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1 Abstract

SARS-CoV-2, the virus responsible for COVID-19, has killed hundreds of thou-
sands of Americans. Although physical distancing measures played a key role
in slowing COVID-19 spread in early 2020, infection rates are now peaking at
record levels across the country. Hospitals in several states are threatened with
overwhelming numbers of patients, compounding the death toll of COVID-19.
Implementing strategies to minimize COVID-19 hospitalizations will be key to
controlling the toll of the disease, but non-physical distancing strategies receive
relatively little attention. We present a novel system of differential equations
designed to predict the relative effects of hospitalizing fewer COVID-19 patients
vs increasing ICU bed availability on delaying ICU bed shortages. This model,
which we call SEAHIRD, was calibrated to mortality data on two US states with
different peak infection times from mid-March – mid-May 2020. It found that
hospitalizing fewer COVID-19 patients generally delays ICU bed shortage more
than a comparable increase in ICU bed availability. This trend was consistent
across both states and across wide ranges of initial conditions and parameter
values. We argue that being able to predict which patients will develop severe
COVID-19 symptoms, and thus require hospitalization, should be a key objec-
tive of future COVID-19 research, as it will allow limited hospital resources to
be allocated to individuals that need them most and prevent hospitals from
being overwhelmed by COVID-19 cases.
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2 Introduction

At the time of writing this, John’s Hopkins University reports that about
230,000 Americans have died of COVID-19 (https://coronavirus.jhu.edu/) - the
disease caused by the coronavirus SARS-CoV-2. US hospitals are on the front
lines in the battle against the rising death toll, especially now as states expe-
rience record-high case numbers (https://coronavirus.jhu.edu/). Ever since the
initial outbreak, the primary goal of US public health measures has been to slow
COVID-19 infection rates enough that hospitals are not overwhelmed by a large
influx of diseased individuals, also phrased as “flattening the curve”. This goal
has mostly been achieved thus far through physical distancing – any measure
that increases the average distance or adds barriers between individuals from
different households. Physical distancing is often defined by the closing of work-
places, schools, and non-essential businesses [34], but the wearing of personal
protective equipment (PPE) like gloves, face-coverings, and eye protection also
match this broad definition. Physical distancing measures have been invaluable
for mitigating COVID-19 spread, lowering the growth rate of the disease [9]
and preventing at least half a million COVID-19 cases [34]. However, physical
distancing is not without drawbacks.

Physical distancing imposes significant economic and psychological costs
that are themselves the common subject of COVID-19 models [29]. Closing busi-
nesses and restricting travel in response to the COVID-19 pandemic disrupted
US supply chains [14], exacerbated social inequalities [11], and increased rates
of anxiety and depression [6]. There’s even evidence to suggest that physical or
social distancing may increase the spread of conspiracy theories [13]. Further-
more, physical distancing measures are ultimately voluntary and experts expect
such measures to be less effective as lockdowns continue and isolated individu-
als inevitably grow bored [24]. News outlets report that Americans are already
experiencing considerable resistance toward continued physical distancing mea-
sures, especially the wearing of masks [8]. Physical distancing continues to be
the best tool America has for halting COVID-19 spread but considering supple-
mentary strategies may limit the need for physical distancing, and therefore its
consequences, in future pandemics.

We present a model that considers two non-physical distancing strategies
to prevent overwhelming hospitals with COVID-19 infections: (1) hospitalizing
fewer patients with COVID-19 and (2) increasing hospital capacity for COVID-
19 patients. The former can be accomplished by selectively hospitalizing only
serious COVID-19 cases, allowing less serious cases to self-isolate, while the
later can be accomplished by increasing the number of ICU beds, ventilators,
PPE, and hospital staff. For simplicity, we focus on just ICU bed counts as a
measure of hospital capacity and only consider the states of Washington (WA)
and Colorado (CO) because of their similar case numbers but different peak
infection times from March - May 2020.

Washington was the first state in the U.S. to have confirmed COVID-19
infections [28]. When COVID-19 first arrived there, it spread rapidly among
the elderly and nurses at long-term care facilities [25]. Newspapers at the time
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reported a reasonable fear that there would not be enough hospital beds in
the whole state to care for the coming wave of COVID-19 infected patients
[4]. WA enacted stay-at-home orders in mid-March and many other states like
CO soon followed, as uncontrolled community-level transmission was already
occurring in other states [23]. In fact, early in the pandemic, CO had one of
the highest death counts in the US, just behind California [30]. Thanks to
policies to expand hospital capacity and enact physical distancing, Washington
and CO avoided exceeding the state-wide limit on hospital beds from March
- May. However, as of October 28th 2020, John Hopkin’s University reports
that WA is experiences 620 new COVID-19 cases every day, up from 370 cases
per day in September 2020. Alarmingly, CO is currently reporting over 1700
new COVID-19 cases every day, twice as many as it was reporting in during its
last infection peak in late July (https://coronavirus.jhu.edu/data/new-cases-50-
states). Thus, knowing the relative benefits of increasing hospital capacity vs
decreasing hospitalization in either of these states is still relevant today. Neither
of these strategies should replace physical distancing, of course, but they can
still contribute to mitigation efforts.

3 Methods

We employed a system of ordinary differential equations to model the spread
of COVID-19 in WA and CO. We chose to model just WA and CO because
of their similar case numbers during their initial outbreaks, their high-quality
reporting according to COVID-tracking project (see Table S1), but different
peak infection times. We further focused on data from only the period of March
15th – May 18th as this captured the majority of the first “infection wave” in
both states. Most of the model parameters were estimated from previous studies
on COVID-19 spread. The remaining parameters were estimated by minimizing
the sum of squared errors between the model and data on cumulative deaths
over time. Our model was calibrated to mortality data only because, due to
testing limitations, counts of COVID-19 deaths are generally considered more
reliable than counts of COVID-19 cases [3]. All simulations and analyses were
conducted in R [31]. Simulation, optimization, and data visualization were all
executed with the deSolve, Flexible Modeling Environment (FME), and ggplot2
packages respectively [35],[36],[41].

3.1 Gathering Data

All of the datasets input into our model model are listed in Table S2, along
with hyperlinks to their associated websites. Counts of COVID-19 deaths dur-
ing the period of March 15th – May 18th were downloaded from the novel
coronavirus infection map hosted by the University of Washington. Counts
of on COVID-19 hospitalizations were downloaded from a publicly available
database hosted by Definitive Healthcare, a healthcare data analytics company
(https://www.definitivehc.com/about). To correct for under-reporting of hos-
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pitalizations, data on hospitalization response rates were downloaded from each
state’s respective Department of Health (DOH) website. This data has since
been removed from the WA DOH website, but a copy of the dataset is included
in the supplemental (Table S3). Next, the number of ICU beds in WA was
downloaded directly from the WA DOH website, but this information could not
be found on the CO DOH website. Thus, a report of 2018 ICU bed counts
from a local CO news organization was used instead. Finally, population size
estimates for both states were acquired from their respective US Census Bureau
websites.

3.2 Correction for under-reporting by hospitals

Not all hospitals report counts of COVID-19 cases to their state governments
every day. For the states we studied, fewer hospitals reported COVID-19 hos-
pitalizations during weekends than weekdays (see Tables S3 and S4). The lack
of daily reporting partly contributes to hospitalization reports underestimating
the true number of hospitalizations. To account for under-reporting of hospi-
talizations, we applied a simple correction based on the assumption that the
ratio of hospitalizations to number of hospitals was the same for the sample of
reporting hospitals in a state as it is for all hospitals in a state. In other words:

U

K
=
u

k

Where U is the number of hospitalizations in the entire state, K is the number
of hospitals in the entire state, u is the number of reported hospitalizations, and
k is number of reporting hospitals. U is the only unknown in this equation,
meaning it can be calculated as:

U =
Ku

k

To apply this correction to the entire time series, we wrote U and u as
functions of time U(t) and u(t) respectively:

U(t) =
Ku(t)

k

The WA DOH only counted the number of reporting hospitals for May 9th
– May 15th, so data from this period was extrapolated to the entire time span
of March 15th – May 18th (see Table S3). There are 92 acute care hospitals in
the entire state, but only 66 hospitals reported case counts every day for May
9th – May 15th on average. Thus:

U(t) =
92u(t)

66

The CO DOH website also reports the percentage of hospitals that update
COVID-19 data. However, these data are deleted from the website weekly.
Thus, the average percentage of hospitals reporting data had to be estimated
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from data from July 4th – July 9th (see Table S4). About 75.43 percent of CO
hospitals reported COVID-19 cases every day during this period on average.
Thus, the applied correction was:

U(t) =
100u(t)

75.43

3.3 Model formulation

Figure 1: A compartment diagram depicting the system of ordinary differential
equations used in this study. See Tables S5 and S6 for variable and parameter
definitions.

Our system of ordinary differential equations included a total of 7 state vari-
ables and 9 parameters, which are defined in Tables S5 and S6 and diagrammed
in Figure 1. From Figure 1, the full set of differential equations describing the
spread of COVID-19 in our model can be written as:

dS

dt
= −αS (I + cE + cA+ bH) (1)

dE

dt
= αS (I + cE + cA+ bH) − βE (2)

dA

dt
= pβE −

(
1

ζ

)
A (3)

dH

dt
=

1

χ
I − 1

ζ − χ
H (4)

dI

dt
= (1 − p)βE − 1

χ
I (5)

dR

dt
= q

1

ζ − χ
H +

1

ζ
A (6)
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dD

dt
= (1 − q)

1

ζ − χ
H (7)

Adhering to epidemiological model naming conventions, this model will
be referred to as the SEAHIRD model for the remainder of the paper. The
SEAHIRD model begins with assuming that susceptible individuals are ex-
posed to COVID-19 at rates proportional to how often they contact individ-
uals harboring SARS-CoV-2 (α).These individuals fall into multiple categories:
symptomatic infected (I), exposed but undetermined symptom development (E),
asymptomatic infected (A), and symptomatic isolated infected (H, for ”home-
bound” or ”hospitalized”). The scaling factors c and b are meant to reflect the
“infectiveness” of individuals in the E, A, and H compartments relative to the I
compartment. We chose c to be 0.55, reflecting the finding that asymptomatic
individuals are 55 percent as infectious as symptomatic individuals [19]. We as-
sumed b to be 0.1, reflecting how isolated individuals ideally contact susceptible
individuals only rarely.

Once an individual is exposed (E) to SARS-CoV2, they were assumed to
have a probability p of becoming asymptomatically infected (A) and a proba-
bility of 1–p of becoming symptomatically infected (I). Furthermore, the rate
at which E individuals transformed into A or I individuals was assumed to be
proportional the inverse of the incubation period, β, estimated as 1/6.6 days
[19]. Asymptomatic individuals were assumed to never perish from COVID-19
and to recover from the disease at a rate proportional to 1/ζ, the inverse of the
recovery period. The recovery period, ζ, was estimated from a previous study
on COVID-19 severity as 24.7 days [39]. This result agrees with other studies
on COVID-19 suggesting that infected asymptomatic individuals typically shed
SARS-CoV-2 viruses 15 – 26 days after initial infection [21].

Once an exposed individual (E) individual develops into a symptomatically
infected individual (I), they are assumed to mix with the population for χ days
before isolating themselves (see equations 4 and 5). χ was initially assumed
to be equal to 1 day in the baseline SEAHIRD models, but we also ran the
SEAHIRD model using χ values of 0.5 days and 2 days.

Once isolated, the infectiveness of symptomatic individuals was assumed
to drop to 0.1α. This rate was intentionally made non-zero to account for
any minor contact isolated individuals have with susceptible individuals, since
quarantine measures are rarely perfect. Once isolated (H), individuals had a
probability q of recovering from the disease and a probability 1–q of dying (see
equations 6 and 7). The value of q was estimated as 0.986, again based on
COVID-19 studies in China [42]. In addition, some of the rate constants in
equations 6 and 7 were assumed to be the inverse of recovery period – χ, where
the “-χ” accounts for the time symptomatic individuals spend mixing with the
population before isolating themselves.

For the sake of simplicity, we assume that recovered individuals (R) are not
susceptible to re-infection with SARS-CoV-2. This is not known to be strictly
true for SARS-CoV-2 infection in humans, but it is reasonable given how non-
human primates respond to SARS-CoV-2 infection [7].
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3.4 Choosing initial conditions

Given that SARS-CoV-2 is a completely novel virus and there is currently no
vaccine to invoke immunity, the entire populations of WA and CO were assumed
to be susceptible to SARS-CoV-2 infection. Thus, the number of susceptible
individuals in either state on March 15th, S0, was initially estimated as:

N = S0 + E0 +A0 +H0 + I0 +R0 +D0

N − E0 −A0 −H0 − I0 −R0 −D0 = S0 (8)

Here, N is the total population size of the state and the other variables are the
initial values for the given state’s SEAHIRD compartments. During SEAHIRD
model optimization (see section 3.5), S0 was allowed to vary, but this equation
was used to define the optimization algorithm’s parameter search space.

Since COVID-19 mortality data is generally reliable, the number cumulative
deaths up until March 15th, D0, was not adjusted in the raw data. On the other
hand, estimating the number of symptomatic, infected individuals required some
adjustment. Ideally, the initial number of I individuals (I0) could be calculated
as:

I0 = C0 −D0 −R0

Where C0, D0, and R0 are cumulative numbers of COVID-19 cases, deaths,
and recoveries up until March 15th, respectively. For simplicity, R0 was assumed
to be 0, since this category of individuals would ultimately not have much impact
on model dynamics, leaving just:

I0 = C0 −D0

However, C0 is drastically underestimated for the US population. One pre-
print study suggests that increasing the number of cases in the US by 279 percent
would bring the US death rate down to a similar rate as South Korea, a country
with reliable infection counts, after accounting for demographic differences [17].
Thus, I0 was estimated as:

I0 = 1.79C0 −D0

This calculation assumes that the correction for the US applies to individual
states as well. The initial number of exposed individuals (E0) and asymptomatic
infected individuals (A0) was assumed to be directly proportional to I0. In the
absence of reliable data on these numbers, we decided:

E0 = 30I0

A0 = 8I0
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because these numbers generated biologically reasonable model curves and
they reflect how the majority of COVID-19 transmission occurs through asymp-
tomatic individuals [19].

Finally, the initial number of symptomatic, isolated individuals (H0) was
assumed to be:

H0 = 10h0

Here, h0 is the number of individuals hospitalized with COVID-19 on March
15th. In other words, for every individual hospitalized with COVID-19, there
were assumed to be nine other symptomatic individuals that were self-isolating
at home.

3.5 Fitting SEAHIRD to data

We used the Levenberg–Marquardt algorithm implemented in the FME package
to optimize α and S0 such that the sum of squared error between the SEAHIRD
model output and the curve of cumulative deaths over time for either WA or
CO was minimized. In all model fitting cases, the initial estimate of S0 was
given by equation 8 and the initial estimate of α was 3E-7. Furthermore, α was
always bounded between 3E-6 and 3E-8 while S0 was bounded between 0.05 and
1.5 times its initial estimate. These bounds were chosen because they produced
biologically reasonable results (see Figure 2).

3.6 Estimating probability of hospitalization given symp-
tomatic infection

The number of individuals hospitalized with COVID-19 was assumed to be a
constant fraction of the number of individuals in compartment H. After simu-
lating the SEAHIRD model based on the initial conditions described above, this
fraction was estimated numerically by multiplying the H(t) function by 10000
different constants increasing from 0 to 0.1 in increments of 1E-5 and calculating
the sum of squared error between the resulting curve and hospitalization counts
over time. The constant h that gave the lowest sum of squared error between
H(t)*h and the curve of hospitalization counts over time, after correcting for
under-reporting, thus estimated the probability of hospitalization given symp-
tomatic infection. This analysis was performed once for the WA dataset and
once for CO dataset.

3.7 Estimating effect of decreased hospitalization and in-
creased bed cap on delaying bed shortage

Pre-pandemic surveys suggest that about 50 – 80 percent of ICU beds in America
are typically occupied at any given time [43]. Thus, we assumed that 30 percent
of ICU beds in either WA or CO could be reasonably allocated to COVID-19
infected patients during the modeling period, which is referred to as the hospital
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“bed cap” at some points in the paper. Once the probability of hospitalization
given symptomatic infection (hereto referred to as the “hospitalization proba-
bility”) was estimated from the fit of SEAHIRD model to the hospitalization
data, we decreased this probability by 50 percent and observed the change in
when the bed cap was exceeded under the same SEAHIRD model. Holding this
probability at its original estimated value, we then increased the bed cap by 50
percent and recorded the change in when the bed cap was exceeded. Finally, we
tested the effect of altering the probability of hospitalization and the bed cap
simultaneously by plugging 10000 different combinations of these two numbers
spanning values from 0 – 1, in increments of 1E-5, into the SEAHIRD model
(see Figures S5 and S9).

3.8 Sensitivity analysis

Once we developed the baseline SEAHIRD models (E0 = 30*I0, H0 = 10*h0,
p = 0.86, and χ = 1) for CO and WA conditions and parameter values were
chosen, we tested the sensitivity of the WA and CO SEAHIRD models in three
ways. First, we used the sensFun() command in the FME package to analyze the
local sensitivity of the SEAHIRD model to its initial conditions and parameter
α according to the methods described in the documentation [35]. This analysis
was repeated twice, once for WA initial conditions and once for CO initial
conditions. Second, we then focused on E0 and H0 for both SEAHIRD models
and re-ran both models under nine different combinations of E0 and H0 values
while holding all other initial conditions at their baseline values (see Tables S7
and S8). For each set of initial conditions, we recorded the number of days until
30 percent ICU bed capacity was exceeded, and the number of days until the ICU
bed capacity was exceeded if the hospitalization probability was decreased by 50
percent or if statewide ICU bed capacity was increased by 50 percent. Finally,
estimates of p vary widely in published literature, so we ran the SEAHIRD model
with two different values of p (0.86 and 0.425) while holding all other parameters
and conditions at their baseline values. The first value of p comes from a
study that estimated the fraction of cases that went undocumented during a
period of COVID-19 spread in China [19]. Cases often go undocumented when
infected individuals have symptoms that are too mild for them to bother getting
tested. Thus, we reasoned this fraction should be close to the value of p. The
second value of p from a census in Italy where the authors directly observed
42.5 percent of their COVID-19 infected participants lacking symptoms [18].
Finally, we varied χ between three different values (1, 0.5, and 2) while holding
all of the other parameters at their baseline and recorded the resulting change
in SEAHIRD predictions.
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4 Results

4.1 Effective population sizes for COVID-19 transmission

Figure 2 presents the optimized baseline SEAHIRD model’s fits to mortality
data for CO and WA (initial conditions E0 = 30*I0, H0 = 10*h0, p = 0.86,
and χ = 1). The best fit parameters for α and S0 in under these conditions
were 7.954e-07 and 4.893e+05, respectively, for the WA SEAHIRD model and
5.410e-07 and 7.477e+05, respectively, for the CO SEAHIRD model (see Figure
2). The curves for the other state variables in the SEAHIRD model, suggest
that WA and CO had 42,598 and 55,295 symptomatic infected individuals (I +
H), respectively, at their peak infection periods between March 15th and May
18th (see Figures S1 and S5). The number of asymptomatic infected cases (E
+ A), on the other hand, peaked at 302,310 and 401,103 individuals for WA
and CO respectively during this period. In the SEAHIRD model, the peak
number of hospitalizations occurred 24 and 36 days after March 15th for WA
an CO, respectively. The actual peak in hospitalizations for these states during
the modeling period, however, occurred 21 days and 39 days after March 15th,
respectively. The probability of hospitalization given symptomatic infection was
estimated as 0.0286 (see Figure 5A) and 0.0234 (see Figure 5B) for WA and CO,
respectively. During the modeling period, CO started out as having fewer death
cases than WA, but then overtook WA death counts by the end of the modeling
period.

4.2 Effect of decreasing hospitalization on delaying bed
shortage

Hospitalizing fewer COVID-19 patients delayed the time at which the bed ca-
pacity for COVID-19 patients was exceeded (Figure 3). This effect increased as
fewer COVID-19 patients were hospitalized, according to the concave up shape
of the graph in Figure 3. The curves for both WA and CO reach asymptotes; in
other words, values of the hospitalization probability below which the bed cap
will never be exceeded. This occurred around a probability of 0.0115 for WA
and about 0.00551 for CO. The curve for CO was generally always higher than
the curve for WA, reflecting how the peak infection period occurred later in CO
than WA. However, there is a single point close to the WA asymptote where the
CO and WA curves meet (Figure 3).

4.3 Effect of increasing bed cap on delaying bed shortage

The graphs of Figure 4 show a concave down shape if the bed cap is less than
0.2. However, the graphs also inflect around values of 0.2 - 0.4 for the bed cap.
Then, both curves approach an asymptote (dotted lines in Figure 4) as the bed
cap increases. For WA, this asymptote occurred around a bed cap of 46 percent
of the maximum. The asymptote for CO, on the other hand, occurred at a
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Figure 2: Points are raw counts of deaths due to COVID-19 since Jan. 21st
- colored by the state in which the deaths occurred - and the lines are the
SEAHIRD model fits to these points. Best fit parameters were α = 7.954e-07
and S0 = 4.893e+05 for the WA SEAHIRD model and α = 5.410e-07 and S0

= 7.477e+05 for the CO SEAHIRD model. For both models E0 = 30*I0, H0 =
10*h0, and p = 0.86 and χ = 1.

bed cap of about 60 percent of the maximum. For a given proportion of bed
availability, bed caps were almost always exceeded later in CO than in WA.

4.4 SEAHIRD sensitivity to conditions and parameters

Once the SEAHIRD model was fit to each state’s data, we tested the local
sensitivity of the SEAHIRD model to its initial conditions and α. We first
used the local sensitivity analysis functions implemented in the FME package
to identify the initial conditions with the largest influence on model output.
For both states, the order from most sensitive to least sensitive parameters or
conditions was: S0, α, D0, E0, H0 or A0, I0, and finally R0 (see Figures S2,
S3, S6, and S7). S0, α, and D0, are well-estimated either directly from data
or from the model fitting, whereas the values of the remaining conditions were
assumed. Thus, we took the two the most sensitive assumed initial conditions,
E0 and H0, and altered their values, recording the effect on the SEAHIRD
model’s predictions. For both states, altering E0 and H0 did not change the
model’s prediction of when either state’s bed cap was exceeded by more than a
day (see Tables S7 and S8). The bed cap was generally exceeded sooner when
E0 = 40*I0 and H0 = 15*h0 but exceeded later when E0 = 20*I0 and H0 =
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Figure 3: Dotted vertical lines represent asymptotes – the probability beyond
which the ICU bed cap would not be exceeded from March 15th – May 18th .
For both models E0 = 30*I0, H0 = 10*h0, and p = 0.86 and χ = 1.

5*h0.
Two of the SEAHIRD model’s other primary assumptions are the values

of p - the probability that an individual exposed to COVID-19 will develop an
asymptomatic infection - and χ - the time it takes for symptomatic individuals to
isolate themselves. Thus, we tested whether the SEAHIRD model’s predictions
were robust to changing the value of p. We ran the SEAHIRD model with p set
to 0.86 and 0.425, while keeping E0 = 30*I0, H0 = 10*h0. Lowering p to 0.425
noticeably affected the curves for both the WA and CO SEAHIRD models (see
Figures S9 and S10). In the case of the WA SEAHIRD model with p = 0.425,
the 30 percent bed capacity was expected to be exceeded about 3.7 days after
March 15th. Decreasing hospitalization by 50 percent caused this capacity to
never be exceeded while increasing bed capacity by 50 percent resulted in the
bed capacity being exceeded 7.3 days after March 15th (see Table S9). The CO
SEAHIRD model with p = 0.425 predicted that 30 percent ICU bed capacity of
CO would be exceeded 14.4 days after March 15th. Decreasing the probability of
hospitalization by 50 percent caused the 30 percent bed capacity to be reached
24.3 days after March 15th while increasing bed capacity by 50 percent resulted
in an exceeded bed capacity 19.7 days after March 15th (see Table S9). The
SEAHIRD model predictions under different values of χ are listed in Table S10.
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Figure 4: Dotted vertical lines represent asymptotes – proportion of ICU bed
availability beyond which the ICU bed cap would not be exceeded from March
15th – May 18th . For both models E0 = 30*I0, H0 = 10*h0, and p = 0.86 and
χ = 1.

5 Discussion

SARS-CoV-2 is unique to any other deadly virus humanity has ever faced. Its
defining characteristics are that the majority of infected individuals do not de-
velop symptoms and there is a significant period before symptoms could appear
during which an individual can still spread the virus. This has led to mas-
sive levels of undocumented infection; some pre-print articles estimate that 19
million Americans have caught COVID-19, only a small fraction of which are
laboratory confirmed cases [22]. We developed a novel system of differential
equations to account for these asymptomatic and presymptomatic phases of
COVID-19 infection, which happened to be similar to other models used to
model COVID-19 spread [22]. This system was fit to data on COVID-19 mor-
tality, the most reliable data available on COVID-19 spread, in two US states.
These different states had different infection dynamics and different peak infec-
tion dates. Including infection peaks in the analysis was especially important
because deterministic models can be especially misleading when fit with only
pre-peak data [10]. We then compared the effects of decreasing the probability
of hospitalization given symptomatic infection and increasing the proportion
of ICU beds available to COVID-19 patients on delaying when the number of
hospitalized COVID-19 patients exceeded the allotted ICU bed capacity. It is
clear that, under the conditions simulated here, decreasing the probability of
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Figure 5: (A)Points are counts of hospitalized COVID-19 patients in all WA hos-
pitals by day, corrected for underreporting by hospitals. Curve is H(t) function
output from SEAHIRD model multiplied by the probability of hospitalization
given symptomatic infection, which was numerically estimated as 0.0286. (B)
Points are counts of hospitalized COVID-19 patients in all CO hospitals by day,
corrected for underreporting by hospitals. Curve is H(t) function output from
SEAHIRD model multiplied by the probability of hospitalization given symp-
tomatic infection, which was estimated to be about 0.0234. For both (A) and
(B), SEAHIRD initial conditions included E0 = 30*I0 and H0 = 10*h0 while p
= 0.86 and χ = 1.

hospitalization has a larger effect on delaying an ICU bed shortage than com-
parably increasing the proportion of ICU beds available to COVID-19 patients.
This finding was very robust; it occurred in the simulated conditions of both
WA and CO under multiple sets of initial conditions and parameter values.
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5.1 Decreasing hospitalization delays bed shortage more
than increasing bed cap

At least two lines of evidence suggest that decreasing hospitalization of COVID-
19 patients delays a bed shortage more than an equivalent increase in bed ca-
pacity. First, when we quantitatively compared times-till-bed-shortage across
multiple sets of initial conditions and parameter values, scenarios with lower
hospitalization of COVID-19 patients always exceeded ICU bed capacity at
later dates – if at all – relative to scenarios with higher bed caps (see Tables
S7 - S10). Furthermore, when we recorded the times-till-bed-shortage for thou-
sands of combinations of hospitalization probability and bed cap values, we
qualitatively observed decreasing the former to delay a bed shortage more than
increasing the latter (Figures S4 and S8). This finding supports current CDC
guidelines on COVID-19, which tell sick individuals to not go to hospitals unless
they are experiencing severe COVID-19 symptoms [40].

Moderately changing either the bed cap or hospitalization probability rarely
delayed a bed shortage by more than a few days from the baseline scenarios in
our study. This seemingly small difference is arguably not clinically significant;
however, COVID-19 regularly causes hundreds of deaths per day in the US (see
https://coronavirus.jhu.edu/), making even small differences potentially lifesav-
ing. This result is also promising because hospitalizing fewer patients is often
more feasible for hospitals than increasing capacity. After all, increasing hos-
pital capacity involves more than simply adding beds - extra staff, PPE, and
medical equipment are also required for hospitals to care for more patients.
Decreasing hospitalization and increasing hospital capacity are, of course, not
mutually exclusive strategies. In fact, the saw-tooth pattern on our surface
plots (Figures S4 and S8) suggests that multiple combinations of bed cap and
hospitalization probability values can result in the bed cap never being exceeded
for WA and CO. It is well-established, however, that some individuals are at
relatively low risk of dying from COVID-19, especially individuals in younger
age demographics [20] and individuals lacking comorbidities like obesity [38].
Thus, if such individuals can effectively isolate themselves at home, caring for
fewer patients will leave more ICU beds open for seriously ill patients and there-
fore counter-intuitively save more lives. The danger is that it is impossible to
predict with 100 percent certainty who will eventually develop deadly COVID-
19 symptoms. Furthermore, policies to provide selective care could be enacted
unfairly, increasing the already heavy toll of COVID-19 on marginalized groups
in America [37]. Whatever policies are enacted to selectively care for COVID-19
patients, they must be evidence-based and equitable without exception.

5.2 SEAHIRD predictions are robust to initial conditions
and parameter values

One of the most contentious parameters regarding COVID-19 disease spread is
the probability of developing a symptomatic infection given COVID-19 exposure
– denoted as p in this study. Early studies on COVID-19 suggested that this
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value could be fairly low – around 20 percent or less [16], [26]. Later studies
suggested that this probability is likely higher - upwards of 50 percent [18],[19].
Thus, we tested whether the SEAHIRD model’s primary trend held true if
we assumed both a low (0.425) and a high (0.86) value for p. Surprisingly,
decreasing hospitalization by 50 percent always delayed a bed shortage more
than increasing bed capacity by 50 percent and, in one case, avoided a bed
shortage entirely (see Table S9). Changing the value of p had a large influence
on the shape of the SEAHIRD model’s curves (see Figures S9 and S10). Thus,
we suspect that changes in this parameter over time or could be responsible
for the relatively poor fit between CO hospitalization data and the SEAHIRD
model (see Figure 5B).

Our model assumed that all individuals self-isolate 24 hours after symptom
onset, either by remaining home-bound or going to a hospital, which is opti-
mistic relative to other COVID-19 models [1],[27],[33]. Nonetheless, we found
that either decreasing this delay to 12 hours or increasing it to 48 hours led to
the same general trend: increasing bed cap by 50 percent did not delay a bed
shortage from being exceeded more than decreasing the hospitalization proba-
bility by 50 percent (see Table S10). Overall, the robustness of our main finding
suggests it could hold for other populations with different infection dynamics.

5.3 Low effective population size for COVID-19 transmis-
sion in CO and WA

The effective population size of both the WA and CO SEAHIRD models was
orders of magnitude lower than the actual population sizes of these states as
estimated by the US census. This discrepancy is partly due to the lack of any
lockdown effects in the SEAHIRD model. Thus, COVID-19 was restricted to
spreading among only a subset of the WA and CO populations. The lack of lock-
down effects is arguably SEAHIRD model’s most obviously violated assumption.
WA lockdowns began on March 23rd 2020 [15], not long into the simulation,
closely followed by CO on March 26th [23]. However, there is some pre-print
work suggesting that US individuals were already relaxing physical distancing
measures by mid-April, perhaps limiting the lockdown effect in our data [44].
Other phenomenon could have also contributed to the small effective population
size in the SEAHIRD model. For example, there are well-documented cases of
individuals unexposed to COVID-19 having antibodies that react to SARS-CoV-
2 particles [32]. There’s also population-level evidence suggesting that certain
pre-existing vaccines may have trained immune systems against COVID-19, al-
though these vaccines are not common in the US [5],[12]. Nonetheless, it is
possible that pre-existing and trained immunity may have removed individuals
from the susceptible populations in CO and WA, explaining why COVID-19
only spread among a small subset of these populations in the SEAHIRD model.
Incorporating lockdown effects, pre-existing immunity, and trained immunity
into SEAHIRD-like models may improve their predictions. Understanding how
these nuances affect hospitalizations will be incredibly important as the US tries
to regain control of the COVID-19 pandemic.
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