developed using a subset of these 29 

genes would allow us to develop a rapid point-of-care test on our existing platform. Second, 4 of the 21 cohorts 

included in the training were Inflammatix studies that profiled these 29 genes using NanoString nCounter and 

therefore for those studies this was the only mRNA expression data available.  

 

Development of a classifier using machine learning 

We analyzed the 705 viral samples using cross-validation (CV) for ranking and selecting machine learning 

classifiers. We explored three variants of cross-validation: (1) 5-fold random CV, (2) 5-fold grouped CV, where 

each fold comprises multiple studies, and each study is assigned to exactly one CV fold, and (3) leave-one-

study-out (LOSO), where each study forms a CV fold. We included non-random CV variants because we 

recently demonstrated that the leave-one-study-out cross-validation may reduce overfitting during training and 

produce more robust classifiers, for certain datasets (19). The hyperparameter search space was based on 

machine learning best practices and our previous results in model optimization in infectious disease diagnostics 

(21). For rapid turnaround and to reduce overfitting, we only investigated linear classifiers (support vector 

machine with linear kernel, logistic regression, and multi-layer perceptron with linear activation function) and 

limited the number of hyperparameter configurations we searched to 1000 per classifier. Finally, to ensure a 
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parsimonious signature for translation to a rapid molecular assay, we limited the number of genes in the final 

model to six. To select the six genes, we applied forward selection and univariate feature ranking. We followed 

best practices to avoid overfitting in the gene selection process (22, 23). 

 

We performed cross-validations for each of the hyperparameter configurations. Within each fold, we sorted the 

absolute value of the genes’ Pearson correlation with class label (survived/died). We then trained a classifier 

using the six top-ranked genes and applied it to the left-out fold. The predicted probabilities from the folds were 

pooled, and the Area Under a Receiver Operating Characteristic (AUROC) curve over the pooled cross-

validation probabilities was used as a metric to rank classification models.  The final ranking of genes was 

determined using average ranking across the CV folds. Once the best-ranking model hyperparameters were 

selected and the final list of six genes was established, the final model was trained using the entire training set 

and the ‘locked’ hyperparameters. The corresponding model weights were locked and the final classifier was 

then tested in an independent prospective cohort of patients with COVID-19, and in independent retrospective 

cohort of patients with viral infections without COVID-19. 

 

Retrospective non-COVID-19 patient cohort 

We selected a subset of samples from our previously described database of 34 independent cohorts derived from 

whole blood or peripheral blood mononuclear cells (PBMCs) (20). From this database we removed all samples 

that were used in our analysis for identifying the 6-gene signature, leaving 1,417 samples across 21 independent 

cohorts (Supplementary Table 1). The samples in these datasets represented the biological and clinical 

heterogeneity observed in the real-world patient population, including healthy controls and patients infected 

with 16 different viruses with severity ranging from asymptomatic to fatal viral infection over a broad age range 

(<12 months to 73 years) (Figure 1A and Supplementary Table 1). Notably, the samples were from patients 

enrolled across 10 different countries representing diverse genetic backgrounds of patients and viruses. Finally, 

we included technical heterogeneity in our analysis as these datasets were profiled using microarray from 

different manufacturers.  

 

We renormalized all microarray datasets using standard methods when raw data were available from the GEO 

database. We applied GC robust multiarray average (gcRMA) to arrays with mismatch probes for Affymetrix 

arrays. We used normal-exponential background correction followed by quantile normalization for Illumina, 

Agilent, GE, and other commercial arrays. We did not renormalize custom arrays and used preprocessed data as 

made publicly available by the study authors. We mapped microarray probes in each dataset to Entrez Gene 

identifiers (IDs) to facilitate integrated analysis. If a probe matched more than one gene, we expanded the 

expression data for that probe to add one record for each gene. When multiple probes mapped to the same gene 

within a dataset, we applied a fixed-effect model. Within a dataset, cohorts assayed with different microarray 

types were treated as independent. 

 

Standardized severity assignment for retrospective non-COVID-19 patient samples 

We used standardized severity for each of the 1,417 samples as described before (20). Briefly, for each dataset, 

we used the sample phenotypes as defined in the original publication. We manually assigned a severity category 

to each sample based on the cohort description for each dataset in the original publication as follows: (1) 

healthy controls – asymptomatic, uninfected healthy individuals, (2) asymptomatic or convalescents – afebrile 

asymptomatic individuals who tested positive for a virus or those fully recovered from a viral infection with 

completely resolved symptoms, (3) mild – symptomatic individuals with viral infection that were either 

managed as outpatient or discharged from the emergency department (ED), (4) moderate – symptomatic 

individuals with viral infection who were admitted to the general wards and did not require supplemental 

oxygen, (5) serious - symptomatic individuals with viral infection who were described as ‘severe’ by original 

authors, admitted to general wards with supplemental oxygen, or admitted to the intensive care unit (ICU) 

without requiring mechanical ventilation or inotropic support, (6) critical - symptomatic individuals with viral 

infection who were on mechanical ventilation in the ICU or were diagnosed with acute respiratory distress 
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syndrome (ARDS), septic shock, or multiorgan dysfunction syndrome (MODS), and (7) fatal – patients with 

viral infection who died in the ICU. 

 

For datasets that did not provide sample-level severity data (GSE101702, GSE38900, GSE103842, GSE66099, 

GSE77087), we assigned severity categories as follows. We categorized all samples in a dataset as “moderate” 

when either (1) >70% of patients were admitted to the general wards as opposed to discharged from the ED, (2) 

<20% of patients admitted to the general wards required supplemental oxygen, or (3) patients were admitted to 

the general wards and categorized as ‘mild’ or ‘moderate’ by the original authors. We categorized all samples in 

a dataset as “severe” when >20% of patients had either (1) been admitted to the general wards and categorized 

as ‘severe’ by original authors, (2) required supplemental oxygen, or (3) required ICU admission without 

mechanical ventilation. 

 

Prospective COVID-19 patient cohort 

Blood samples were collected between March and April 2020 from three study sites participating in the 

Hellenic Sepsis Study Group (www.sepsis.gr). The studies were conducted following approvals for the 

collection of biomaterial for transcriptomic analysis for patients with lower respiratory tract infections provided 

by the Ethics Committees of the participating hospitals.  Participants were adults with written informed consent 

provided by themselves or by first-degree relatives in the case of patients unable to consent, with molecular 

detection of SARS-CoV-2 in respiratory secretions and radiological evidence of lower respiratory tract 

involvement. PAXgene® Blood RNA tubes were drawn within the first 24 hours from admission along with 

other standard laboratory parameters. Data collection included demographic information, clinical scores (SOFA, 

APACHE II), laboratory results, length of stay and clinical outcomes. Patients were followed up daily for 30 

days; severe disease was defined as respiratory failure (PaO2/FiO2 ratio less than 150 requiring mechanical 

ventilation) or death. PAXgene Blood RNA samples were shipped to Inflammatix, where RNA was extracted 

and processed using NanoString nCounter®, as previously described (19). The 6-mRNA scores were calculated 

after locking the classifier weights. 

 

Healthy controls 
We acquired five whole blood samples from healthy controls through a commercial vendor (BioIVT). The 

individuals were non-febrile and verbally screened to confirm no signs or symptoms of infection were present 

within 3 days prior to sample collection. They were also verbally screened to confirm that they were not 

currently undergoing antibiotic treatment and had not taken antibiotics within 3 days prior to sample collection. 

Further, all samples were shown to be negative for HIV, West Nile, Hepatitis B, and Hepatitis C by molecular 

or antibody-based testing. Samples were collected in PAXgene Blood RNA tubes and treated per the 

manufacturer's protocol. Samples were stored and transported at -80C. 

 

Rapid isothermal assay 

Our goal was to create a rapid assay, and isothermal reactions run much faster than traditional qPCR. Thus, 

LAMP assays were designed to span exon junctions, and at least three core (FIP/BIP/F3/B3) solutions meeting 

these design criteria were identified for each marker and evaluated for successful amplification of cDNA and 

exclusion of gDNA. Where available, loop primers (LF/LB) were subsequently identified for best core solutions 

to generate a complete primer set. Solutions were down-selected based on efficient amplification of cDNA and 

RNA, selectivity against gDNA, and the presence of single, homogenous melt peaks. The final primer sets are 

attached as Supplementary Table 2.   

We designed an analytical validation panel of 61 blood samples from patients in multiple infection classes, 

including healthy, bacterial or viral. A subset of samples from patients with bacterial or viral infection came 

from patients with an infection that had progressed to sepsis. Whole blood samples were collected in PAXgene 

Blood RNA stabilization vacutainers, which preserve the integrity of the host mRNA expression profile at the 

time of draw. Total RNA was extracted from a 1.5 mL aliquot of each stabilized blood sample using a modified 
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version of the Agencourt RNAdvance Blood kit and protocol. RNA was heat treated at 55°C for 5 min then 

snap-cooled prior to quantitation. Total RNA material was distributed evenly across LAMP reactions measuring 

the five markers in triplicate. LAMP assays were carried out using a modified version of the protocol 

recommended by Optigene Ltd, and performed on a QuantStudio 6 Real-Time PCR System. 

 

Statistical Analyses 

Analyses were performed in R version 3 and Python version 3.6. The area under the receiver operating 

characteristic curve (AUROC) was chosen as the primary metric for model evaluation since it provides a 

general measure of diagnostic test quality without depending on prevalence or having to choose a specific cutoff 

point.  

 

All validation dataset analyses use the locked 6-mRNA logistic regression output, i.e. predicted probabilities. 

AUROCs for additional markers (Table 3) are calculated from the available data for each marker. For the 

logistic regression model that includes the 6-mRNA predicted probabilities along with other markers as 

predictor variables, conditional multiple imputation was used for values to ensure model convergence. Since 

AUROC may fail to detect poor calibration on validation data (since subject rankings may still hold), we also 

demonstrated that a cutoff chosen from training data maintains good sensitivity and specificity in validation 

data even before recalibration. Due to the relatively small sample size, we made inter-group comparisons 

without assumptions of normality where possible (Kruskal-Wallis rank sum or Mann-Whitney U test). Medians 

and interquartile ranges are given for continuous variables. 
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Results 

We first identified 21 studies (24-39) with 705 patients with viral infections (none SARS-CoV-2) based on 

computer-aided adjudication and available outcomes data (see Methods; Figure 1 and Table 1). These studies 

included a broad spectrum of clinical, biological, and technical heterogeneity as they profiled blood samples 

from viral infections from 14 countries using mRNA profiling platforms from four manufacturers (Affymetrix, 

Agilent, Illumina, Nanostring). Within each dataset, the number of patients who died were very low (two or less 

for all but one study), meaning traditional approaches for biomarker discovery that rely on a single cohort with 

sufficient sample size would not have been effective. However, there were sufficient cases (23 deaths within 30 

days of sample collection) across these 705 patients. Our previously described approaches for integrating 

independent datasets and leveraging heterogeneity allowed us to learn across the whole pooled dataset (19, 40, 

41). Visualization of the 705 conormalized samples using all genes present across the studies using t-stochastic 

neighbor embedding (t-SNE), showed that there was no clear separation between the samples from patients who 

died and those who survived (Figure 2a). 

 

6-mRNA logistic regression-based model accurately predicts viral patient mortality across multiple 

retrospective studies  

Across the linear machine learning algorithms employed in our analyses, models using logistic regression had 

the highest mean AUROC for identifying patients with viral infection who died. Further, within logistic 

regression models, those trained using random cross-validation were more accurate than those trained using 

other variants of cross-validation. Finally, within the different 6-mRNA logistic regression-based models 

trained using CV, the model with highest AUROC used the following 6 genes: TGFBI, DEFA4, LY86, BATF, 

HK3 and HLA-DPB1. It had an AUROC of 0.896 (95% CI: 0.844-0.949) (Figures 2b and 2c; Supplementary 

Figure 1). Each of the 6 genes were significantly differentially expressed between patients with viral infections 

who survived and those who did not, of which 3 genes (DEFA4, BATF, HK3) were higher and 3 genes (TGFBI, 

LY86, HLA-DPB1) were lower in those who died (Figure 2d). Based on the cross-validation, the 6-mRNA 

logistic regression model had a 91% sensitivity and 68% specificity for distinguishing patients with viral 

infection who died from those who survived. We used this model, referred to as the 6-mRNA classifier, as-is for 

validation in multiple independent retropective cohorts and a prospective cohort.  

 

6-mRNA classifier is an age-independent predictor of mortality in patients with viral infections 

Age is a known significant predictor of 30-day mortality in patients with respiratory viral infections. To assess 

the added value of the new prognostic information of the 6-mRNA classifier with regards to age in the training 

data, we fit a binary logistic regression model with age and pooled cross-validation 6-mRNA classifier 

probabilities as independent variables. The 6-mRNA score was significantly associated with increased risk of 

30-day mortality (P<0.001), but age was not (P=0.06). 

 

Validation of the 6-mRNA classifier in multiple independent retrospective cohorts 
We applied the locked 6-mRNA classifier to 1,417 transcriptome profiles of blood samples across 21 

independent cohorts from patients with viral infections (663 healthy controls, 674 non-severe, 71 severe, 7 fatal) 

in 10 countries (Supplementary Table 1). Visualization of the 1,417 samples using expression of the 6 genes 

showed patients with severe outcome clustered closer (Figure 3a). Among the 6 genes, over-expressed genes 

(HK3, DEFA4, BATF) were positively correlated with severity of viral infection, and under-expressed gene 

(HLA-DPB1, LY86, TGFBI) were negatively correlated with severity (Figure 3b). Importantly, the 6-mRNA 

classifier score was positively correlated with severity and was significantly higher in patients with severe or 

fatal viral infection than those with non-severe viral infections or healthy controls (Figure 3c). Finally, the 6-

mRNA classifier score distinguished patients with severe viral infection from those with non-severe viral 

infection (AUROC=0.91, 95% CI: 0.881-0.938) and healthy controls (AUROC=0.998, 95% CI: 0.994-1) 

(Figure 3d).  
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We plotted ROC curves to assess the discriminative ability of the 6-mRNA classifier among the following 

subgroups of clinical interest: healthy controls, non-severe cases, severe, and fatal outcomes (Fig. 3d). Healthy 

controls are presented (though not mixed with non-severe viral infections in comparison) since some viral 

infections such as COVID-19 can be asymptomatic. All pairwise comparisons showed robust performance of 

the classifier on the independent data, achieving AUROC point-estimates between 0.86 (non-severe vs. healthy) 

and 1 (severe vs. healthy). 

 

 

Prospective validation of the 6-mRNA logistic regression model in an independent cohort 

We prospectively enrolled 97 adult patients with pneumonia by SARS-CoV-2 in Greece. There were 47 patients 

with non-severe COVID-19 disease, whereas 50 had severe COVID-19, of which 16 died (Table 2). 

Interestingly, visualization of these samples in low dimension using expression of the 6 mRNAs (without the 

classifier) did not distinguish patients with severe COVID-19 disease from those with non-severe disease 

(Figure 4a). When comparing expression of the 6 mRNAs in patients with non-severe COVID-19 disease to 

those with severe disease, expression of each changed statistically significant in the same direction as the 

training data (P<0.05) (Figure 4b). 

 

We applied the locked 6-mRNA classifier to the 97 COVID-19 patients and the 5 healthy controls. Strikingly, 

the classifier distinguished among healthy controls, patients with non-severe COVID-19, and patients with 

severe COVID-19 and mortality (Figure 4c). In particular, the model distinguished patients with severe 

respiratory failure from non-severe patients with an AUROC of 0.89 (95% CI: 0.82-0.95; Figure 4d).  

 

We also assessed whether the 6-mRNA score is an independent predictor of severity in patients with COVID-19 

by including other predictors of severity (age, SOFA score, CRP, PCT, lactate, and gender) in a logistic 

regression model. As expected, due to small sample size, and correlations between markers, no markers except 

SOFA were statistically significant predictors of severe respiratory failure (Supplementary Table 3).  

 

For clinical applications, AUROC is a more relevant indicator of marker performance. To that end, we 

compared the 6-mRNA score to other clinical parameters of severity using AUROC (Table 3). The 6-mRNA 

score was the most accurate predictor of severe respiratory failure and death except SOFA. The AUROC 

confidence intervals were overlapping because the study was not powered to detect statistically significant 

differences. As a proxy for assessing how the 6-mRNA score might add to a clinician’s bedside severity 

assessment, we evaluated whether a combination of our classifier with the SOFA score improves over SOFA 

alone for the prediction of severe respiratory failure. The two scores together had an AUROC of 0.95; the 

continuous net reclassification improvement (cNRI) was 0.43 [95% CI: 0.04–0.81, P=0.03]. Together, these 

results suggest a potential improvement in clinical risk prediction when adding the 6-mRNA score to standard 

risk predictors; but definitive conclusion requires validation in additional independent data. 

 

Translation to a clinical report 

To improve utility and adoption, a risk prediction score should be presented to clinicians in an intuitive and 

actionable test report. To that end, we discretized the 6-mRNA score in three bands: low-risk, intermediate-risk, 

and high-risk of severe outcome. The performance characteristics of each band are shown in Table 4.The table 

shows performance of the test on retrospective data (excluding healthy controls) using two versions of decision 

thresholds: thresholds optimized on the training data (Table 4a), and thresholds optimized using the 

retrospective test set (Table 4b). The outcome was severe infection. Tables 4c, d show corresponding results 

on the COVID-19 data, using severe respiratory failure as outcome. 

 

Translation to a rapid assay 

Any risk prediction score should be rapid enough to fit into clinical workflows. We thus developed a LAMP 

assay as a proof of concept for a rapid 6-mRNA test. We further showed that across 61 clinical samples from 
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healthy controls and acute infections of varying severities that the LAMP 6-mRNA score and the reference 

NanoString 6-mRNA score had very high correlation (r=0.95; Supplementary Figure 2). These results 

demonstrate that with further optimization the 6-mRNA model could be translated into a clinical assay to run in 

less than 30 minutes. 
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Discussion 

The severe economic and societal cost of the ongoing COVID-19 pandemic, the fourth viral pandemic since 

2009, has underscored the urgent need for a prognostic test that can help stratify patients as to who can safely 

convalesce at home in isolation and who needs to be monitored closely. Here we integrated 705 peripheral 

blood transcriptome profiles across 21 heterogeneous studies from patients with viral infections, none of whom 

were infected with SARS-CoV-2. Despite the substantial biological, clinical, and technical heterogeneity across 

these studies, we identified a 6-mRNA host-response signature that distinguished patients with severe viral 

infections from those without. We demonstrated generalizability of this 6-mRNA model first in a set of 21 

independent heterogeneous cohorts of 1,417 retrospectively profiled samples, and then in an independent 

prospectively collected cohort of patients with SARS-CoV-2 infection in Greece. In each validation analysis, 

the 6-mRNA classifier accurately distinguished patients with severe outcome from those with non-severe 

outcomes, irrespective of the infecting virus, including SAR-CoV-2. Importantly, across each analysis, the 6-

mRNA classifier had similar accuracy, measured by AUROC, demonstrating its generalizability and robustness 

to biological, clinical, and technical heterogeneity. Although this study was focused on development of a 

clinical tool, not a description of transcriptome-wide changes, the applicability of the signature across viral 

infections further demonstrates that host factors associated with severe outcomes are conserved across viral 

infections, which is in line with our recent large-scale analysis (20). 

 

While many risk-stratification scores and biomarkers exist, few are focused specifically on viral infections. Of 

the recent models specifically designed for COVID-19, most are trained and validated in the same homogenous 

cohorts, and their generalizability to other viruses is unknown because they have not been tested across other 

viral infections (14). Consequently, when a new virus, such as SARS-CoV-2, emerges, their utility is 

substantially limited. However, we have repeatedly demonstrated that the host response to viral infections is 

conserved and distinct from the host response to other acute conditions (15-20).  

 

Here, building upon our prior results, we developed a 6-mRNA classifier specifically trained in patients with 

viral infection to risk stratify better than other existing biomarkers. Further, the only assay authorized for 

clinical use in risk-stratifying COVID-19 (IL-6 measured in blood), substantially underperformed our proposed 

6-mRNA model here. That said, the nominal improvement over existing biomarkers (Table 3) for prediction of 

severe respiratory failure requires larger cohorts to confirm statistical significance. The 6-mRNA score is 

nominally worse than SOFA, but SOFA requires 24 hours to calculate, while the 6-mRNA score could be run in 

30 minutes, demonstrating its utility as a triage test. The synergy (positive NRI) in combination with SOFA also 

suggests that the 6-mRNA score could improve practice in combination with clinical gestalt. The 6-mRNA 

score has been reduced to practice as a rapid isothermal quantitative RT-LAMP assay, suggesting that it may be 

practical to implement in the clinic with further development.   

 

Our goal in this study was not to investigate underlying biological mechanisms, but to address the urgent need 

for a prognostic test in SARS-CoV-2 pandemic, and to improve our preparedness for future pandemics. 

However, using immunoStates database (https://metasignature.khatrilab.stanford.edu) (42), we found 5 out of 

the 6 genes (HK3, DEFA4, TGFBI, LY86, HLA-DPB1) are highly expressed in myeloid cells, including 

monocytes, myeloid dendritic cells, and granulocytes. This is in line with our recent results demonstrating that 

myeloid cells are the primary source of conserved host response to viral infection (20). Further, we have 

previously found that DEFA4 is over-expressed in patients with dengue virus infection who progress to severe 

infection (43), and in those with higher risk of mortality in patients with sepsis (18). HLA-DPB1 belongs to the 

HLA class II beta chain paralogues, and plays a central role in the immune system by presenting peptides 

derived from extracellular proteins. Class II molecules are expressed in antigen presenting cells (B 

lymphocytes, dendritic cells, macrophages). Reduced expression of HLA-DPB1 described herein is fully 

compatible with the decreased expression of HLA-DR on the cell membranes of circulating monocytes of 

patients with severe respiratory failure by SARS-CoV-2. This is a unique immune dysregulation where despite 

the down-regulation of HLA-DR monocytes remain potent for the production of pro-inflammatory cytokines, 
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namely TNFα and IL-6. This complex immune dysregulation fully differentiates critically ill patients with 

COVID-19 from patients with bacterial sepsis (44) in patients with severe outcome and suggests dysfunctional 

antigen presentation that should be further investigated. Similarly, BATF is significantly over-expressed, and 

TGFBI is significantly under-expressed in patients with sepsis compared to those with systemic inflammatory 

response syndrome (SIRS) (15). Finally, lower expression of TGFBI and LY86 in peripheral blood is associated 

with increased risk of mortality in patients with sepsis (18). These results further suggest that there may be a 

common underlying host immune response associated with severe outcome in infections, irrespective of 

bacterial or viral infection. Consistent differential expression of these genes in patients with a severe infectious 

disease across heterogeneous datasets lend further support to our hypothesis that dysregulation in host response 

can be leveraged to stratify patients in high- and low-risk groups.  

 

Our study has several limitations. First, our study uses retrospective data with large amount of heterogeneity for 

discovery of the 6-mRNA signature; such heterogeneity could hide unknown confounders in classifier 

development. However, our successful representation of biological, clinical, and technical heterogeneity also 

increased the a priori odds of identifying a parsimonious set of generalizable prognostic biomarkers suitable for 

clinical translation as a point-of-care. Second, owing to practical considerations for urgent need, we focused on 

a preselected panel of mRNAs. It is possible that similar analysis using the whole transcriptome data would find 

additional signatures, though with less clinical data. Third, we only considered linear models. It is possible that 

more complex models that account for non-linear relationships may be more accurate, but also may be overfit. 

Fourth, a common limitation in all these types of pandemic observational studies is a lack of understanding of 

the effect of time from symptoms onset. Finally, additional larger prospective cohorts are needed to further 

confirm the accuracy of the 6-mRNA model in distinguishing patients at high risk of progressing to severe 

outcomes from those who do not.  

 

Overall, our results show that once translated into a rapid assay and validated in larger prospective cohorts, this 

6-mRNA prognostic score could be used as a clinical tool to help triage patients after diagnosis with SARS-

CoV-2 or other viral infections such as influenza. Improved triage could reduce morbidity and mortality while 

allocating resources more effectively. By identifying patients at high risk to develop severe viral infection, i.e., 

the group of patients with viral infection who will benefit the most from close observation and antiviral therapy, 

our 6-mRNA signature can also guide patient selection and possibly endpoint measurements in clinical trials 

aimed at evaluating emerging anti-viral therapies. This is particularly important in the setting of current 

COVID-19 pandemic, but also useful in future pandemics or even seasonal influenza. 
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Figure 1. Study flow. (a) Clinical data flows for training and testing. (b) Machine learning worfklow used to 

develop and validate the 6-mRNA viral severity classifier. LOSO = Leave-One-Study-Out. CV = cross-

validation. AUROC = Area Under ROC curve. 
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Figure 2. Training data for the 6-mRNA classifier. (a) Visualization of 705 samples across 21 studies in low 

dimension using t-SNE. (b) Logistic regression model selection. Each dot corresponds to a model defined by a 

combination of logistic regression hyperparameters and a decision threshold. Entire search space (100 

hyperparameter configurations) is shown. (c) ROC plot for the best model. The plot is constructed using pooled 

probabilities from cross-validation folds. (d) Expression of the 6 genes used in the logistic regression model 

according to mortality outcomes. 
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Figure 3. Validation of the 6-mRNA classifier in the independent retrospective non-COVID-19 cohorts. (a) 

Visualization of the samples using t-SNE. (b) Expression of the 6 genes used in the logistic regression model in 

patients with clinically relevant subgroups. (c) 6-mRNA classifier accurately distinguishes non-severe and 

severe patients with COVID-19 as well as those who died. (d) ROC plot for the subgroups.  

 

 

 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 8, 2020. ; https://doi.org/10.1101/2020.12.07.20230235doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.07.20230235
http://creativecommons.org/licenses/by-nd/4.0/


 

 20 

 
 

Figure 4. Validation of the 6-mRNA classifier in the COVID-19 cohort. (A) Visualization of 97 samples in the 

prospective validation cohort using t-SNE. (B) Expression of the 6 genes used in the logistic regression model 

in patients with severe and non-severe SARS-CoV-2 viral infection. (C) 6-mRNA classifier accurately 

distinguishes non-severe and severe patients with COVID-19 as well as those who died. (D) ROC plot for non-

severe COVID-19 vs. severe or death (samples from healthy controls not included).  
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Table 1. Characteristics of viral infection studies used for training. *COPD, chronic pulmonary obstruction 

disorder; ** ICU, intensive care unit; ***TB, tuberculosis; ****CAP, community-acquired penumonia 

 

Study 

identifier 

First author 

or PI 
Study description 

Timing of sample 

collection 

N 

(survivors/ 

non-survivors) 

Age 

(Median, 

IQR) 

Male 

(n (%)) 
Country Platform 

E-MEXP-3589 Almansa 

Patients hospitalized 

with COPD* 
exacerbation 

Hospital/ICU 

admission 
5 (5/0) Unk. 5(100) Spain Agilent 

E-MTAB-1548 Almansa 
Surgical patients with 

sepsis (EXPRESS) 

Average post-

operation day 4 
3 (3/0) 

78.0 (71.5-

79.5) 
3(100) Spain Agilent 

E-MEXP-3162 Van de Weg Uncomplicated dengue 
Within 48h of 

onset 
21 (21/0) Unk. Unk. Indonesia Affymetrix 

GSE13015 

(GPL6102) 
Pankla 

Sepsis, many cases from 
burkholderia 

Within 48 h of 
diagnosis 

3 (2/1) 
54.0 (46.0-

55.5) 
1(33) 

Thailand 

Illumina 

GSE13015 
(GPL6947) 

2 (2/0) 
64.5 (56.2-

72.8) 
1(50) Illumina 

GSE21802 
Bermejo-

Martin 

Pandemic H1N1 in 

ICU** 

Within 48 h of 

ICU admission 
6 (5/1) Unk. Unk. Canada Illumina 

GSE22098 Berry 

Patients with active 
TB*** and other 

inflammatory and 
infectious diseases 

At admission 39 (39/0) 
31.0 (19.0-

47.0) 
6(15) 

UK, South 

Africa 
Illumina 

GSE27131 Berdal Severe H1N1 influenza Admission to ICU 3 (2/1) 
38.0 (31.5-

46.0) 
3(100) Norway Affymetrix 

GSE28991 Naim Acute dengue fever 
Within 72h of 

onset 
11 (11/0) Unk. Unk. Singapore Illumina 

GSE32707 Dolinay 

Critically ill patients in 

ICU (Sepsis, SIRS 

and/or ARDS) 

Admission to ICU 7 (5/2) 
45.0 (39.0-

50.5) 
4(57) USA Illumina 

GSE40012 Parnell 
Bacterial or influenza A 

pneumonia or SIRS 
Admission to ICU 11 (11/0) Unk. 4(36) Australia Illumina 

GSE54514 Parnell Sepsis patients in ICU Admission to ICU 2 (2/0) 
62.5 (60.2-

64.8) 
1(50) Australia Illumina 

GSE51808 Kwissa Acute dengue fever 
1-8 days after 

onset 
28 (28/0)  Unk. Thailand Affymetrix 

GSE60244 Suarez 
Lower respiratory tract 

infections 

Within 24 h of 

admission 
62 (62/0) 

59.0 (50.0-

74.5) 
24(39) USA Illumina 

GSE65682 Scicluna 
Suspected but negative 

for CAP**** 

Within 24 h of 

ICU admission 
9 (7/2) 

67.0 (63.0-

73.0) 
7(78) Netherlands Affymetrix 

GSE68310 Zhai 

Outpatients with acute 

respiratory viral 
infections 

Within 48h of 

onset 
75 (75/0) 

21.0 (20.4-

22.3) 
34(45) USA Illumina 

GSE82050 Tang 
Moderate and severe 

influenza infection 

Within 24 h of 

admission 
17 (17/0) 

55.0 (45.0-

72.0) 
Unk. Germany Agilent 

GSE95233 Venet 
Septic shock patients in 

ICU 
Admission to ICU 7 (5/2) 

47.0 (42.0-
65.0) 

5(71) France Affymetrix 

Australia / 

WIMR 
Tang 

Community or hospital 

clinics with influenza-
like illness 

At presentation 332 (321/11) 
48.0 (32.0-

63.5) 
129(39) Australia Nanostring 

Stanford ICU 

databank 
Rogers 

Suspected sepsis with 

ARDS risk factors 
Admission to ICU 8 (6/2) 

62.0 (55.5-

67.2) 
4(50) USA Nanostring 

PROMPT 
Giamarellos-

Bourboulis 

Suspected infection with 

2+ SIRS 
Admission to ED 1 (1/0) 78.0 0(0) Greece Nanostring 

PREVISE Herrero 
Outpatient urgent care 

with suspected CAP 
At presentation 53 (52/1) 

78.0 (66.0-

87.0) 
33(62) Spain Nanostring 
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Table 2. Demographics, severity scores, and severity markers for the prospective COVID-19 cohort, overall 

and split by mortality. P-values correspond to Mann-Whitney tests for difference of means and chi-square tests 

for difference of proportions between the survival and mortality groups. Unless indicated otherwise, numbers 

shown are median [IQR].  

 

Variable Overall Death Survival P value 

N 97 16 81  

Age years  62 [52, 72.25] 68.50 [62.75, 84.25] 60.00 [50.75, 70.25] 0.003 

Gender = Male (%) 68 (70.1) 12 ( 75.0) 56 (69.1) 0.865 

White blood cells /mm3  6770 [5145, 10227.50] 
8540.00 [5542.50, 

12510.00] 

6480.00 [5145.00, 

9622.50] 
0.275 

Neutrophils (%) 78.10 [68.35, 86.60] 88.95 [86.40, 93.03] 77.09 [65.22, 83.75] <0.001 

Lymphocytes (%) 12.70 [7.20, 21.15] 6.70 [3.65, 9.65] 14.03 [9.00, 22.42] <0.001 

Platelets /mm3  
215000 [172900, 

266000] 

249050 [180750, 

298000] 

214000 [172600, 

260800] 
0.176 

D-dimer ng/ml  
977.90 [476.25, 

2560.00] 

4480.00 [2440.00, 

13161.50] 

850.00 [437.50, 

1947.50] 
<0.001 

CRP mg/l  107.00 [31.60, 222.50] 
224.75 [142.89, 

260.75] 
79.10 [28.80, 202.00] 0.002 

SOFA score 3.00 [1.00, 6.00] 5.50 [4.00, 6.25] 2 [1, 6] 0.006 

APACHE II 7.00 [5.00, 11.00] 11.00 [8.00, 13.50] 7 [4, 9] 0.001 

Length of hospital stay 13.00 [11.00, 20.00] 13 [8.75, 17.25] 13 [11, 20] 0.410 

Severe respiratory failure (%) 50 (51.5) 16 (100.0) 34 (42.0) <0.001 

 

 
 

Table 3. Prognostic power of the 6-mRNA signature classifier and comparator scores and markers in the 

independent COVID-19 cohort. Shown are AUROCs for non-missing data, plus 95% CI. The final column is a 

‘fair’ assessment of the 6-mRNA signature classifier, i.e. the performance on the subset of patients that was 

available to the comparator. 

 

Table 3a. Prognostic power for predicting severe respiratory failure. Bold font indicates predictor with higher 

AUROC, which in nearly all cases is the 6-mRNA classifier. 

Comparator Marker Number Available 
Comparator 

AUROC 
6-mRNA classifier AUROC 

6-mRNA classifier 97  0.89 (0.82 - 0.95) 

SOFA 96 0.93 (0.87 - 0.98) 0.89 (0.82 - 0.95) 

APACHE II 93 0.83 (0.75 - 0.91) 0.89 (0.83 - 0.96) 
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Age 96 0.78 (0.69 - 0.87) 0.89 (0.82 - 0.95) 

PCT 76 0.80 (0.70 - 0.90) 0.89 (0.81 - 0.96) 

CRP 97 0.86 (0.79 - 0.94) 0.89 (0.82 - 0.95) 

Lactate 45 0.75 (0.61 - 0.90) 0.82 (0.69 - 0.94) 

IL-6 97 0.73 (0.63 - 0.83) 0.89 (0.82 - 0.95) 

suPAR 97 0.79 (0.70 - 0.88) 0.89 (0.82 - 0.95) 

 

Table 3b. Prognostic power for predicting mortality. Bold font indicates predictor with the higher AUROC. 

Comparator Marker Number Available 
Comparator 

AUROC 
6-mRNA classifier AUROC 

6-mRNA classifier 97  0.78 (0.64 - 0.92) 

SOFA 96 0.72 (0.57 - 0.87) 0.78 (0.64 - 0.92) 

APACHE II 93 0.76 (0.61 - 0.90) 0.77 (0.63 - 0.91) 

Age 96 0.74 (0.59 - 0.89) 0.78 (0.64 - 0.92) 

PCT 76 0.73 (0.56 - 0.89) 0.77 (0.61 - 0.93) 

CRP 97 0.74 (0.59 - 0.89) 0.78 (0.64 - 0.92) 

Lactate 45 0.78 (0.60 - 0.95) 0.80 (0.63 - 0.97) 

IL-6 97 0.57 (0.41 - 0.73) 0.78 (0.64 - 0.92) 

suPAR 97 0.74 (0.60 - 0.89) 0.78 (0.64 - 0.92) 

 
 

Table 4. Test characteristics of the 6-mRNA score in non-COVID-19 and COVID-19 patients using the three-

band test report. “Severe in band” is the number of patients with severe viral infection assigned to the 

corresponding band. “Non-severe in band” is the number of patients with non-severe viral infection assigned to 

the corresponding band. The “Percent severe in band” is the percentage of patients in the band who had severe 

outcome. The “In-band” column is the percentage of patients assigned by the classifier to the corresponding 

band in the retrospective study.  

 

Table 4a. non-COVID-19 results. The band thresholds were set using training data and locked. 
Band Severe in band Non-severe in band Percent 

severe 

in band 

Sensitivity Specificity Likelihood 

ratio 

In-band 

Low risk 2 419 0.5% 98% 62% 0.04 56% 

Intermediate risk 68 247 22% 85% 63% 2.3 42% 

High risk 10 8 56% 12% 99% 11 2.4% 

 

 

Table 4b. non-COVID-19 results. The band thresholds were set using the retrospective data. 
Band Severe in band Non-severe in band Percent 

severe 

in band 

Sensitivity Specificity Likelihood ratio In-band 

Low risk 9 540 1.6% 89% 80% 0.14 73% 

Intermediate risk 2 19 9.5% 2.5% 97% 0.89 2.8% 

High risk 69 115 38% 86% 83% 5.1 24% 
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Table 4c. COVID-19 results. The band thresholds were set using training data and locked. 
Band Severe in band Non-severe in band Percent 

severe 

in band 

Sensitivity Specificity Likelihood 

ratio 

In-band 

Low risk 4 25 14% 92% 53% 0.15 30% 

Intermediate risk 3 7 30% 6% 85% 0.4 10% 

High risk 43 15 74% 86% 68% 2.7 60% 

 

 

Table 4d. COVID-19 results. The band thresholds were set using the prospective data. 
Band Severe in band Non-severe in band Percent 

severe 

in band 

Sensitivity Specificity Likelihood ratio In-band 

Low risk 5 32 14% 90% 68% 0.15 38% 

Intermediate risk 5 8 38% 10% 83% 0.59 13% 

High risk 40 7 85% 80% 85% 5.4 48% 
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