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Abstract

Hospitals have encountered challenges in performing efficient scheduling and good resource

management to ensure a high quality of healthcare is provided to their patients. Operating

room (OR) scheduling is one of the issues that has gained our attention because it is related

to workflow efficiency and critical care of hospitals. Automatic scheduling and high predictive

accuracy of surgical case duration have a critical role in improving OR utilization. To estimate

surgical case duration, most hospitals might rely on historical averages based on a specific

surgeon or a specific procedure type obtained from electronic medical record (EMR) scheduling

systems. However, the low predictive accuracy with EMR data leads to negative impacts on

patients and hospitals, such as rescheduling of surgeries and cancellation. This study aims

to improve and interpret the prediction of surgical case duration with machine learning (ML)

methodology. A large data set containing 170,748 surgical cases (from Jan 2017 to Dec 2019)

was obtained from a hospital, and it covered a broad variety of details on patients, surgeries,

specialties and surgical teams. In addition, a more recent data set with 8,672 cases (from

Mar to Apr 2020) was available to be used for time-wise evaluation. Historical averages were

computed from the EMR data for surgeon- or procedure-specific cases, and served as baseline

models for comparison. Subsequently, models were built with linear regression, random forest

and extreme gradient boosting (XGB) algorithms, and were evaluated with R-square (R2),

mean absolute error (MAE), percentage overage (actual duration longer than prediction),
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underage (shorter than prediction) and within (absolute duration differences falling within

minimum(maximum(15 %,15 min), 60 min) of prediction). The XGB model was superior

to the other models, achieving a higher R2 (84 %) as well as a lower MAE (31.1 min) and

inaccurate percentage (24.4 %). In addition, XGB predictions were analyzed with Shapley

additive explanations (SHAP). SHAP interpretation on complex cases (e.g. containing more

than 2 procedures) unraveled that older primary surgeons took shorter time to complete the

surgery and primary surgeons with longer previous surgical time within a week took more time

to complete the surgery. Longer durations were utilized when patient’s hypertension status

was unknown. Meanwhile, SHAP interpretation on model loss showed that the loss values

of elder primary surgeons increased for cases with larger deviations in prediction suggesting

additional information related to surgeon is required for model improvement. Overall, this

study applied ML techniques in the field of OR scheduling to reduce the medical and financial

burden for healthcare management. The results revealed the impact of main factors (e.g.

anesthesia, procedure types, no. of procedure) and interaction effects (e.g. no. of procedure

x primary surgeon’s age) in surgical case duration prediction as well as identified the feature

that contributes to errors in prediction.

Introduction1

It has become increasingly important for clinics and hospitals to manage resources for critical2

care during the COVID-19 pandemic period. Statistics show that approximately 60 % of patients3

admitted to the hospital will need to be treated in the operating room (OR) [1], and the average4

OR cost is up to 2,190 dollars per hour in the United States [2, 3]. Hence, the OR is considered5

as one of the highest hospital revenue generators and accounts for as much as 42 % of a hospital’s6

revenue [4, 3]. Based on these statistics, a modern OR schedule and management strategy is not7

only critical to patients who are in need of elective, urgent and emergent surgeries but is also8

important for surgical teams to be prepared. Owing to the importance of the OR, improvement of9

OR efficiency has high priority so that the cost and time spent on the OR is minimized while the10

utilization of OR is maximized to increase the surgical case number and patient access [5].11

In a healthcare system, numerous factors are involved in affecting OR efficiency, for example,12

patient expectation and satisfaction, interactions between different professional specialties, unpre-13

dictability during surgeries, surgical case scheduling, etc. [6]. Although the OR process is complex14

and involves multiple parties, one way to enhance OR efficiency is by increasing the accuracy of15
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predicted surgical case duration. Over- or underutilization of OR time often leads to undesirable16

consequences such as idle time, overtime, cancellation or rescheduling of surgeries, which may in-17

duce a negative impact on the patient, staff and hospital [7]. In contrast, high efficiency in OR18

scheduling not only contributes to a better arrangement for the usage of the OR and resources but19

can also lead to a cost reduction and revenue increase since more surgeries can be performed.20

Currently, most hospitals schedule surgical case duration by employing estimations from the21

surgeon and/or averages of historical case durations, and studies show that both of these methods22

have limited accuracy [8, 9]. For case lengths estimated by surgeons, factors including patient23

conditions and anesthetic issues might not be taken into consideration. Moreover, underestimation24

of case duration often occurs because surgeon estimations are usually made by favoring maximizing25

block scheduling to account for potential cancellations and cost reduction. Furthermore, operations26

with higher uncertainty and unexpected findings during surgery add difficulties and challenges to27

case length estimation [8]. Historical averages of case duration for a specific surgeon or a specific28

type of surgery obtained from electronic medical record (EMR) scheduling systems have also been29

used in hospitals. However, these methods have been shown to produce low accuracy due to the30

large variability and lack of the same combination of factors in the preoperative data available on31

the case that is being performed [10].32

To improve the predictability, researchers have utilized linear statistical models, such as re-33

gression, or simulation for surgical duration prediction and evaluation of the importance of input34

variables [11, 12, 13]. However, a common shortcoming of these studies is that relatively fewer input35

variables or features were used in their models than in alternative approaches due to the limitation36

of statistical techniques in handling too many input variables. Recently, machine learning (ML) has37

been shown to be powerful and effective in aiding health care management. Master et al. (2017)38

trained multiple ML models, including decision tree regression, random forest regression, gradi-39

ent boosted regression trees and hybrid combinations, to automate prediction and classification of40

pediatric surgical durations [14]. Ensemble algorithms, implementing least-squares boosting and41

bagging models with ML, developed by Shahabikargar et al. (2017) were shown to reduce the error42

by 55 % compared to the original error [7]. With the use of a boosted regression tree, Zhao et al.43

(2019) increased the percentage of accurately booked cases for robot-assisted surgery from 35 %44

to 52 %. Bartek et al. (2019) reported that they were able to improve predicted cases within 1045

% of the threshold tolerance from 32 % to 39 % using an extreme gradient boosting model [15].46

Nonetheless, these ML studies included only 5-12 different types of procedures and specialties to47
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train their ML models, which may limit the generalization of these models.48

In this study, more than 170,000 cases were obtained from China Medical University Hospital49

(CMUH) containing 743 types of procedures across 25 different specialties. From the original data,50

we further analyzed the working time of primary surgeons and computed their total number of51

previous surgeries and the total minutes spent on previous surgeries within 24 hr as well as within52

the last 7 days. Since surgeons’ working performance might be affected by previous events, surgical53

cases performed by the same primary surgeon, especially within 24 hr, should not be considered54

as totally independent and unrelated. Hence, previous surgical counts and working time obtained55

from surgeons’ data were included as additional features in our ML model training to account for56

their influences on surgical case duration. We hypothesize that these features impose significant57

influences on surgical case duration and may aid in improving the performance of a trained ML58

model.59

Results60

Model development and evaluation61

Approximately 17 % of the cases were excluded from the original data from Jan 1, 2017, to Dec62

31, 2019, based on the exclusion criteria mentioned in Fig. S2 (Supplementary info). Therefore,63

142,445 cases containing more than 743 procedural categories and 25 specialties were included for64

predictive model development and evaluation. Furthermore, a recent data set collected from Mar65

1 to April 30, 2020, (7,231 cases after exclusion) was used in the time-wise evaluation to verify the66

robustness of the model in making predictions.67

The results of all the metrics used to evaluate model performance on training, internal validation68

and time-wise testing sets are reported in Table S1 of the Supplementary info. Fig. 1 summarizes69

the results of the model evaluation on the time-wise testing set. The figure shows that the average70

model for the surgeon-specific scenario was not a good estimate for surgical case duration. The71

average model for the procedure-specific scenario had a lower percentage underage (actual duration72

shorter than prediction) and overage (longer than prediction) than the surgeon-specific average73

model. These differences were due to an extensive procedure classification in the procedure-specific74

model. However, the percentage underage was still quite high. Since no other information is taken75

into consideration in both of the average models except the duration of surgical cases that happened76

in the past, these models usually exhibit prediction bias and low accuracy.77
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Figure 1: Machine learning algorithms improved the prediction accuracy of surgical case duration
based on the results of time-wise model evaluation. The performance of all models was evaluated on
a time-wise testing set (data not included in the original data set for ML model training) by using
(A) R2, mean absolute error (MAE) as well as (B) percentage overage (actual duration longer than
prediction), underage (shorter than prediction) and within (absolute duration differences falling
within minimum(maximum(15 %,15 min), 60 min) of prediction).
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Patient Surgical team Operation Facility Primary Surgeon’s Prior Events

Age (age) Surgeon team size (TeamSize) Procedure type (Proced) Day of the week (weekday)
No. of previous surgeries performed by the surgeon
within 24 hr (Opcount 1d)

Gender (SexName) Specialty (DivNo) Anesthesia type (AnaValue) Time of day (TimeofDay)
Total surgical minutes performed by the surgeon
within 24 hr (Optoltime 1d)

ICD code (Diag) Primary surgeon’s age (Dr age) No. of procedure (Nproced)
No. of previous surgeries performed by the surgeon
within the last 7 days (Opcount 7d)

In- /out-patient (OpType)
Total surgical minutes performed by the surgeon
within the last 7 days (Optoltime 7d)

ASA status (ASA)
Hypertension (Hypertension)
BMI category (BMI)

Table 1: Preoperative data with 19 predictor variables were used as inputs for model development.
The predictor variables can be categorized by relationship to patient, surgical team, operation,
facility and surgeon’s prior events. These predictor variables were selected based on the significance
(p-value < 0.05) of their correlations with the outcome using a regression analysis. The text
in the parentheses is the code name of the corresponding feature variable that was used during
model development and interpretation. BMI classification was performed following the standard
for Asians and the categories are listed in Table S3. ICD: International Classification of Diseases;
ASA: American Society of Anesthesiologists; BMI: Body mass index.

We first fitted the linear regression (Reg) model by including all the input variables shown in78

Table 1. The evaluation metrics reported a higher percentage within than the average models on79

the time-wise testing sets (Fig. 1). There was an increase in the R2 value, indicating that predictive80

performance of the model improved when other information was taken into consideration. Since81

the distribution of the surgical case duration was found to be non-normal (Fig. S1A), we tested82

Box-Cox transformation on the Reg model. The results showed that the measure of goodness of83

fit was maximum when the optimal value for transformation was close to 0 (results not shown).84

Therefore, we applied log-transformation on the surgical case duration. The log-transformation is85

a special case of the Box-Cox transformation [16]. Moreover, by applying log-transformation, the86

differences between shorter durations were expanded while the differences between longer durations87

were reduced. This is because the slope of the logarithmic function is steeper for smaller values but88

moderate for larger values. When we log-transformed surgical case duration and reran a regression89

model (i.e., logReg), the performance of the logReg model outperformed the Reg model.90

Although the performance of the logReg model was better than the Reg and the average models,91

an assumption of a linear relationship between the target and input variables was applied in both92

the Reg and the logReg models. The relationship between the target and input variables is usually93

nonlinear in a real-world situation. ML algorithms are helpful in making predictions in a more94

complicated scenario. The random forest (RF) model is the first ML model that we built in this95

study. There was a slight improvement in MAE compared to that of the logReg model. However,96

overfitting was observed in the RF model as performance of the training set was better than the97

internal validation and time-wise testing sets. An XGB model was subsequently developed to find98

out if the predictive performance would be better. Although the results of MAE, underage, within99
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Actual
Surgeon-
specific

Procedure-
specific

Reg logReg RF XGB

Total minutes 920,374 910,190 938,154 945,001 903,983 875,144 892,707
Total prediction error in minutes 487,357 266,185 243,233 240,980 224,476 224,643
Inaccurate percentage (%) 53 28.9 26.4 26.2 24.4 24.4

Table 2: The extreme gradient boosting (XGB) and random forest (RF) model produced the lowest
percentage of cumulative inaccuracy among all the other models. Cumulative differences between
actual and predicted case durations for all the models are shown in this table.

and overage were similar, the XGB model outperformed the RF model in terms of R2. Hence, the100

XGB model was chosen as the best model and was used in subsequent analysis.101

In addition to the three key metrics, we studied the accumulative inaccuracy of all the models102

by using the time-wise testing set. The total prediction error (in minutes) and the corresponding103

inaccurate percentage were calculated (Table 2). The actual total minutes represent the sum of104

surgical case durations for 7,231 cases in the time-wise testing set. The inaccurate percentage was105

derived from the percentage of total prediction error divided by the actual total minutes. The106

outcome shows that the inaccurate percentages of both the ML models (RF and XBG) were the107

lowest. Since the XGB model was not overfitted and had a higher R2 value, the XGB model was108

applied to improve the efficiency of OR scheduling. In addition to looking at the overall performance109

across all specialties, we compared the performance of the XGB model by further breaking it down110

to the specialty level on the time-wise testing set. Fig. S3 (Supplementary Info) shows the number111

of cases that were predicted as overage, underage and within for each specialty in the time-wise112

testing set. Most specialties had more cases that were predicted as within than as overage and113

underage. There were some exceptional specialties which had fewer cases of within because the114

total case numbers in these specialties were low. Moreover, the mean case durations were long for115

bariatric and metabolic as well as pediatric dentistry. As these cases were rare and required longer116

duration, this rendered difficulties for the model to predict accurately.117

Subsequently, we plotted Bland-Altman (BA) plots using the time-wise testing set for the aver-118

age models (surgeon- and procedure-specific) and the XGB model (Fig. 2). The BA plots for these119

three models were plotted on y-axes in two different scales, one is (actual-prediction) (Fig. 2A-C)120

and the other is (actual-prediction)/prediction (Fig. 2D-F). Histograms for x- and y-axes were also121

plotted alongside the corresponding BA plots in Fig. 2A-C. The BA plots and the histograms for122

y-axes clearly show that predictions of the XGB model, especially the shorter durations, were closer123

to the actual durations compared to predictions of the two average models. When duration differ-124

ences were divided by predictions (Fig. 2D-F), they represent the deviations of differences from the125
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Figure 2: Predictions produced by the extreme gradient boosting (XGB) model, especially the
shorter durations, were closer to the actual surgical case durations compared to predictions pro-
duced by average models. The Bland-Altman plots (with histograms for x- and y-axes) for average
models of (A) surgeon- and (B) procedure-specific scenarios, and (C) the XGB model revealed that
differences between actual and predicted durations in the XGB model were smaller. Bland-Altman
plots with differences versus predicted durations for (D) surgeon- and (E) procedure-specific sce-
narios, as well as for (F) the XGB model illustrated that actual and predicted duration differences
of the XGB model were smaller in deviations from the predictions. Percentage overage, within
and underage for cases falling within 0-60 min, 60-120 min, 120-240 min and 240-600 min of these
three models, respectively, were reported in the figure. Data points were colored according to the
classification of overage, within and underage.

predictions. This helps quantifying to what extent the differences occurred relative to predictions.126

In contrast to the average models, BA plot of the XGB model (Fig 2F) reveals deviations were127

much smaller and less scattered, including cases that were considered as overage and underage as128

well as long-duration cases. As a result, this demonstrates that the XGB model is more accurate129

than the average models in predicting surgical case duration.130

Model interpretation131

To uncover the global importance and the impact of each feature on the XGB model output,132

we extracted weighted feature gain (WFG) and applied Shapley additive explanations (SHAP) to133
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explain the model. WFG was computed based on the reduction in model accuracy when the variable134

was removed. This value serves as an indication of how important the variable is in improving the135

purity of a decision tree branch [17, 18]. A higher WFG percentage indicates that the variable136

is more important. Although WFG is widely used as the basis for feature selection methods, it137

may not be consistent with other feature attribution methods, such as split count or permutation138

[19]. In contrast, SHAP adopts the classical Shapley values estimation methods, which satisfy139

the desirable properties of local accuracy, missingness and consistency [20, 19]. It explains model140

output by computing the contribution of each feature to the prediction. Fig. 3A reports feature141

importance based on WFG while Fig. 3B shows feature impact on model output based on SHAP142

value. Both measures reveal that anesthesia type, procedure type, no. of procedure, hypertension143

and specialty were the 5 most important features in the XGB model. Notably, 3 of the top 5144

important variables were attributed to operative information (i.e., anesthesia type, procedure type145

and no. of procedure). Moreover, two of the features that we computed from the surgeon data146

(i.e., total surgical minutes and the number of previous surgeries performed by the surgeon within147

the last 7 days) were included within the top 10 list of both measures. Although there were some148

slight differences in the ranking order of feature importance, SHAP value is more informative as149

it provides quantification and visualization of the impact (negative or positive) of each feature on150

the final output for each case as well as the variations in feature contribution relative to changes in151

feature value (Fig. 4A).152

While SHAP summary plot provides global interpretability reflecting the general behavior of the153

features in the model, we also investigated the specific behavior of the features in a subset of model154

predictions. As complex cases with more procedure numbers and larger team size may benefit more155

from this ML predictive approach, we extracted complex cases from the time-wise testing set for156

local interpretability. From the SHAP summary plot of one-hot encoded features in Fig. 4A, we157

observed that cases with anesthesia type of general anesthesia (GA) and out-patient cases were158

associated with higher model output (longer duration) in addition to larger no. of procedure and159

surgeon team size. In contrast, cases belong to the specialties of otolaryngology, head, and neck160

(‘DivNo 350’), and ophthalmology (‘DivNo 380’) were associated with lower model output (shorter161

duration). Therefore, we selected complex cases by setting the criteria to be no. of procedure ≥162

2, team size ≥ 2, anesthesia type = GA, and not in the specialties of otolaryngology, head, and163

neck, and ophthalmology. Fig. 4B is a heatmap of SHAP interaction values of one-hot encoded164

features for the extracted complex cases. Only one-hot encoded features with top 12 largest SHAP165
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interaction values are reported in the figure. Features with higher and interesting interactive effects166

were highlighted in red boxes and their SHAP interaction values were plotted in Fig. 4D-G. No.167

of procedure had the highest total SHAP interaction value among all other features. The plot of168

its SHAP main effect value (Fig. 4C) unravels that an increase in no. of procedure was highly169

associated with an increase in predicted duration. Features, including primary surgeon’s age (Fig.170

4D), total surgical minutes performed by the surgeon within the last 7 days (Fig. 4E), and procedure171

type of spinal infusion surgery with spinal instrumentation equal or less than 6 segments (‘83046’,172

Fig. 4F), had higher SHAP interaction values with no. of procedure. From these SHAP interactive173

value plots, a few interesting phenomena were observed. For complex cases with 4-6 procedures,174

older primary surgeons were associated with shorter surgical case durations. On the other hand,175

primary surgeons with longer previous surgical minutes within the last 7 days were associated with176

longer durations for complex cases with 3-5 procedures. For procedure type of spinal infusion177

surgery with code ‘83046’, surgical case durations were longer regardless of the no. of procedure.178

Total surgical minutes (‘Optoltime 7d’) also interacted strongly with total no. (‘Optolcount 7d’)179

of previous surgeries performed by the surgeon within the last 7 days (Fig. 4G). This reflects180

that primary surgeons with higher ‘Optoltime 7d’ and higher ‘Optolcount 7d’, but not moderate181

‘Optoltime 7d’ and higher ‘Optolcount 7d’, were associated with longer durations. In summary,182

these interactive effects suggest that older primary surgeons took shorter time to finish complex183

cases and primary surgeons with longer previous surgical minutes tended to take longer time to184

complete complex surgeries. Moreover, complex cases with procedure code ‘83046’ consumed longer185

durations.186

When we looked at SHAP interaction value for cases belong to the specialty of plastic and187

reconstruction (‘DivNo 411’), similar effect of primary surgeon’s age was also observed. Fig. 4H188

shows that primary surgeons with younger age had larger positive impact on surgical case duration189

than those with older age implying that younger primary surgeons took longer time to perform190

the surgery. Moreover, for cases extracted from this specialty and the specialty of ophthalmology191

(‘DivNo 380’), cases with more no. of procedure and patient’s hypertension status of unknown192

were associated with longer durations. However, this was not observed in cases with one procedure.193

These suggest that hypertension might be an important factor affecting surgical case duration.194

Hence, hypertension status of unknown might added in uncertainties and increased duration of195

cases with two or more procedure numbers.196

In addition to global and local interpretability on model prediction, it is also important to197
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find out factors that contribute to errors in model prediction. This may subsequently help to198

debug and improve the model. SHAP loss value is a tool in SHAP package that can be used to199

find out each feature contribution to the model loss. Loss can be seen as a magnitude between200

the actual values and the predicted values. A larger loss implies a larger error in model output.201

Hence, lower model loss is preferable as this indicates that the predicted values are closer to the202

actual values. As Fig. 2C reveals that cases with shorter durations had less errors than longer203

durations in the XGB model, we extracted cases with predicted durations falling in the range of204

180-600 min from the testing set and investigated which features contribute to higher errors, i.e.205

higher loss. Subsequently, we selected cases with absolute duration differences less than 30 min206

(clinically not significant differences) or more than 90 min (large differences). Fig. 5A and B are207

summary plots of the top 10 one-hot encoded features with the highest average SHAP loss value208

magnitude for cases with small and large differences, respectively. The SHAP loss value of primary209

surgeon’s age (‘Dr age’) was noticed because this feature had a longer positive tail, i.e. higher210

contribution to the model loss, in cases with large differences than cases with small differences.211

Meanwhile, other features had long negative tails implying that these features contributed to the212

reduction in model loss. We then focused on cases with predicted durations of 180-600 min to look213

at the distribution of SHAP loss value for one feature. We sorted all the cases according to their214

absolute differences normalized to predictions (which quantify the deviations of differences from215

the predictions) and plotted Fig. 5C, which manifests deviations (y-axis) were larger for cases with216

larger index numbers (x-axis). The SHAP loss value for the feature of primary surgeon’s age in Fig.217

5D reveals a significant inconsistency (grey vertical line) in loss value as case index increases (i.e.,218

cases with larger deviations). The grey vertical dashed line indicates the location where the t-test219

(with Bonferroni correction) has a p-value less than 0.05/(no. of comparisons). The t-test was220

automatically and repeated conducted to compare two data samples splitting with an increment of221

50 data points when plotting the figure with a function in the SHAP python package. When we222

manually compared SHAP loss values of the first 400 and last 400 cases with primary surgeon’s223

age older than 65 years (Fig. 5D) using a one-sided t-test, the SHAP loss values of the latter were224

significantly (t = -2.64, p-value = 0.01) higher. These results suggest that primary surgeon’s age is225

one of the factors contributing to the increase in prediction error. In contrast, the SHAP loss value226

for the feature of no. of procedure in Fig. 5E were consistent for cases with smaller and larger227

deviations. Although the mean SHAP loss value magnitude of no. of procedure was the largest, its228

contribution on model loss was observed to be not associated with the increase in error made by229
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Figure 3: Anesthesia type, procedure type, number of procedure, hypertension and specialty were
the top 5 important features used by the extreme gradient boosting (XGB) model to make predic-
tions. Features were arranged and ranked in descending order according to (A) weighted feature
gain or (B) SHAP value. In panel (A), categorical features are represented by blue markers, while
numerical features are represented by yellow markers. The numbers of categories for categorical
features are also shown beside the markers. The results of SHAP value show that total surgical
minutes and number of previous surgeries performed by the surgeon within the last 7 days (‘Op-
toltime 7d’ and ‘Opcount 7d’) had important contributions to model output. Specific code names
are used to represent the full names of features in the figure. The features’ full names can be
referred to Table 1.

the model.230
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Figure 4: Shapley additive explanations (SHAP) interaction value unravels interactions between
various one-hot encoded features. (A) A summary plot of 20 one-hot encoded features with the
largest average SHAP value magnitude for the extreme gradient boosting (XGB) model. Each dot
corresponds to a case in the time-wise testing set. No. of procedure (‘Nproced’), anesthesia type of
spinal anesthesia (‘AnaValue SA’), Team size (‘TeamSize’), specialty of plastic and reconstruction
(‘DivNo 411’), and other procedure (‘Other proced’) had long positive tails. These indicate that
these features tended to increase model output (longer surgical case duration) when feature values
were either high (for numerical feature) or 1 (for categorical feature).
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Figure 4 (previous page): (B) A heatmap summarizing SHAP interaction values of one-hot encoded
features for complex cases extracted from the testing set. One-hot encoded features with top 12
largest SHAP interaction values are shown. Note that the interaction effects are shown off-diagonal
and symmetrically. Higher and interesting interaction effects are highlighted with red boxes. (C)
SHAP main effect value for no. procedure (‘Nproced’). Larger no. of procedure had increased im-
pact on model output. (D) SHAP interaction value for no. of procedure and primary surgeon’s age
(‘Dr age’). For cases with 4-6 procedures, older primary surgeons were associated with shorter case
durations. (E) SHAP interaction value for no. of procedure and total surgical minutes of previous
surgeries performed by the surgeon within the last 7 days (‘Optoltime 7d’). For cases with 3-5 pro-
cedures, primary surgeons with larger ‘Optoltime 7d’ were associated with longer case durations.
(F) SHAP interaction value for no. of procedure and procedure type of spinal infusion surgery with
spinal instrumentation equal or less than 6 segments (‘83046’). Regardless of the no. of procedure,
longer durations were consumed for cases with procedure code of ‘83046’. (G) SHAP interaction
value for total surgical minutes (‘Optoltime 7d’) and number (‘Opcount 7d’) of previous surgeries
performed by the surgeon within the last 7 days. The impact of ‘Optiltime 7d’ on case durations
was affected by changes in ‘Opcount 7d’. (H) and (I) were plotted for surgical cases belonged to
the specialty of plastic and reconstruction (‘DivNo 411’ = 1), while (J) was plotted for surgical
cases belonged to the ophthalmology specialty (‘DivNo 380’ = 1). (H) SHAP interaction value for
primary surgeon’s age and cases belong to the specialty of plastic and reconstruction. Younger
primary surgeons took longer time to complete the surgery. (I) and (J) SHAP interaction value for
no. of procedure and hypertension status. In both specialties of plastic and reconstruction, and
ophthalmology, cases with hypertension status of unknown were associated with longer durations
as no. of procedure increased.
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Figure 5: Shapley additive explanations (SHAP) loss value aids in identifying features with larger
contribution to the model loss. Cases with predicted durations of 180-600 min were extracted
from the time-wise testing set. Subsequently, cases with absolute duration differences (|actual -
prediction|) less than 30 min or more than 90 min were selected. Summary plots of 10 one-hot
encoded features with the largest average SHAP loss value magnitude for (A) cases with differences
less than 30 min (clinically not significant differences) and (B) cases with differences more than 90
min (large differences). Each dot corresponds to a case. The SHAP loss values of primary surgeon’s
age (‘Dr age’) are highlighted in red boxes in (A) and (B). This feature had a longer positive
tail in cases with large differences compared to cases with small differences. (C) All cases with
predicted durations of 180-600 min were sorted according to their absolute differences normalized
to predictions (|(actual - prediction)/prediction|). The dot plot shows that deviations (y-axis) were
larger for cases with larger index numbers (x-axis).
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Figure 5 (previous page): (D) The SHAP loss value for the feature of primary surgeon’s age. A
grey vertical dashed line indicates the location where the t-test (with Bonferroni correction) has a
p-value less than 0.05/(no. of comparisons), i.e. this reflects the inconsistency of SHAP loss value
for the feature. The t-test was automatically and repeated conducted to compare two data samples
splitting with an increment of 50 data points when plotting the figure with a function in the SHAP
python package. This indicates that primary surgeon’s age is one of the factors contributing to
the increase in prediction error. (E) The SHAP loss value for the feature of no. of procedure
(‘Nproced’). In contrast to primary surgeon’s age, SHAP loss values for no. of procedure exhibited
consistency for cases with smaller and larger deviations. Although the mean SHAP loss value
magnitude of no. of procedure was the largest, it was not related to changes in error produced by
the model.

Discussion231

Clinical unmet needs related to OR scheduling can be identified based on the aspects of hospital232

management, surgical supporting staffs, patients and surgeons [21]. From the hospital manage-233

ment’s point of view, it is difficult for them to strike a balance between decreasing idle time and234

avoiding overtime of staff to maximize OR utility as well as to reduce costs. Idle time is harmful235

to maintaining a cost effective OR because time available for a surgical procedure to be performed236

is not being used. Meanwhile, OR over-utilization is 2.5 times more costly than under-utilization237

[22]. For surgical supporting staffs, they have to work unexpected overtime and under stressful cir-238

cumstances when actual durations are significantly longer than scheduled surgical case durations.239

This may lead to job dissatisfaction and higher turnover rate, which may subsequently affect the240

quality of care and safety provided by supporting staffs as they are overload or overworked. From241

the perspective of patients, they often do not know when is the start time of their surgeries if the242

surgeries are not scheduled as the first case in the morning. Hence, prolonged wait times and in-243

creased uncertainties may lead to significant patient dissatisfaction. As for surgeons, new surgeons,244

who are not assigned to have the first case, are more mindful of scheduling accuracy. This is because245

they may need to wait on a prior case to be finished by a different surgeon when actual durations246

are longer than scheduled durations. Continued delays in the same OR may also result in lack of247

staff to cover late cases.248

Owing to the above mentioned needs, accurate prediction of surgical case duration plays a vital249

role in increasing OR efficiency, reducing costs, maintaining hospital reputation, as well as improv-250

ing patient and surgeon satisfaction. This study not only helps to improve the accuracy of OR case251

prediction but also provides meaningful insights on how predictions were made by the developed252

ML model. It has both clinical and technical novelties in the following aspects. For the clinical253
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aspect, we are the first who modeled OR events as dependent events instead of independent. We254

extracted some additional information from surgeon data, e.g., previous working time and no. of255

previous surgeries of the primary surgeons within the last 7 days and 24 hr, and this information256

was taken into consideration during model building. Interpretation on model output unraveled257

that previous working time and no. of previous surgeries interacted with each other and produced258

differential effects on surgical case durations. For primary surgeons who performed surgeries con-259

taining more than 2 procedures, having longer cumulative previous surgeries time tended to affect260

their performance on the surgery (Fig. 4E G). Furthermore, while other past studies only reported261

how they developed and evaluated their predictive models [15, 23, 14, 24, 7], we went further to262

perform global and local interpretability on model prediction as well as identify factors contributing263

to errors in model prediction. To this end, older primary surgeons were observed to take shorter264

time to complete complex surgeries with 4-6 procedures and longer duration was required when265

patient’s hypertension status was unknown. The phenomenon regarding patient’s hypertension266

status was identified in more than one specialties suggesting knowing patient’s hypertension status267

may be critical to surgical time management. Even though older primary surgeon might have more268

experiences and tended to finish surgeries faster (Fig. 6D H), loss values of primary surgeon’s age269

older than 65 years were inconsistent compared to younger primary surgeons (Fig. 5D). Therefore,270

to improve model prediction, we suggest including more detailed information on years of experience271

for primary surgeons and the role of primary surgeons (e.g. executor or consultant) to be used as272

features for future ML model development.273

For the technical aspect, the data set used in this study contained more than 140,000 cases (after274

exclusion) and more than 700 different types of surgical procedures, establishing a new benchmark275

for a massive quantity of data with high diversity. The maximal number of cases that had been used276

in other studies was in the range of 40,000 to 60,000 [15, 7]. By using a large data set with huge277

diversity and variability, a more powerful ML model was trained and built. Interpretation on the ML278

model built with such a large and diverse data set subsequently aids in providing various clinically279

related information, which may not be disclosed by a simple ML model and is not discussed in the280

past studies. Moreover, the developed XGB model in this study will be deployed as a stand-alone281

artificial intelligence (AI) server connected by the EMR of the hospital. When a user schedules282

a surgery using the EMR system, the EMR delivers input parameters to the AI server, where a283

prediction of surgical case duration is made, and then the AI server sends the output back to the284

EMR as a suggestion for the user (refer to Fig. S4 in Supplementary Info).285
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Currently, surgical cases at CMUH are scheduled according to estimates made by primary sur-286

geons. However, surgeon estimates rely heavily on prior experiences of the surgeons, and many287

factors beyond expectation will not be taken into consideration. Since there is no formal record on288

surgeon estimates, we used averages that were calculated based on a specific surgeon or procedure289

type on the time-wise testing set as our baseline models. The performance of these two average290

models, as reported in Fig. 1 and Table S1 (Supplementary info), clearly showed that they were291

poor in predicting surgical case duration. These models also tended to underpredict surgical case292

duration according to their BA plots in Figs. 2. When 19 feature variables (Table 1) were included293

in our model development, the R2, MAE, and percentages of underage, overage and within im-294

proved substantially compared to the baseline models. When determining the tolerance threshold295

for percentage within, we set the criterion to be absolute duration differences falling within mini-296

mum(maximum(15 %,15 min), 60 min) of prediction. We applied 15 minutes because ± 15 minutes297

is an acceptable periodic range at CMUH to be considered as accurate booking. To avoid having298

an excessively stringent standard, we applied 15 % because a 15 % error in prediction can typically299

be adapted by the operational management [14]. For cases that took longer than 400 minutes, 15300

% of predicted duration could be more than 1 hour and so we adopted 60 minutes to ensure the301

threshold was not too lax.302

By using regression and ML approaches, we were able to decrease the total prediction error303

(Table 2) of surgical case duration at CMUH. Among all the models, the performance of the XGB304

model was considered to be the best because it produced the highest R2 value and had the lowest305

inaccuracy. Moreover, the XGB model reduced the total prediction error (in minutes) to 224,643306

minutes. Since most ORs usually have multiple cases scheduled per day, the total prediction error307

represents the cumulative effect of total OR cases in the 2-month period of Mar to April 2020.308

This cumulative effect may eventually reflect a significant financial advantage in scheduling an309

additional operation case [25]. This approach would also lead to a significant cost reduction and310

increase in revenue because ORs are utilized appropriately and efficiently. When we evaluated the311

case numbers of overage, underage and within predicted by the XGB model at the specialty level,312

there were more case numbers falling within the acceptable thresholds for most of the specialties313

in the time-wise testing set (Fig. 1). This finding justifies that the performance of the XGB model314

can be generalized across specialties.315

It has been reported in the past studies that primary surgeons contributed the largest variability316

in surgical case duration prediction compared to other factors attributed to patients [15, 23, 14].317
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These studies provide evidence and rationale that more factors relating to primary surgeons should318

be added as input variables in the training of ML models. Moreover, extensive feature engineering319

usually improves the quality of ML models and can be independent of the modeling technique320

itself. As a result, in addition to the primary surgeon’s age, we computed previous working time321

and number of previous surgeries performed by the same primary surgeons within the last 7 days322

and 24 hr. These variables extracted from primary surgeon data were significantly (p < 0.05)323

correlated with surgical case duration (see Table S2 in the Supplementary info). The correlation324

coefficients and the impact distribution (Fig. 6A) of these variables also revealed that a surgical case325

duration of a primary surgeon may decrease as he or she becomes more familiar with the surgical326

procedure but may increase if his or her total surgical minutes are too long. Although performing a327

surgery multiple times on different patients may help a primary surgeon to be more efficient in his328

or her next operation, a long working time may also lead to lethargy and may affect the primary329

surgeon’s performance. This explanation overlaps with our observations in Fig. 4E and F in which330

primary surgeons with longer previous surgical durations tended to take longer time to complete331

the surgery, especially for complex cases containing 3-5 procedures.332

In the methodology of data processing, for predictor variables that contained many categories,333

we grouped categories that had less than 20 cases into a category named ‘Others’. In addition to334

reducing the data dimensionality for categorical features, this grouping may aid in the generalization335

of our model, which implies that our model will still be able to predict the case duration even for336

operations that are rare. Moreover, our model may be applied to new surgeons and other hospitals337

since surgeon’s identifier and room number were not included in feature inputs. However, there is338

still a need to update our model after a while or fine-tune the model to better fit the settings of339

other hospitals. In terms of timing, we recommend updating the model annually by using surgical340

cases performed in the most recent 3 years as training data.341

One limitation in this study is that we selected predictor variables that could only be extracted342

from preoperative data. Our ML model still needs to be improved in order to be able to predict343

surgical case duration dynamically. For example, blood loss during surgery may affect case duration344

since an unexpected increase in blood loss may cause surgeons to take a longer time to complete345

the surgery. Therefore, it would be better if intra-operative data are incorporated during ML346

model development, and the prediction made by the ML model can be updated during surgery.347

Meanwhile, one main reason that we only selected features which can be obtained pre-operatively348

is because the goal of building a predictive model is to improve and automate surgery scheduling349
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before surgeries. The model, however, does not serve to affect or restrict surgeons on how much350

time they would need to complete the surgery. Furthermore, one common issue in all ML studies in351

terms of predicting surgical case duration, including our study, is that ML models were developed352

using data from a single site. These ML models have limitations in generalization since the surgical353

team, facilities and patient populations are different across entities. A custom-made model has to354

be built for a given organization using training data containing its patients, procedures, surgeons,355

medical staff, and the facility itself. As a result, the exact same ML model may not perform well356

when applied to another organization or hospital. The other interesting issue of applying ML or AI357

in surgical duration estimation is that medical technologies quickly evolve. Hence, how frequently358

an ML or AI model need to be updated still remains to be answered.359

Conclusion360

The XGB model was superior in predictive performance when compared to the average, Reg and361

logReg models. The total inaccurate percentage of the XGB model was the lowest among the362

other models. When compared to other ML studies, the XGB model built in this study also363

had a higher coefficient of determination (R2) and lower percentages of under- and overprediction364

[15, 24, 7]. Moreover, this model improves the current OR scheduling method at CMUH, which365

is based on estimates made by surgeons. We validated the model types using a time-wise testing366

set in addition to the internal validation set split from the original data used in model training.367

The results provide the evidence that the model generalized well to the time-wise testing data368

set even during the COVID-19 pandemic period. When external evaluation is not feasible, time-369

wise evaluation serves as a useful tool to better validate the predictive power of ML models. In370

addition to model development and evaluation, global and local interpretation on model output371

as well as identification of the source of errors in model prediction were conducted in this study.372

Based on the results, older primary surgeons took shorter time to complete the surgery but primary373

surgeons with longer previous surgical duration within the last 7 days took more time to complete374

the surgery. Longer duration was consumed when patient’s hypertension status was unknown.375

Meanwhile, inconsistency in the loss value of primary surgeons aged above 65 years was found to376

be associated with increased deviations in case duration. Hence, we propose including additional377

information relevant to surgeon or surgical team composition, such as years of experience and the378

role of primary surgeon, to be used as predictor variables for future ML model training.379
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Methods380

Data sources.381

Data for this study were collected retrospectively from the EMR scheduling system of CMUH382

located in Taichung, Taiwan. The data set covered a broad variety of details about patients,383

surgeries, specialties and surgical teams. A total of 170,748 cases performed between Jan 1, 2017,384

and Dec 31, 2019, were used for model development. Additionally, 8,672 cases performed between385

Mar 1 and April 30, 2020, were used as data for time-wise model evaluation in this study. The386

proportion based on patient characteristics in the overall data set and time-wise testing set was387

reported in Table S3 in the Supplementary Info. Over 700 different types of procedures across388

25 surgical specialties were included in the training data set. Institutional review board approval389

(CMUH109-REC1-091) was obtained from CMUH before carrying out this study.390

Exclusion criteria, data processing and feature selection.391

Emergent and urgent surgical cases were removed since these two types of surgeries cannot be392

scheduled until they happen. Surgical case duration more than 10 hours or less than 10 minutes393

were also removed. Surgical records with missing values were excluded. Patients who were pregnant394

as well as duplicate cases were removed. The exclusion criteria are shown in Fig. S2. This approach395

resulted in a data set of 142,445 cases that were used for model training and validation. The same396

criteria were also applied to the data of Mar 1 to April 30, 2020, and 7,231 cases remained after397

exclusion.398

Features were selected from available data sources based on literature review and discussion with399

surgeons and administrators of CMUH. Although the model performance could be enhanced by some400

postoperative information (e.g., total blood loss), these parameters cannot be used as features for401

model training because they were either missing or simply estimated by surgeons before surgery.402

Therefore, only variables that were available before surgery were selected for model development.403

Furthermore, the correlations of feature variables with the surgical case duration were checked by404

performing a regression analysis. Only those variables with significant (p-value < 0.05) correlation405

coefficients were selected as predictor variables for model training.406

When visualizing all the categories of procedure type and the International Classification of407

Diseases (ICD) code, there were hundreds to thousands of categories in these two variables. To408

reduce the problem of having too many dimensions during one-hot encoding of categorical features,409
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we combined categories that had less than 20 cases in the training set into a category and named410

it as ‘Others’. Similarly, we combined categories for specialty that had less than 20 cases into the411

category of ‘Others’.412

In addition, since surgical case duration can be related to the performance of surgeons and413

surgeons’ performance is affected by their working time, we analyzed primary surgeons’ previous414

surgical events. The number of previous surgeries and total surgical minutes performed by the same415

primary surgeons within the last 7 days and 24 hr. Together, 19 predictor variables were included416

for predictive model building in this study. These predictors can be categorized into 5 groups:417

patient, surgical team, operation, facility and primary surgeon’s prior events (see Table 1).418

Model development and training.419

We applied multiple ML methods for surgical case duration prediction. Surgical case duration (in420

minutes) is the total period starting from the time the patient enters the OR to the time of exiting421

the OR. Historical averages of case durations based on surgeon-specific or procedure-specific data422

from EMR systems were used as baseline models for comparison in case duration prediction. At423

the beginning, we performed multivariate linear regression (Reg) to predict surgical case duration.424

However, when we evaluated the distribution of surgical case duration, it was observed to be skewed425

to the right (Fig. S1 in the Supplementary info). We performed a logarithmic transformation on the426

surgical case duration to reduce the skewness. The model built from log-transformed multivariate427

linear regression (logReg) outperformed Reg in all evaluation indexes. Subsequent ML algorithms428

were also trained by using the log-transformed case duration as the target.429

The first ML algorithm that we tested was random forest (RF), a tree-based supervised learning430

algorithm. RF uses bootstrap aggregation or a bagging technique for regression by constructing a431

multitude of decision trees based on training data and outputting the mean predicted value from432

the individual trees [26]. Tree-based techniques were suitable for our data since they include a large433

number of categorical variables, e.g., ICD code and procedure type, of which most were sparse.434

The extreme gradient boosting (XGB) algorithm is the other supervised ML algorithm that was435

tested for comparison to RF. Recently, the XGB algorithm has gained popularity within the data436

science community due to its ability in overcoming the curse of dimensionality as well as capturing437

the interaction of variables [27].438

XGB is also a decision tree-based algorithm similar to the RF algorithm. However, the XGB439

and RF algorithms are different in the way that the trees are built. It has been shown that XGB440
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performs better than RF if parameters are tuned carefully; otherwise, it would be more likely to441

overfit if the data are noisy [28, 29]. For both RF and XGB algorithms, we adopted a 5-fold cross-442

validation strategy to tune the best hyperparameters, e.g. no. of estimators, maximum of depths,443

etc. For the XGB model, the best hyperparameters were number of estimators = 535, η = 0.5444

(step size shrinkage to prevent overfitting), maximum of depths = 3, γ = 0.3 (minimum loss445

reduction, where a larger γ represents a more conservative algorithm) and α = 1 (L1 regularization446

weighting term, where a larger value indicates a more conservative model). For the RF model, the447

best hyperparameters were number of estimators = 150, minimum samples split = 10, minimum448

samples leaf = 2 and maximum depth = 125.449

A data-splitting strategy was used in the training for all the models. We randomly separated450

the data into training and validation subsets at a ratio of 4:1. The training data were used to451

build different predictive models as well as to extract important predictor variables. The validation452

data were used for internal evaluation of the models. In addition to interval evaluation, time-wise453

evaluation on all the models was performed using data from Mar 1 to Apr 30, 2020. These data454

were not included in the original data set for ML model training. The results obtained from time-455

wise evaluation are better in verifying the robustness of the trained model in making an accurate456

prediction since the data are temporally segregated from the original data. Historical averages of457

case duration for surgeon- or procedure-specific data calculated from EMR data were also evaluated458

on the same internal validation and time-wise testing sets to ensure fair and uniform comparison459

across all models. Data processing and cleaning as well as model development in this study were460

performed using R software. RF model development was performed using python.461

Model evaluation.462

Multiple predictive models were built to predict surgical case duration. Different standards are463

usually applied to evaluate the predictive performance of the built models. The three key metrics464

used to evaluate model performance in this study included (1) R-square (R2), (2) mean absolute465

error (MAE), and (3) the percentage overage, underage and within.466

R2 is the coefficient of determination; it represents the proportion of the variance for the actual467

case duration that is explained by predictor variables in our models.468

R2 = 1−
∑N

i=1(yi − ŷi)2∑N
i=1(yi − ȳ)2

(1)
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MAE measures the average of errors between the actual case durations and the predictions.469

MAE =

∑N
i=1 |yi − ŷi|

N
(2)

In this study, percentage within indicates the percentage of cases with absolute duration dif-470

ferences falling within the threshold (τ(ŷ)) of minimum(maximum(15 %,15 min), 60 min). The471

mathematical expression of case duration differences that satisfy the within condition is shown as472

below:473

|y − ŷ| < τ(ŷ) = min {max {0.15 ∗ ŷ, 15} , 60} (3)

Meanwhile, percentage underage is the percentage of cases with actual case duration shorter474

than prediction and case duration difference was more negative than the threshold. Similarly,475

percentage overage is the percentage of cases with actual case duration longer than prediction and476

case duration difference was more positive than the threshold. The condition that defines a case as477

overage, within and underage is summarised as follows:478

condition =


overage, y − ŷ ≥ τ(ŷ)

within, |y − ŷ| < τ(ŷ)

underage, y − ŷ ≤ −τ(ŷ)

 (4)

Feature importance based on weighted feature gain.479

During the development of XGB model, feature importance type of ‘gain’ was applied. ‘Gain’ is480

the most relevant attribute to interpret the relative importance of each feature. In XGB algorithm,481

‘gain’ is the average gain across all splits where feature was used and is determined by the improve-482

ment in accuracy brought by a feature to the branches it is on [30]. The calculation of ‘gain’ can483

be shown as below:484

Gain =
1

2
[

G2
L

HL + λ
+

G2
R

HR + λ
− (GL +GR)2

HL +HR + λ
]− γ (5)

In the above equation, G is the first derivative of training loss and H is the second derivative485

of training loss. λ represents the regularization rate while γ represents the minimum loss reduction486

required to make a split. Overall, this equation consists of the score on the new left (L) leaf, the487

score on the new right (R) leaf, the score on the original leaf, and regularization on the additional488
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leaf. Hence, if ‘gain’ is 0 or negative (i.e. =< γ), it indicates better not to add that branch. When489

analyzing feature importance of the model, the weighted feature gain was calculated by multiplying490

the percentage gain of each feature by their percentage frequency of occurrence in the model [15].491

Model interpretation with SHAP492

To further interpreter the developed XGB model, we determined the Shapley additive explanations493

(SHAP) value by applying SHAP package in Python. SHAP can be used to explain the predicted494

output by computing the contribution of each feature to the prediction [31, 20]. SHAP value of a495

feature i, termed φi, can be obtained with the following equation:496

φi =
∑

S⊆F{i}

[
|S|!(|F | − |S| − 1)!

|F |!
][f(S ∪ {i} − f(S))] (6)

In the above equation, F is the set of all features considered for the XGB algorithm, S denotes497

a subset of features obtained from the set F except feature i, and f(S) is the expected output given498

by the set S of features. In summary, SHAP values indicate the impact of a feature on the model499

output. For our ML model, a large positive (negative) SHAP value of a feature implies that this500

feature has a large contribution in predicting a longer (shorter) surgical case duration. Meanwhile,501

a SHAP value of 0 implies that this feature have no or low contribution in predicting surgical case502

duration. SHAP values are expressed in log-odds (7) in this study.503

log[P (φ)/(1− P (φ))], P (φ) < 1 (7)

Local interaction effects between features were identified by applying SHAP interaction values504

in the SHAP package. While SHAP value is the attribution for each feature, SHAP interaction505

value is a matrix of feature attributions [32]. The interaction effects on the off-diagonal and the506

main effects are on the diagonal. The SHAP interaction values is defined as:507

Φi,j(f, x) =
∑

S⊆m/i,j

|S|!(M − |S| − 2)!

2(M − 1)!
5 ij(f, x, S) (8)

when i 6= j and:508

5ij(f, x, S) = fx(S ∪ {i, j})− fx(S ∪ {i})− fx(S ∪ {j}) + fx(S) (9)
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In the equation (8), m is the set of all M input features. More details regarding the computation509

of SHAP interaction values can be referred to Lundberg et al. (2020). The SHAP interaction value510

between feature i and feature j is split equally between each feature (Φi,j(f, x) = Φj,i(f, x)), and511

the total interaction effect is the sum of Φi,j(f, x) and Φj,i(f, x).512

SHAP values of a model’s loss function decompose the model loss into the loss for each model513

input feature [32]. They provide information on how each feature contributes to the model loss.514

The definition of the sum of SHAP loss value of all features is shown as below [33]:515

N∑
i=1

Contribfi = ModelLoss− Expected (10)

In the above equation, the calculation of expected loss is performed by first setting all the data516

labels to the average of all predictions, and then computes the average loss. Contribfi represents517

the contribution of each feature to the model loss from the expected loss.518

Data availability519

The minimum data set (March to April 2020) used in time-wise evaluation for this study is available520

from our web site: https://cmuhopai.azurewebsites.net/. The data set required to replicate model521

training and internal evaluation contains personal data and is not publicly available, in keeping522

with the Data Protection Policy of CMUH.523

Code availability524

The code for data processing and model development in this study are presented on github:525

https://github.com/AII-CMUH/AI-surgery-scheduling.526
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A B

Figure S1: Log transformation of case duration converted the distribution of surgical case duration
from (A) skewing to the right to (B) a more normal distribution.
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Figure S2: The workflow of model training for this study. The data used for model training fall
within the time range of Jan 1, 2017, to Dec 31, 2019. From this data set, approximately 17 %
of the cases were excluded based on the following criteria: duplicates, emergent and urgent cases,
patients with age younger than 20, pregnant patients, procedure duration longer than 10 hours or
less than 10 minutes and cases with missing values. The total number of cases included in the
data set for model building was 142,445. This data set was then split into training (80 %) and
validation (20 %) subsets for model development. Machine learning and linear regression models
were developed on the training data set and validated on the validation data set using R-square
and mean absolute error. The percentage of cases with duration differences falling within the
threshold of minimum(maximum(15 %, 15 min),60 min) of the actual duration was also computed.
Eventually, the models were further evaluated on the most recent surgical cases (from Mar 1 to Apr
30, 2020), which were not included in the original data set for model training.
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Mean case duration

Figure S3: Numbers of cases that were predicted as overage, underage and within for each specialty
in the time-wise testing set based on surgical case durations predicted by the extreme gradient
boosting model. The black circle represents the mean case duration for each specialty. OP: oph-
thalmology; CAS: cardiovascular; ENT: otolaryngology, head and neck; TA: trauma and acute care;
OG: obstetrics and gynecology; CS: colorectal; UR: urology; BM: body science and metabolic dis-
orders; BS: breast surgical oncology; PR: plastic and reconstruction; GS: general; OR: orthopedics;
TS: thoracic; NE: neurosurgery; OM: oral and maxillofacial; AN: anesthesiology; GH: gastroenterol-
ogy and hepatology; DE: dermatology; PS: pediatric; BMS: bariatric and metabolic; PD: pediatric
dentistry.

Train set Internal Validation set Time-wise Test set
Model R2 (%) MAE O (%) U(%) W (%) R2 (%) MAE O (%) U(%) W (%) R2 (%) MAE O (%) U(%) W (%)
Surgeon-
specific

28 61.8 29 50 21 27 61.5 29 50 21 26 67.4 30 52 17

Procedure-
specific

74 34.2 23 34 43 74 34.3 23 35 42 74 36.8 22 37 41

Reg 79 31 22 30 48 78 31.4 22 31 47 78 33.6 20 35 45
logReg 82 30.9 26 22 52 81 31.2 26 23 51 82 33.3 23 27 50
RF 92 18.7 17 11 73 79 28.8 25 21 54 79 31.04 24 23 53
XGB 85 27.9 25 20 55 83 28.9 25 22 53 84 31.1 23 25 51

Table S1: Performance of all the models in the training and internal validation and time-wise testing
sets. The models that were included for comparison in this study were average models for surgeon-
or procedure-specific scenarios, multivariate linear regression (Reg), log transformed multivariate
linear regression (logReg), random forest (RF) and extreme gradient boosting (XGB). MAE: mean
absolute error; U: underage; O: overage; W: within
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Book a surgery
on the calendar

User schedules a 
surgery

Deliver input parameters 
to AI server

Send predicted surgical 
case duration to EMR

EMR collects 
data

Data production environment

Communication environment

Artificial intelligence scheduling system

EMR

Figure S4: The mode of deployment of the machine learning (ML) model developed in this study.
The ML model will be deployed as a stand-alone artificial intelligence (AI) server connected by the
electrical medical record (EMR) system of the hospital. When a user schedules a surgery using the
EMR system, the EMR delivers input parameters to the AI server, where a prediction of surgical
case duration is made, and then the AI server sends the output back to the EMR as a suggestion
for the user to book a surgery on the calendar.

Predictor variables
Correlation
coefficient

Standard
error

t-value p-value

No. of previous surgeries performed
by the surgeon within 24 hr

-9.14 x 10−3 7.5 x 10−4 -12.19 <2 x 10−16

Total surgical minutes performed by the
surgeon within 24 hr

6.48 x 10−5 6.22 x 10−6 10.41 <2 x10−16

No. of previous surgeries performed by
the surgeon within the last 7 days

-1.37 x 10−2 2.58 x 10−4 -53.35 <2 x 10−16

Total surgical minutes performed by the
surgeon within the last 7 days

7.71 x 10−5 2.27 x 10−6 33.89 <2 x10−16

Table S2: Correlation coefficient, standard error, t-value and p-value of predictor variables extracted
from primary surgeons’ data. This information was obtained from the log-transformed multivariate
regression (logReg) model.

33

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 8, 2020. ; https://doi.org/10.1101/2020.06.10.20127910doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.10.20127910
http://creativecommons.org/licenses/by-nc-nd/4.0/


Overall (n = 142,445) Test(n = 7,231)
Gender
Male 70096 (49.2%) 3618 (50%)
Female 72349 (50.8%) 3613 (50%)
Age
20-45 42396 (29.7%) 2061 (28.5%)
45-65 55134 (38.7%) 2800 (38.7%)
65-80 34493 (24.2%) 1811 (25%)
>80 10422 (7.3%) 559 (7.7%)
In-/out-patient
In-patient 92780 (65.1%) 4826 (66.7%)
Out-patient 49665 (34.8%) 2405 (33.2%)
Hypertension
Yes 32398 (22.7%) 1676 (23.1%)
No 62792 (44%) 3181 (44%)
Unknown 47255 (33.1%) 2374 (32.8%)
BMI
<18.5 33581 (23.6%) 1945 (26.9%)
18.5-22.9 45338 (31.8%) 2470 (34.2%)
23-26.9 42392 (30%) 2246 (31.1%)
>= 27 8235 (5.8%) 439 (6.1%)
Missing 12899 (9.1%) 131 (1.8%)

Table S3: Proportion based on patient characteristics in the overall original data set and time-wise
testing set.
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