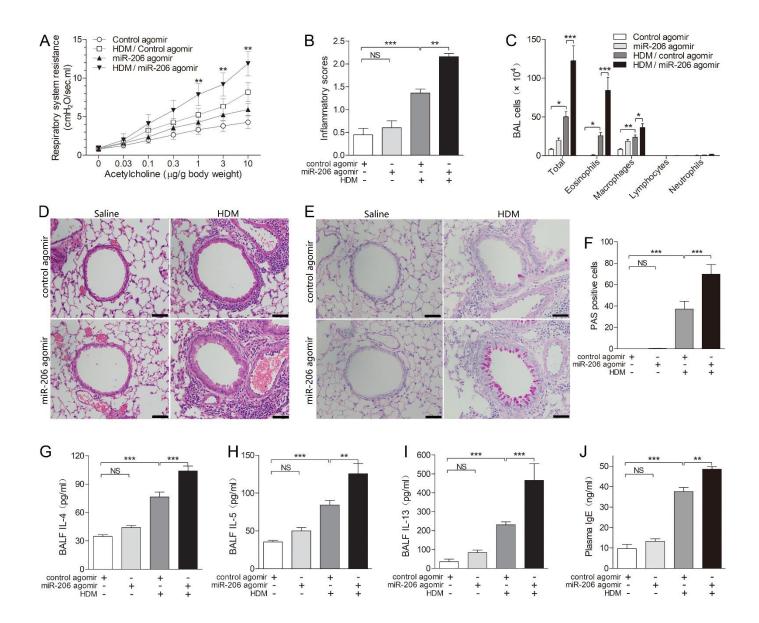
Online Data Supplement:

An epithelial microRNA upregulates airway IL-25 and TSLP expression in type 2high asthma via targeting CD39-extracellular ATP axis


Kan Zhang^{1,2,3*}, Yuchen Feng^{1,2*}, Yuxia Liang^{1,2}, Wenliang Wu^{1,2}, Chenli Chang^{1,2}, Dian Chen^{1,2}, Shengchong Chen^{1,2}, Jiali Gao^{1,2}, Gongqi Chen^{1,2}, Lingling Yi^{1,2}, Dan Cheng⁴, Guohua Zhen^{1,2}†

¹Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; ²Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, and National Clinical Research Center for Respiratory Diseases, Wuhan, China; ³Department of Respiratory and Critical Care Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China; ⁴Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China.

Gene	Species	Туре	Sequence
β -actin	Human	Forward	GCAAGCAGGACTATGACGAG
		Reverse	CAAATAAAGCCATGCCAATC
CD39	Human	Forward	ACTATCGAGTCCCCAGATAATGC
		Reverse	CCTGATCCTTCCCATAGCACAA
CLCA1	Human	Forward	ATGGCTATGAAGGCATTGTCG
		Reverse	TGGCACATTGGGGGTCGATTG
GAPDH	Human	Forward	AAGGTGAAGGTCGGAGTCAAC
		Reverse	GGGGTCATTGATGGCAACAATA
POSTN	Human	Forward	GACCGTGTGCTTACACAAATTG
		Reverse	AAGTGACCGTCTCTTCCAAGG
SERPINB2	Human	Forward	TCCTGGGTCAAGACTCAAACC
		Reverse	CATCCTGGTATCCCCATCTACA
β -actin	Mouse	Forward	GGCTGTATTCCCCTCCATCG
		Reverse	CCAGTTGGTAACAATGCCATGT
Gapdh	Mouse	Forward	TGGCCTTCCGTGTTCCTAC
		Reverse	GAGTTGCTGTTGAAGTCGCA
Cd39	Mouse	Forward	AGATGAAATCGGTGCGTACCT
		Reverse	GAGTCTGGTGATGCTTGGATG

Supplementary Table. Primers for quantitative PCR

Supplementary Figure and Figure Legend:

Supplementary Figure. Overexpression of airway miR-206 expression aggravates HDM-induced AHR, airway inflammation, mucus overproduction and type 2 response in mice. (A) Respiratory resistance in response to different concentration of intravenous acetycholine at 24 h after the last HDM or saline challenge in mice intranasally administered with control or miR-206 agomir. (B) Inflammatory scores of lung sections from mice intranasally administered with control or miR-206 agomir and

challenged with HDM or saline were calculated as described in Methods. (C) Counts for macrophages, eosinophils, lymphocytes and neutrophils in BALF. (D) H&E staining of representative lung sections. (E) PAS staining for mucus in representative lung sections. (F) The numbers of PAS-staining-positive cells were counted in four random fields for each lung section at ×200 magnification. (G-I) The protein levels of IL-4 (*G*), IL-5 (*H*), IL-13 (*I*) in BALF were determined by ELISA. (J) Plasma IgE levels in peripheral blood were determined by ELISA. n = 6-10 mice per group combined from 2 experiments. Data are mean \pm SD. **P*<0.05; ***P*<0.01; ****P*<0.001 (one-way ANOVA with Bonferroni's post hoc test). Scale bar = 50 µm.