1 Full Title: 12 Novel Clonal Groups of Leptospira Infecting Humans in Multiple

2 Contrasting Epidemiological Contexts in Sri Lanka

4	Dinesha Jayasundara ^{1,2} , Indika Senavirathna ^{1,3} , Janith Warnasekara ¹ , Chandika Gamage ⁴ ,					
5	Sisira Siribaddana ⁵ , Senanayake Abeysinghe Mudiyanselage Kularatne ⁶ , Michael					
6	Matthias ⁷ , Mariet JF ⁸ , Mathieu Picardeau ⁸ , Suneth Agampodi ^{1,7} , Joseph Vinetz ⁷					
7	¹ Leptospirosis Research Laboratory, Department of Community Medicine, Faculty of					
8	Medicine and Allied Sciences, Rajarata University of Sri Lanka					
9	² Department of Microbiology, Faculty of Medicine and Allied Sciences, Rajarata					
10	University of Sri Lanka					
11	³ Department of Biochemistry, Faculty of Medicine and Allied Sciences, Rajarata					
12	University of Sri Lanka					
13	⁴ Department of Microbiology, Faculty of Medicine, University of Peradeniya, Sri Lanka					
14	⁵ Department of Medicine, Faculty of Medicine and Allied Sciences, Rajarata University of					
15	Sri Lanka					
16	⁶ Department of Medicine, Faculty of Medicine, University of Peradeniya, Sri Lanka					
17	⁷ Yale University school of Medicine, New Haven, Connecticut, USA					
18	⁸ Institut Pasteur, Biology of Spirochetes unit, Paris, France					

20 Abstract

21	Leptospirosis is a ubiquitous disease and a major clinical challenge owing to the multitude
22	of clinical presentations and manifestations that are possibly attributable to the diversity of
23	Leptospira, the understanding of which is key to study the epidemiology of this emerging
24	global disease threat. Sri Lanka is a hotspot for leptospirosis with high levels of endemic
25	disease as well as annual epidemics. We carried out a prospective study of Leptospira
26	diversity in Sri Lanka, covering the full range of climatic zones, geography, and clinical
27	severity. Samples were collected for leptospiral culture from 1192 patients from 15 of 25
28	districts in Sri Lanka over two and half years period. Twenty five isolates belonging to four
29	pathogenic Leptospira species were identified: L. interrogans, L. borgpetersenii, L. weilii,
30	and L. kirschneri. At least six serogroups were identified among the isolates: Autumnalis
31	(6), Pyrogenes (4), Icterohaemorrhagiae (2), Celledoni (1), Grippotyphosa (2) and Bataviae
32	(1). Seven isolates did not agglutinate using available antisera panels, suggesting new
33	serogroups. Isolates were sequenced by Illumina. These data add 25 new core genome
34	sequence types and were clustered in 15 clonal groups, including 12 new clonal groups. L.
35	borgpetersenii was found only in the dry zone and L. weilii only in the wet zone. Acute
36	kidney injury and cardiovascular involvement were seen only with L. interrogans
37	infections. Thrombocytopenia and liver impairment were seen in both L. interrogans and L.
38	borgpetersenii infections. The inadequate sensitivity of culture isolation to identify
39	infecting Leptospira species underscores the need for culture-independent typing methods
40	for Leptospira.
11	

41

42

43 Author Summary

45	There is a huge diversity in pathogenic Leptospira species worldwide, and our knowledge
46	of the currently circulating species is deficient owing to limited isolation and identification
47	of Leptospira species from endemic countries. This prospective study reveals the wide
48	pathogen diversity that causes human leptospirosis in Sri Lanka, representing four species,
49	more than six serogroups, and fifteen clonal groups. Further, the different geographic and
50	climatic zone distributions and clinical manifestations observed underscores the need for
51	prospective studies to expand the molecular epidemiological approaches to combat
52	leptospirosis
53	
54	

56 Introduction

57	Leptospirosis is caused by a group of pathogenic Leptospira species of the phylum
58	Spirochetes and is considered one of the commonest zoonotic diseases worldwide [1][2].
59	Leptospira spp. have the ability to colonize proximal convoluted tubules of kidney tissue of
60	various mammals (including rodents), birds and marsupials, and the hosts excrete the
61	bacteria to the environment via urine [3][4]. Humans are incidental hosts who acquire the
62	disease by direct contact with urine or tissues of reservoir animals or, more frequently by
63	indirect contact with contaminated water sources [5][6]. The number of cases due to
64	leptospirosis is estimated to be 1.03 million annually worldwide, with 58,900 deaths [1].
65	The majority of tropical countries in Oceania, southeast Asia, the Caribbean region, central
66	and eastern sub-Saharan Africa, and south Asia are estimated to have substantial morbidity
67	and mortality that is attributable to leptospirosis.[7]
(0	
68	
68 69	Understanding the diversity of infecting Leptospira has been a major global focus,
	Understanding the diversity of infecting <i>Leptospira</i> has been a major global focus, especially in recent years. The phenomenal changes in <i>Leptospira</i> classification backed by
69	
69 70	especially in recent years. The phenomenal changes in <i>Leptospira</i> classification backed by
69 70 71	especially in recent years. The phenomenal changes in <i>Leptospira</i> classification backed by next-generation sequencing methods and whole-genome sequencing have led to the
69 70 71 72	especially in recent years. The phenomenal changes in <i>Leptospira</i> classification backed by next-generation sequencing methods and whole-genome sequencing have led to the identification of 43 new <i>Leptospira</i> species during the period 2018 to 2020 [8–11]. In
69 70 71 72 73	especially in recent years. The phenomenal changes in <i>Leptospira</i> classification backed by next-generation sequencing methods and whole-genome sequencing have led to the identification of 43 new <i>Leptospira</i> species during the period 2018 to 2020 [8–11]. In addition, the more robust classification of <i>Leptospira</i> strains beyond the species level using
69 70 71 72 73 74	especially in recent years. The phenomenal changes in <i>Leptospira</i> classification backed by next-generation sequencing methods and whole-genome sequencing have led to the identification of 43 new <i>Leptospira</i> species during the period 2018 to 2020 [8–11]. In addition, the more robust classification of <i>Leptospira</i> strains beyond the species level using core-genome multi-locus sequence typing (cgMLST) [9] and single nucleotide
69 70 71 72 73 74 75	especially in recent years. The phenomenal changes in <i>Leptospira</i> classification backed by next-generation sequencing methods and whole-genome sequencing have led to the identification of 43 new <i>Leptospira</i> species during the period 2018 to 2020 [8–11]. In addition, the more robust classification of <i>Leptospira</i> strains beyond the species level using core-genome multi-locus sequence typing (cgMLST) [9] and single nucleotide polymorphism typing methods has rapidly expanded our knowledge of the molecular
 69 70 71 72 73 74 75 76 	especially in recent years. The phenomenal changes in <i>Leptospira</i> classification backed by next-generation sequencing methods and whole-genome sequencing have led to the identification of 43 new <i>Leptospira</i> species during the period 2018 to 2020 [8–11]. In addition, the more robust classification of <i>Leptospira</i> strains beyond the species level using core-genome multi-locus sequence typing (cgMLST) [9] and single nucleotide polymorphism typing methods has rapidly expanded our knowledge of the molecular epidemiology of <i>Leptospira</i> . However, the goal of reducing the global burden of this deadly

80	The global leptospirosis disease burden study [1] has highlighted Sri Lanka as a					
81	hyperendemic country with an estimated morbidity of 300.6 and mortality of 17.98 per					
82	100,000 population per year. The disease incidence tends to be higher during the rainy					
83	seasons, i.e., the southwest and northeast monsoons. Cases, however, are not confined					
84	exclusively to the wet zone and are reported in the dry zone as well, where the majority of					
85	residents are engaged in farming activities. Outbreaks have also occurred in the dry zone					
86	following extreme weather events like flooding [12].					
87						
88	As in many other endemic countries, understanding Leptospira diversity in Sri Lanka is					
89	limited because of a lack of knowledge of the circulating pathogenic species and serovars.					
90	Studies that utilized culture-based isolation of Leptospira species were carried out in Sri					
91	Lanka during the period from 1950 to 1970 in the wet zone only. Several pathogenic strains					
92	of the species L. interrogans [13][14][15], L. borgpetersenii [16], L. kirschneri [17], and L.					
93	santarosai were detected during that time [18][19]. Since the 1970s, no culture based					
94	isolation studies were reported until 2018, when two human isolates belonging to L.					
95	interrogans were recovered from the wet zone [20]. Despite the availability of next-					
96	generation sequencing methods for many years, whole-genome sequencing data for Sri					
97	Lankan isolates were not available until recently [21].					
98						
99	A systematic review published in 2016 revealed the large diversity of Leptospira strains in					
100	Sri Lanka based on historical data [19]. Being an island with a high leptospirosis disease					
101	burden makes Sri Lanka an ideal location to study pathogen diversity linked with					

- 102 epidemiological and clinical patterns of the disease. Low-passage isolates from human
- sources with high-resolution genetic typing in a place with high pathogen diversity would
- 104 enhance our global knowledge of leptospirosis. This study was designed to provide a

105	comprehensive understanding of the circulating pathogenic Leptospira species and
106	serotypes responsible for human leptospirosis in Sri Lanka, covering different clinical
107	presentations and geographical locations as well as epidemic and endemic disease over a
108	period of two and half years.
109	
110	Methods
111	The present study was embedded in a larger clinical-epidemiological study on leptospirosis,
112	in Sri Lanka and the study protocol was published elsewhere [22]. Specific details related
113	to Leptospira diversity and methods in brief are given here.
114	
115	Study setting
116	This study was carried out from June 2016 through January 2019 at several locations in Sri
117	Lanka that differed with respect to mean temperature, rainfall, elevation, ecology, human
118	activities, and leptospirosis endemicity. The main data collection sites were the Teaching
119	Hospital Anuradhapura (THA) and Teaching Hospital Peradeniya (THP). THA is in the dry
120	zone located at low elevation with low humidity, high temperature, large rice paddy fields,
121	water reservoir-based irrigation systems, and low endemicity for the disease. THP is in the
122	wet zone located at high elevation, low temperature, rainfall-based farming activities, and
123	high endemicity. Samples for Leptospira diversity assessment were collected through two
124	approaches. First, as a part of the main study described in Agampodi et al. 2019,
125	prospective data and sample collection was done in THA and THP. In addition, during an
126	outbreak of leptospirosis in 2017, we set up the same procedure at Base Hospital
127	Avissawella and Provincial General Hospital Rathnapura from June to September. These
128	two wet-zone areas have high endemicity, representing low and intermediate elevations. As
129	a part of the service component of this study, we offered diagnostic services to all

130	requesting physicians and also collected additional culture samples. This resulted in sample
131	collection from District General Hospital Kegalle, Base Hospital Karawanella, Sri
132	Jayawardanapura General Hospital, and General Hospital Polonnaruwa (GHP) again
133	representing different geographical locations. These study sites (Fig 1) represent seven
134	districts belonging to four provinces of the country, and the patients who visited these
135	hospitals came from all nine provinces.
136	
137	Fig 1. Locations of the seven hospitals involved in the study
138	
139	Study samples
140	Culture collection was done from three types of patients. Acute undifferentiated febrile
141	(temperature >38°C) patients who presented to adult wards (age >13 years) of THA, THP,
142	Provincial General Hospital Rathnapura (PGHR) and Base Hospital Avissawella (BHA)
143	(both outpatient department and hospitalized patients) were included as possible cases of
144	leptospirosis. A possible case was defined as any acute undifferentiated febrile patient with
145	headache, mayalgia and prostration. Probable cases of clinical leptospirosis which were
146	defined as those who were having the classical clinical features of leptospirosis with an
147	exposure history, were included from GHP. Culture samples from Sri Jayawardanapura
148	General Hospital and Base Hospital Karawanella were included only if they came from
149	clinically confirmed cases of leptospirosis. These cases were defined according to the
150	surveillance case definition for leptospirosis set by epidemiology unit of Sri Lanka[23].
151	Physician-diagnosed probable or definite acute bacterial meningitis or lower respiratory
152	tract infections (e.g., consolidated lobar pneumonia), traumatic or post-operative fever per
153	physician discretion, fever owing to nosocomial infections, and any patient with confirmed
154	diagnosis as a cause for the fever were excluded. Epidemiological data were collected from

- 155 each patient using a fully structured, interviewer administered questionnaire which was
- described in detail in the study protocol paper published elsewhere[22]
- 157

158 Sample collection and isolation of Leptospira

- 159 Blood (7 ml) was collected into EDTA tubes from all eligible patients. Bedside inoculation
- of 2 and 4 drops (100–400 µl) was done into two tubes with 9 ml Ellinghausen-
- 161 McCullough-Johnson-Harris (EMJH) semisolid medium with added antibiotics (5-
- 162 fluorouracil and neomycin). These cultures were kept at room temperature (usually 28–
- 163 32°C) until transfer to the Leptospirosis Research Laboratory of the Faculty of Medicine
- and Allied Sciences, Rajarata University, Sri Lanka, and then incubated at 30°C until the
- 165 cultures become positive or for 6 months. Samples from THA were transferred on the same
- 166 day to the research laboratory whereas other samples collected from distant places were
- 167 transferred within 2 days of collection.
- 168

169 In brief, EMJH semisolid media were prepared by adding 2.3 g of EMJH base (Difco), 1.5

170 g bacteriological agar, and 100 mg sodium pyruvate into 785 ml distilled water and

171 adjusting the pH to 7.4. The media were autoclaved, and once cooled to ~50°C, 100 ml

172 Leptospira enrichment media and 100 ml fetal bovine serum were added. To suppress the

173 growth of possible contaminating bacteria, 5-fluorouracil (100 µg/ml, final) and neomycin

174 (25 µg/ml) were added. Each inoculated medium was inspected by taking approximately

175 50µl of volume into a clean glass slide after mixing the culture tubes well by inverting

- 176 several times. Prepared slides were examined under 40X objective of a dark-field
- 177 microscope to check for the presence of motile spirochetes; this was done initially after 3
- 178 weeks and then on a monthly basis. However, samples were inspected before 3 weeks if
- 179 quantitative PCR of the corresponding whole-blood sample indicated a positive reaction.

180	The procedure for qPCR on clinical samples is described elsewhere in the published				
181	protocol paper[22]. Culture tubes were inspected for consecutive 4 months before reporting				
182	as negative. When positive growth was detected, subcultures were made into liquid and				
183	semisolid media, and an aliquot was fixed with 5% dimethyl sulfoxide and stored at -80°C.				
184	Isolates were subcultured in liquid media once in 2 weeks and on semisolid media once in 3				
185	months. Certain isolates required weekly subculture into liquid media to maintain viability.				
186	None of the isolates became contaminated during the subculture process, although two				
187	positive original clinical samples were contaminated with bacilli. For those two samples,				
188	subcultures were made into liquid media and subsequently filtered through a 0.2 μ m pore-				
189	size microfilter to overcome the problem of contamination.				
190	Next-generation sequencing, cgMLST and phylogenetic tree				
191	DNA was extracted from culture using the PureLink Genomic DNA Mini kit (Invitrogen,				
192	Dublin, Ireland) and Wizard Genomic DNA Purification Kit (Promega, Southampton, UK)				
193	according to manufacturer instructions. NGS was performed using Nextera XT DNA				
194	Library Preparation kit and the NextSeq 500 sequencing systems (Illumina, San Diego, CA,				
195	USA) at the Mutualized Platform for Microbiology (P2M) at Institut Pasteur. The data were				
196	analyzed using CLC Genomics Workbench 9 software (Qiagen, Hilden, Germany).				
197	cgMLST typing was performed for strain taxonomy using a scheme based on 545 highly				
198	conserved genes with BIGSdb (http://bigsdb.pasteur.fr/leptospira), and a phylogenetic tree				
199	was generated using cgMLST with Interactive Tree of Life v3, and GrapeTree [24] was				
200	used to visualize the core genomic relationships among the isolates and the previously				
201	reported Sri Lankan isolates [9][25][26]. Clonal Groups (CG) is defined as a group of				
202	cgMLST allelic profiles differing by no more than 40 allelic mismatches, out of 545 gene				
203	loci, from at least one other member of the group.				
204	Serotyping of new isolates				

205	Serotyping of newly isolated <i>Leptospira</i> strains was done at the Pasteur Institute, France.
206	Microscopic agglutination test using a standard battery of rabbit antisera raised against 24
207	reference serovars representing the main serogroups was used for this study [27][28].
208	Ethics statement
209	Written informed consent was obtained from all patients prior to sample collection. This
210	study is approved by the Ethics Review Committee of the Faculty of Medicine and Allied
211	Sciences, Rajarata University of Sri Lanka. Protocol No. ERC/2015/18
212	
213	Results
214	From June 2016 through January 2019, we acquired blood cultures from 1192 patients.
215	Patients were from 14 districts of Sri Lanka, representing all 9 provinces (Fig 2).
216	
217	Fig 2. Distribution of probable exposure sites/residence of the patients recruited for
217 218	Fig 2. Distribution of probable exposure sites/residence of the patients recruited for the study.
218	the study.
218 219	the study. The majority of patients were male (n = 985, 82.6%). The mean age of the sample was 43.4
218 219 220	the study. The majority of patients were male (n = 985, 82.6%). The mean age of the sample was 43.4 years (SD 14.7). Most of the cultures (96%) were obtained from hospital inpatients, and the
218 219 220 221	the study. The majority of patients were male (n = 985, 82.6%). The mean age of the sample was 43.4 years (SD 14.7). Most of the cultures (96%) were obtained from hospital inpatients, and the remaining 4% (48 cultures) were from outpatients. Of the 1192 cultures, 80 (6.7%) were
218 219 220 221 222	the study. The majority of patients were male (n = 985, 82.6%). The mean age of the sample was 43.4 years (SD 14.7). Most of the cultures (96%) were obtained from hospital inpatients, and the remaining 4% (48 cultures) were from outpatients. Of the 1192 cultures, 80 (6.7%) were received from hospitals where only typical clinical cases of leptospirosis were sampled
218 219 220 221 222 222	the study. The majority of patients were male (n = 985, 82.6%). The mean age of the sample was 43.4 years (SD 14.7). Most of the cultures (96%) were obtained from hospital inpatients, and the remaining 4% (48 cultures) were from outpatients. Of the 1192 cultures, 80 (6.7%) were received from hospitals where only typical clinical cases of leptospirosis were sampled (from Sri Jayawardanapura General Hospital, Base Hospital Karawanella and Provincial
218 219 220 221 222 223 224	the study. The majority of patients were male (n = 985, 82.6%). The mean age of the sample was 43.4 years (SD 14.7). Most of the cultures (96%) were obtained from hospital inpatients, and the remaining 4% (48 cultures) were from outpatients. Of the 1192 cultures, 80 (6.7%) were received from hospitals where only typical clinical cases of leptospirosis were sampled (from Sri Jayawardanapura General Hospital, Base Hospital Karawanella and Provincial General Hospital Rathnapura). Another 107 (9.0%) were from GHP, where patients
218 219 220 221 222 223 224 225	the study. The majority of patients were male (n = 985, 82.6%). The mean age of the sample was 43.4 years (SD 14.7). Most of the cultures (96%) were obtained from hospital inpatients, and the remaining 4% (48 cultures) were from outpatients. Of the 1192 cultures, 80 (6.7%) were received from hospitals where only typical clinical cases of leptospirosis were sampled (from Sri Jayawardanapura General Hospital, Base Hospital Karawanella and Provincial General Hospital Rathnapura). Another 107 (9.0%) were from GHP, where patients represented only probable cases of leptospirosis. The remaining 1005 patients (84.3%) were

229	Of the 1192 patients, 25 isolates had been identified by January 2019. Among the acute
230	undifferentiated febrile patients, 1.5% (16/1047) had culture-positive leptospirosis; among
231	the probable and clinically confirmed cases of leptospirosis, culture positivity was 4.7%
232	(5/107) and 5.0% (4/80), respectively. The incubation period required to detect positive
233	growth (assessed with dark-field microscopy) varied between 1 and 17 weeks. For each
234	patient, both 2 drops and 4 drops of blood-inoculated media gave positive results. The
235	median incubation period was 15 weeks for the first 9 isolates and was 6 weeks for the
236	remaining 16 isolates (Sup.figure1).
237	
238	Leptospira was isolated from one female and 24 male patients who presented with fever.
239	Only three patients were from outpatient departments, and the rest were inpatients. Of the
240	three outpatients, two were later admitted to a hospital owing to increased disease severity.
241	
242	cgMLST analysis revealed that the 25 isolates represented four species: L. interrogans (15
243	isolates, 60%), L. borgpetersenii (7 isolates, 28%), L. weilii (2 isolates, 8%), and L.
244	kirschneri (1 isolate, 4%) The isolates which were classified using core genome MLST
245	genotyping scheme based on clusters created at the 40-mismatch level revealed the clonal
246	group identity of them . A clonal group was defined using a single linkage clustering with a
247	threshold set at 40 allelic mismatches. The predominant clonal group (CG) was CG267 (All
248	7 L. borgpetersenii isolates among the 25 total isolates). This was followed by CG266
249	(3/25), CG10 (2/25), and CG263 (2/25) of <i>L.interrogans</i> . The two <i>L. weilii</i> isolates
250	clustered in different clonal groups (CG262, CG264). Interpretable data for serogroup assay
251	was available for only 19 isolates. Seven samples resulted in no agglutination, probably
252	owing to new, previously unreported serogroups/serovars. The assay revealed that the 19
253	seropositive isolates represented at least six serogroups, namely Autumnalis, Pyrogenes,

- 254 Icterohaemorrhagiae, Grippotyphosa, Celledoni, and Bataviae. Table 1 shows the species
- 255 identity, serogroup status and distribution of clonal groups among the 25 isolates
- 256
- 257
- 258 Table 1. Putative species, serogroups, cgMLST and clonal groups for the Leptospira
- 259 isolates

Strain ID	Species	Serogroup	cgMLST	CG
FMAS_KW1	L. interrogans	Pyrogenes	784	10
FMAS_KW2	L. interrogans	Autumnalis	631	291
FMAS_AW1	L. interrogans	Autumnalis	555	74
FMAS_RT1	L. weilii	No agglutination	556	262
FMAS_AW2	L. interrogans	Autumnalis	567	269
FMAS_AW3	L. interrogans	Pyrogenes	557	9
FMAS_RT2	L. interrogans	Autumnalis	569	271
FMAS_PD1	L. interrogans	Pyrogenes	558	263
FMAS_PD2	L. weilii	Celledoni	559	264
FMAS_KG1	L. interrogans	Bataviae	560	265
FMAS_KG2	L. interrogans	Pyrogenes	561	263
FMAS_AP1	L. interrogans	Autumnalis	562	266
FMAS_AP2	L. borgpetersenii	No agglutination	563	267
FMAS_AP3	L. borgpetersenii	No agglutination	575	267
FMAS_AP4	L. borgpetersenii	No agglutination	564	267
FMAS_AP5	L. interrogans	Pyrogenes	565	10
FMAS_AP6	L. interrogans	Pyrogenes	785	321
FMAS_AP7	L. interrogans	Autumnalis	786	266

FMAS_PN1	L. borgpetersenii	No agglutination	787	267
FMAS_PN2	L. interrogans	Icterohaemorrhagiae	788	322
FMAS_PN3	L. interrogans	Autumnalis	789	266
FMAS_PN4	L. borgpetersenii	No agglutination	790	267
FMAS_AP8	L. borgpetersenii	No agglutination	791	267
FMAS_AP9	L. borgpetersenii	No agglutination	792	267
FMAS_PN5	L. kirschneri	Grippotyphosa	793	323

cgMLST- core genome Multi Locus Sequance Typing, CG: clonal group defined as a group of
 cgMLST allelic profiles differing by no more than 40 allelic mismatches, out of 545 gene loci, from
 at least one other member of the group

264

A phylogenetic tree was constructed from the cgMLST data for the 25 isolates together
with available data for previous reported nine (09) local isolates and currently circulating
pathogenic species worldwide. Fig 4 shows the phylogenetic tree which was constructed
with the cgMLST data.
Fig 3 Phylogenetic tree showing the distribution of species and serogroups of the
isolates from the present study along with the previously reported Sri Lankan isolates

and others species.

273

274 Most of the clonal groups found in the local isolates were unique and not found in other

275 countries. FMAS_AP2, FMAS_AP3 and FMAS_AP8 of L.borgpetersenii shows clear core

276 genomic relatedness forming a single cluster from the other four isolates of the same

277 species (Fig 4A). These three isolates were from patients in the same district of dry zone.

- 278 The previously reported four isolates of *L. kirschneri* from Rathnapura was distinct from
- 279 newly isolated *L.kirschneri* from Polonaruwa, even though they are in the same arm.

280	Two clear clusters of interograns could be observed. In one cluster AP7 ,PN3 AP1 of
281	serogroup Autamnalis from dry zone shows significant core genome relatedness and
282	clustered together. The other cluster was formed with FMAS_AP6, FMAS_KW1,
283	FMAS_AP5 and isolate Sri Lanka 39 of Pyrogenes serogroup. These isolates represent both
284	dry and wet zones. There's genomic relatedness between FMAS_AP5 of dry zone and Sri
285	Lanka 39 which is an old isolate recovered from wet zone. Another close association was
286	observed between FMAS_KG2 and FMAS_PD1 which are from wet zone and of serogroup
287	Pyrogenes. Two L. welli isolated from Rathnapura(RT1) and Peradeniya (PD2) have not
288	shown a significant core genomic relation. (metadata for the GrapeTree is included in
289	Sup.Table 1)
290	
291	Fig 4. Genome GrapeTree showing the core-genome relationship among the 25 new
292	and 9 previously isolated Leptospira strains from Sri Lanka
293	
294	Culture-positive leptospirosis patients were distributed widely in the study areas (Fig 5). L.
295	borgpetersenii was exclusively isolated from patients in areas of the dry zone at low
296	elevation, with hot and dry conditions. The single isolate of L. kirschneri was from the
297	same setting. In contrast, L. weilii was isolated from patients in the wet zone, whereas L.
298	interrogans was isolated from patients in all geographical areas (Fig 5). The serogroup
299	distribution also revealed a specific pattern for all nonagglutination isolates, which mainly
300	were from the dry zone at low elevation. The most frequent serogroup Autumnalis, was
301	observed in all geographical settings. All L. borgpetersenii isolates were in CG267, the
302	majority of which failed to agglutinate with rabbit sera (some slightly agglutinated with
303	
	serovars Grippotyphosa and Louisiana).

305 Fig 5. Geographic distribution of *Leptospira* species, serogroups and clonal groups

306

307 Clinical profile of culture-positive patients

308 Complete demographic and clinical profiles for the culture-positive patients are included as 309 a supplementary data (Sup. Table 1). All culture-positive patients were later contacted 310 and/or visited to collect additional data. The additional data were collected mainly to 311 identify exact type of exposure if possible and residing places of patients preceding the 312 illness. In addition, diagnosis cards of these patients were also traced to extract any missing 313 data during hospital stay. Each patient's clinical records were also retrieved from the 314 corresponding hospital. No fatalities were reported for patients with culture-positive 315 leptospirosis. Among hospitalized patients, the median duration of hospital stay was 4 days 316 (interquartile range, 3–5 days), and the longest stay was 12 days followed by 9 days (both 317 patients had acute kidney injury and required hemodialysis). Another two had renal 318 involvement with elevated serum creatinine but not acute kidney failure. Twelve patients 319 had elevated serum glutamic-oxaloacetic transaminase and serum glutamic-pyruvic 320 transaminase, and three other patients had elevated serum bilirubin. Thrombocytopenia was 321 common in those 12 patents, with a platelet count <100,000 per microliter. Two patients 322 who underwent hemodialysis also had cardiac involvement with hypotension. Each patient 323 who had a severe complication was infected with *L. interrogans*. Infection with *L.* 324 interrogans or L. borgpetersenii was associated with thrombocytopenia and liver 325 involvement. 326

327

328 Discussion

329	This is the first study to report information on the diversity of pathogenic Leptospira
330	species in Sri Lanka and probably one of the few prospective studies on Leptospira disease
331	diversity in literature representing all geographical regions of an entire country. In addition,
332	we report here the first isolation of L. weilii in Sri Lanka, the existence of which was
333	suggested based on molecular studies of clinical samples [29]. This study also provides the
334	first evidence of serogroups Celledoni and Bataviae circulating in Sri Lanka. Moreover,
335	with the exception of L. santarosai, our study identified all pathogenic Leptospira species
336	that were reported to have existed in Sri Lanka during the 1960s and 70s (as reviewed by
337	Naotunna et al. in 2015), confirming the breadth of Leptospira diversity in Sri Lanka [19].
338	Recent reports indicated that L. interrogans, L. borgpetersenii and L. kirschneri are also the
339	most common circulating species in other tropical regions of the world
340	[30][31][32][33][34][35]. However, the geographical distribution of certain Leptospira
341	species is limited, such as L. santarosai, which has been mainly reported in South America
342	[36][37][38][39], and L. weilii in Asia [35][40][41][42]. Only limited reports have
343	described the existence of L. weilii outside Asia, where cattle and rodents are the dominant
344	reservoir hosts [42][43][44][45].
345	
346	We identified 15 distinct clonal groups of Leptospira, underscoring the diversity of
347	pathogenic Leptospira circulating in Sri Lanka. The unique identity of most clonal groups

348 among the local isolates emphasizes the significance of conserved reservoir hosts and

349 serovars in an island. Genomic relatedness wasn't observed between most of old Sri

Lankan isolates with these new isolates probably due to changes in the bacterial genome or

- 351 due to emergence or introduction of new strains. The distribution of certain clonal groups
- revealed a geographical demarcation between dry and wet zones. A single clonal group
- 353 status and restriction to dry zone of all *L* borgpetersenii isolates together with core

354 genomic relatedness among three isolates from same district are interesting observations. 355 These might reflect similarities in climate, reservoir hosts and environmental conditions in 356 a particular geographical area. Clustering of *L.interrogans* into several clonal groups and 357 shared genomic relatedness across different geographical areas could possibly be due to 358 diversity of reservoir hosts and adoptability of the species to different environmental 359 conditions. These observations might possibly suggests that different environmental drivers 360 of leptospirosis operate in distinct ways for different pathogenic species and their serovars 361 in these climatic zones. The predominance of L. borgpetersenii and L. kirschneri over L. 362 *interrogans* has been reported in both humans and cattle in the African continent and 363 nearby islands such as Mayotte, with possible cattle-to-human transmission [46][47][48]. 364 Moreover, certain rat species also excrete serovars of L. borgpetersenii [49][50]. Notably, 365 areas where *L. borgpetersenii* was found in our study were all in the dry zone where cattle 366 and buffalo are commonly used in paddy farming activities. 367 Majority of the total study population and culture positive patients were males and this is 368 likely to be due to exposure to possible risk factors as males engage in outdoor activities 369 frequently than women. This pattern of involvement is seen across most of the published 370 studies worldwide[1][7][51][52]. According to available clinical data renal, hepatic, 371 haematological and cardiovascular complications are observed in infections with 372 *L.interrogans.* This is consistent with most published data worldwide[53][54][55]. In 373 contrast either haematological complications alone or with hepatic involvement was 374 observed in infection with the single clonal group of *L.borgpetersenii*. However pulmonary 375 complications were not observed among the 25 culture positive patients. 376 377 In our present study, L. interrogans was the predominant species identified in patients

residing in the wet zone. Emergence of a single dominant clone that caused an outbreak of

379 leptospirosis following a flood was reported in Thailand] [32]. In contrast with that study, 380 we observed diverse clonal groups of *L. interrogans* as the cause of human leptospirosis 381 during floods, probably owing to disease transmission from several different reservoir 382 hosts. 383 384 The diversity of circulating serogroups in Sri Lanka that has been known since the 1960s 385 has been preserved, and 19 isolates belong to 6 different serogroups, and the non-386 agglutinated cultures might reflect other unidentified serovars other serovars. Serological 387 and molecular assays done on veterinary field has already identified the role of rodents, 388 cattle and dogs as reservoir hosts in Sri Lanka[56][57][58]. However the observed diversity 389 in serogroups offers evidence for a wider range of reservoir hosts despite the fact that Sri 390 Lanka is a small island.

391

392 Although culture isolation is required for in-depth molecular epidemiological studies, our 393 present study highlights the constraints faced for culture isolation of *Leptospira*, for which 394 both a high level of skill and procedural optimization are required. *Leptospira* spp. are 395 fastidious organisms, and their growth requirements differ from those of many other 396 bacterial genera. Leptospira tend to have a relatively long incubation period, as the lag 397 period during *in vitro* culture range from days to several weeks [59]. Other culture-isolation 398 studies have reported an incubation period of \sim 3 weeks, but with a wide range of duration 399 [46][60][61]. We attribute the relatively lengthy incubation period of 15 weeks required for 400 the first nine cultures in our study partly to lack of to detect if any scanty growth of 401 *Leptospira* during the first phase of the study. However it's also possible that those isolates 402 were fastidious and required lengthy incubation periods. Isolation is essential for genomic 403 and vaccine studies pertaining to Leptospira, and for that purpose a specific skill set is

404	mandatory. Although culture isolation has 100% positive predictive value for diagnosing
405	leptospirosis, its sensitivity has been consistently <10% in most studies [32][62][63].
406	Similarly, our study yielded low sensitivity, which can be attributed to a few possible
407	causes: Because the study population consisted of patients with acute febrile illness, their
408	fever may have been caused by another unrelated illness; Use of antibiotics prior to culture;
409	also, performing blood cultures during the late phase of illness and infection with fastidious
410	Leptospira spp. may account for the low sensitivity during culture isolation.
411	
412	This large collection of pathogenic Leptospira isolates from clinical samples will be a great
413	addition to the global knowledgebase for leptospirosis. Whole-genome sequencing and
414	genomic analysis of this set of isolates will reveal the pathogenic diversity and evolution of
415	Leptospira species, in comparison to archived Leptospira isolated from Sri Lanka more
416	than 50 years ago. The first three isolates from this study are already published[21] and
417	available in NCBI genome database (<u>https://www.ncbi.nlm.nih.gov/genome/?term =</u>
418	Leptospira+interrogans).
419	Whole genome sequencing and comparative genomic analysis of this collection will
420	facilitate ongoing studies on identifying the putative virulent genes, pathogenic
421	mechanisms with specific host adaptations, horizontal gene transfer mechanisms, and
422	microbial resistance as shown in studies on the diversity and epidemiology of other
423	microorganisms [64][65][66][67][68][69].
424	
425	Acknowledgement
426	This work was supported by The National Institute of Allergy and Infectious Diseases of
427	the National Institutes of Health, Award Number U19AI115658. The content is solely the

428 responsibility of the authors and does not necessarily represent the official views of the

429	National Institutes of Health. The funding body had no role in the design of the study or the		
430	collection, analysis, or interpretation of data or in writing the manuscript and publication.		
431	We would like to thank Ms. Thilakanjali Gamage, Mr. K.M.R. Premathilaka, Mr. S.K.		
432	Senevirathna, and Mr. Milinda Perera for technical assistance, Mr. Shalka Srimantha and		
433	Ms. Chamila Kappagoda for culture maintenance and laboratory support, and Dr. Muditha		
434	Abey	koon, Dr. Chamida Wickramasinghe, and Dr. Shanika Gamage for additional culture	
435	collections. We also thank all the physicians and healthcare staff in the various		
436	parti	cipating hospitals, team of core facility P2M (Institut Pasteur, Mutualized Platform for	
437	Microbiology) for genomic sequencing and members of the National Reference Center for		
438	Leptospirosis (Institut Pasteur) for technical assistance with the cultures of Leptospira.		
439			
440	References		
441	1.	Costa F, Hagan JE, Calcagno J, Kane M, Torgerson P, Martinez-Silveira MS, et al.	
442		Global Morbidity and Mortality of Leptospirosis: A Systematic Review. PLoS Negl	
443		Trop Dis. 2015;9: e0003898. doi:10.1371/journal.pntd.0003898	
444	2.	Pappas G, Papadimitriou P, Siozopoulou V, Christou L, Akritidis N. The	
445		globalization of leptospirosis: worldwide incidence trends. International Journal of	
446		Infectious Diseases. 2008. pp. 351–357. doi:10.1016/j.ijid.2007.09.011	
447	3.	Levett PN. Leptospira and Leptospirosis. Systematics of Leptospiraceae. Adler B,	
448		editor. Curr Top Microbiol Inmunol. 2015;387: 11-20. doi:10.1007/978-3-662-	
449		45059-8	
450	4.	Human leptospirosis: guidance for diagnosis, surveillance and control. Rev Inst Med	
451		Trop Sao Paulo. 2003;45: 292–292. doi:10.1590/s0036-46652003000500015	
452	5.	Levett PN. Systematics of leptospiraceae. Curr Top Microbiol Immunol. 2015;387:	
453		11–20. doi:10.1007/978-3-662-45059-8_2	

- 454 6. Haake DA, Levett PN. Leptospirosis in humans. Curr Top Microbiol Immunol.
- 455 2015;387: 65–97. doi:10.1007/978-3-662-45059-8_5
- 456 7. Torgerson PR, Hagan JE, Costa F, Calcagno J, Kane M, Martinez-Silveira MS, et al.
- 457 Global Burden of Leptospirosis: Estimated in Terms of Disability Adjusted Life
- 458 Years. PLoS Negl Trop Dis. 2015. doi:10.1371/journal.pntd.0004122
- 459 8. Thibeaux R, Iraola G, Ferrés I, Bierque E, Girault D, Soupé-Gilbert ME, et al.
- 460 Deciphering the unexplored Leptospira diversity from soils uncovers genomic
- 461 evolution to virulence. Microb genomics. 2018;4. doi:10.1099/mgen.0.000144
- 462 9. Guglielmini J, Bourhy P, Schiettekatte O, Zinini F, Brisse S, Picardeau M. Genus-
- wide Leptospira core genome multilocus sequence typing for strain taxonomy and
 global surveillance. PLoS Negl Trop Dis. 2019:13.
- 464global surveillance. PLoS Negl Trop Dis. 2019;13.
- 465 doi:10.1371/journal.pntd.0007374
- 466 10. Vincent AT, Schiettekatte O, Goarant C, Neela VK, Bernet E, Thibeaux R, et al.
- 467 Revisiting the taxonomy and evolution of pathogenicity of the genus Leptospira
- through the prism of genomics. Martins EAL, editor. PLoS Negl Trop Dis. 2019;13:

469 e0007270. doi:10.1371/journal.pntd.0007270

- 470 11. Casanovas-Massana A, Hamond C, Santos LA, de Oliveira D, Hacker KP,
- 471 Balassiano I, et al. Leptospira yasudae sp. Nov. and Leptospira stimsonii sp. nov.,
- 472 two new species of the pathogenic group isolated from environmental sources. Int J
- 473 Syst Evol Microbiol. 2020. doi:10.1099/ijsem.0.003480
- 474 12. Bandaranayaka AK, Vinetz JM, Perera M, Dahanayaka NJ, Weerawansa P,
- 475 Priyankara S, et al. Regional Differences of Leptospirosis in Sri Lanka: Observations
- 476 from a Flood-Associated Outbreak in 2011. PLoS Negl Trop Dis. 2014;8: e2626.
- 477 doi:10.1371/journal.pntd.0002626
- 478 13. Nityananda K. Isolation of Leptospira in Ceylon. Ceylon Med J. 1962;7: 95–6.

- 479 Available: https://www.cabdirect.org/cabdirect/abstract/19632705150
- 480 14. Nityananda K SC. A New Leptospiral Serotype in the Icterohaemorrhagiae
- 481 Serogroup from Ceylon. Ceylon J Med Sci. 1972;21: 9–13. Available:
- 482 http://archive.cmb.ac.lk:8080/research/bitstream/70130/3637/1/A_
- 483 New_Leptospiral_Serotype.PDF
- 484 15. Nityananda K, Sulzer CR. A new serotype of Leptospira belonging to the autumnalis
- 485 serogroup. J Trop Med Hyg. 1971;74: 184–6. Available:
- 486 http://www.ncbi.nlm.nih.gov/pubmed/5570126
- 487 16. Nityananda K, Sulzer CR. A new leptospiral serotype in the Javanica serogroup from
- 488 Ceylon. Trop Geogr Med. 1969;21: 207–209. Available:
- 489 http://archive.cmb.ac.lk:8080/research/handle/70130/3637
- 490 17. Kokovin IL, Chernukha IG. [Serological classification of leptospirae of the
- 491 grippotyphosa serogroup--new serological type ratnapura]. Zh Mikrobiol Epidemiol
- 492 Immunobiol. 1970;47: 102–5. Available:
- 493 http://www.ncbi.nlm.nih.gov/pubmed/4251597
- 18. Nityananda K, Harvey T. Leptospirosis_in_Ceylon-Epidemiological and Laboratory
 Studies. Ceylon J Med Sci. 1971;20: 5–14.
- 496 19. Naotunna C, Agampodi SB, Agampodi TC. Etiological agents causing leptospirosis
- 497 in Sri Lanka: A review. Asian Pacific Journal of Tropical Medicine. 2016.
- 498 doi:10.1016/j.apjtm.2016.03.009
- 499 20. Nisansala GGT, Muthusinghe D, Gunasekara TDCP, Weerasekera MM, Fernando
- 500 SSN, Ranasinghe KNP, et al. Isolation and characterization of Leptospira interrogans
- from two patients with leptospirosis in Western Province, Sri Lanka. J Med
- 502 Microbiol. 2018 [cited 30 Aug 2018]. doi:10.1099/jmm.0.000800
- 503 21. Seneviratha I, Jayasundara D, Lefler JP, Chaiboonm KL, Warnasekara J, Agampodi

- 504 S, et al. Complete Genome Sequence of Leptospira interrogans Strains
- 505 FMAS KW1, FMAS KW2 and FMAS AW1 Isolated from Leptospirosis Patients
- 506 from Karawanalla and Awissawella, Sri Lanka . J Genomics. 2020;8: 49-52.
- 507 doi:10.7150/jgen.43953
- 508 22. Agampodi S, Warnasekara J, Jayasundara D, Senawirathna I, Gamage C, Kularatne
- 509 S, et al. Study protocol: Characterising the clinical, epidemiological and aetiological
- 510 aspects of leptospirosis in Sri Lanka: A hospital based clinico-epidemiological study.
- 511 BMJ Open. 2019;9: 1-8. doi:10.1136/bmjopen-2018-027850
- 512 23. Epidemiologu Unit M of health-2011. G:\Surveillance book.pdf -
- 513 Surveillance_book.pdf. 2nd Editio. Epidemiology Unit, Ministry of Health, Sri
- 514 Lanka; 2011 pp. 17–18. Available:
- 515 http://www.epid.gov.lk/web/images/pdf/Publication/Surveillance book.pdf
- 516 24. Zhou Z, Alikhan NF, Sergeant MJ, Luhmann N, Vaz C, Francisco AP, et al.
- 517 Grapetree: Visualization of core genomic relationships among 100,000 bacterial
- 518 pathogens. Genome Res. 2018;28: 1395–1404. doi:10.1101/gr.232397.117
- 519 25. Jolley KA, Cj Maiden M. BIGSdb: Scalable analysis of bacterial genome variation at 520
- the population level. 2010. doi:10.1186/1471-2105-11-595
- 521 26. Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display
- 522 and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016;44.
- 523 doi:10.1093/nar/gkw290
- 524 27. Kmety E, Dikken H. Classification of the species Leptospira interrogans and history 525 of its serovars. 1993. p. 104.
- 526 28. Bourhy P, Collet L, Clément S, Huerre M, Ave P, Giry C, et al. Isolation and
- 527 characterization of new Leptospira genotypes from patients in Mayotte (Indian
- 528 Ocean). PLoS Negl Trop Dis. 2010;4. doi:10.1371/journal.pntd.0000724

- 529 29. Agampodi SB, Matthias MA, Moreno AC, Vinetz JM. Utility of quantitative
- 530 polymerase chain reaction in leptospirosis diagnosis: Association of level of
- 531 leptospiremia and clinical manifestations in Sri Lanka. Clin Infect Dis. 2012;54:
- 532 1249–1255. doi:10.1093/cid/cis035
- 533 30. Nalam K, Ahmed A, Devi SM, Francalacci P, Baig M. Genetic Affinities within a
- 534 Large Global Collection of Pathogenic Leptospira: Implications for Strain
- 535 Identification and Molecular Epidemiology. PLoS One. 2010;5: 12637.
- 536 doi:10.1371/journal.pone.0012637
- 537 31. Bourhy P, Collet L, Lernout T, Zinini F, Hartskeerl RA, Van Der Linden H, et al.
- 538 Human Leptospira isolates circulating in Mayotte (Indian Ocean) have unique
- serological and molecular features. J Clin Microbiol. 2012;50: 307–311.
- 540 doi:10.1128/JCM.05931-11
- 541 32. Thaipadungpanit J, Wuthiekanun V, Chierakul W, Smythe LD, Petkanchanapong W,
- 542 Limpaiboon R, et al. A Dominant Clone of Leptospira interrogans Associated with
- an Outbreak of Human Leptospirosis in Thailand. [cited 3 Mar 2019].
- 544 doi:10.1371/journal.pntd.0000056
- 545 33. Zarantonelli L, Suanes A, Meny P, Buroni F, Nieves C, Salaberry X, et al. Isolation
- of pathogenic Leptospira strains from naturally infected cattle in Uruguay reveals
- high serovar diversity, and uncovers a relevant risk for human leptospirosis. PLoS
 Negl Trop Dis. 2018;12. doi:10.1371/journal.pntd.0006694
- 549 34. Wuthiekanun V, Sirisukkarn N, Daengsupa P, Sakaraserane P, Sangkakam A,
- 550 Chierakul W, et al. Clinical diagnosis and geographic distribution of leptospirosis,
- 551 Thailand. Emerg Infect Dis. 2007;13: 124–126. doi:10.3201/eid1301.060718
- 552 35. Kurilung A, Chanchaithong P, Lugsomya K, Niyomtham W, Wuthiekanun V,
- 553 Prapasarakul N. Molecular detection and isolation of pathogenic Leptospira from

554		asymptomatic humans, domestic animals and water sources in Nan province, a rural
555		area of Thailand. Res Vet Sci. 2017;115: 146–154. doi:10.1016/j.rvsc.2017.03.017
556	36.	Storck CH, Postic D, Lamaury I, Perez JM. Changes in epidemiology of
557		leptospirosis in 2003-2004, a two El Niño Southern Oscillation period, Guadeloupe
558		archipelago, French West Indies. Epidemiol Infect. 2008;136: 1407-1415.
559		doi:10.1017/S0950268807000052
560	37.	Peláez Sanchez RG, Lopez JÁ, Pereira MM, Naranjo MA, Agudelo-F Lórez P.
561		Genetic diversity of leptospira in northwestern Colombia: First report of leptospira
562		santarosai as a recognised leptospirosis agent. Mem Inst Oswaldo Cruz. 2016;111:
563		737–744. doi:10.1590/0074-02760160245
564	38.	Moreno LZ, Miraglia F, Marvulo MFV, Silva JCR, Paula CD, Costa BLP, et al.
565		Characterization of Leptospira santarosai serogroup Grippotyphosa serovar Bananal
566		isolated from Capybara (Hydrochaeris hydrochaeris) in Brazil. J Wildl Dis. 2016;52:
567		688–693. doi:10.7589/2015-09-245
568	39.	Valverde M de los A, Goris MGA, González V, Anchia ME, Díaz P, Ahmed A, et al.
569		New serovars of Leptospira isolated from patients in Costa Rica: Implications for
570		public health. J Med Microbiol. 2013;62: 1263–1271. doi:10.1099/jmm.0.058545-0
571	40.	Xu Y, Zheng H, Zhang Y, Wang Y, Zhang J, Li Z, et al. Genomic analysis of a new
572		serovar of Leptospira weilii serogroup Manhao. Front Microbiol. 2017;8.
573		doi:10.3389/fmicb.2017.00149
574	41.	Haake DA, Dundoo M, Cader R, Kubak BM, Hartskeerl RA, Sejvar JJ, et al.
575		Leptospirosis, Water Sports, and Chemoprophylaxis. Clin Infect Dis. 2002;34: e40-
576		e43. doi:10.1086/339942
577	42.	Kurilung A, Chanchaithong P, Lugsomya K, Niyomtham W, Wuthiekanun V,
578		Prapasarakul N. Molecular detection and isolation of pathogenic Leptospira from

- 579 asymptomatic humans, domestic animals and water sources in Nan province, a rural
- 580 area of Thailand. Res Vet Sci. 2017;115: 146–154.
- 581 doi:10.1016/J.RVSC.2017.03.017
- 43. Roberts MW, Smythe L, Dohnt M, Symonds M, Slack A. Serologic-based
- 583 investigation of leptospirosis in a population of free-ranging eastern grey kangaroos
- 584 (Macropus giganteus) indicating the presence of Leptospira weilii serovar Topaz. J

585 Wildl Dis. 2010;46: 564–569. doi:10.7589/0090-3558-46.2.564

- 586 44. Slack AT, Symonds ML, Dohnt MF, Corney BG, Smythe LD. Epidemiology of
- 587 Leptospira weilii serovar Topaz infections in Australia. Commun Dis Intell.
- 588 2007;31: 216–222.
- 45. Corney BG, Slack AT, Symonds ML, Dohnt MF, McClintock CS, McGowan MR, et
- al. Leptospira weilii serovar Topaz, a new member of the Tarassovi serogroup
- isolated from a bovine source in Queensland, Australia. Int J Syst Evol Microbiol.

592 2008;58: 2249–2252. doi:10.1099/ijs.0.64884-0

- 593 46. Bourhy P, Collet L, Clément S, Huerre M, Ave P, Giry C, et al. Isolation and
- 594 characterization of new Leptospira genotypes from patients in Mayotte (Indian
- 595 Ocean). PLoS Negl Trop Dis. 2010;4. doi:10.1371/journal.pntd.0000724
- 596 47. Feresu SB. DNA relatedness of Leptospira strains isolated from beef cattle in
- 597
 Zimbabwe. Int J Syst Bacteriol. 1999;49: 1111–1117. doi:10.1099/00207713-49-3
- 598 1111
- 48. Mgode GF, Machang'u RS, Goris MG, Engelbert M, Sondij S, Hartskeerl RA. New
- 600 Leptospira serovar Sokoine of serogroup Icterohaemorrhagiae from cattle in
- 601 Tanzania. Int J Syst Evol Microbiol. 2006;56: 593–597. doi:10.1099/ijs.0.63278-0
- 602 49. Benacer D, Mohd Zain SN, Sim SZ, Mohd Khalid MKN, Galloway RL, Souris M, et
- al. Determination of Leptospira borgpetersenii serovar Javanica and Leptospira

- 604 interrogans serovar Bataviae as the persistent Leptospira serovars circulating in the
- 605 urban rat populations in Peninsular Malaysia. Parasites and Vectors. 2016;9: no
- 606 pagination. doi:10.1186/s13071-016-1400-1
- 607 50. Eslabão MR, Kremer FS, Ramos RTJ, Da Silva AL da C, Azevedo VA de C, Pinto L
- da S, et al. Genome of leptospira borgpetersenii strain 4E, a highly virulent isolate
- obtained from mus musculus in southern Brazil. Mem Inst Oswaldo Cruz. 2018;113:
- 610 137–141. doi:10.1590/0074-02760170111
- 611 51. Lau CL, Watson CH, Lowry JH, David MC, Craig SB, Wynwood SJ, et al. Human
- 612 Leptospirosis Infection in Fiji: An Eco-epidemiological Approach to Identifying
- 613 Risk Factors and Environmental Drivers for Transmission. Picardeau M, editor.
- 614 PLoS Negl Trop Dis. 2016;10: e0004405. doi:10.1371/journal.pntd.0004405
- 615 52. Blanco RM, Romero EC. Fifteen years of human leptospirosis in São Paulo, Brazil. J
 616 Epidemiol Res. 2015;2: 56. doi:10.5430/jer.v2n1p56
- 53. Tubiana S, Mikulski M, Becam J, Lacassin F, Lefèvre P, Gourinat AC, et al. Risk
- 618 Factors and Predictors of Severe Leptospirosis in New Caledonia. PLoS Negl Trop
- 619 Dis. 2013;7. doi:10.1371/journal.pntd.0001991
- 620 54. Gouveia EL, Metcalfe J, De Carvalho ALF, Aires TSF, Villasboas-Bisneto JC,
- 621 Queirroz A, et al. Leptospirosis-associated severe pulmonary hemorrhagic

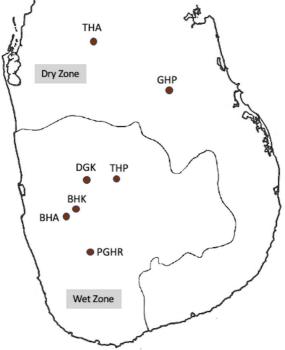
622 syndrome, Salvador, Brazil. Emerg Infect Dis. 2008;14: 505–508.

- 623 doi:10.3201/eid1403.071064
- 624 55. Herrmann-Storck C, Saint Louis M, Foucand T, Lamaury I, Deloumeaux J, Baranton
- 625 G, et al. Severe leptospirosis in hospitalized patients, Guadeloupe. Emerg Infect Dis.
- 626 2010. doi:10.3201/eid1602.090139
- 627 56. Nityananda K, Harvey T. Leptospirosis in Ceylon epidemiological and laboratory
- 628 studies. Ceylon J Med Sci. 1971;20: 5–14. Available:

629		https://www.researchgate.net/publication/235020299_Leptospirosis_in_Ceylon
630		_Epidemiological_and_Laboratory_Investigation
631	57.	Gamage CD, Koizumi N, Muto M, Nwafor-Okoli C, Kurukurusuriya S, Rajapakse
632		JRPV, et al. Prevalence and Carrier Status of Leptospirosis in Smallholder Dairy
633		Cattle and Peridomestic Rodents in Kandy, Sri Lanka. Vector-Borne Zoonotic Dis.
634		2011;11: 1041–1047. doi:10.1089/vbz.2010.0153
635	58.	Gamage CD, Koizumi N, Perera AKC, Muto M, Nwafor-Okoli C, Ranasinghe S, et
636		al. Carrier status of leptospirosis among cattle in Sri Lanka: A zoonotic threat to
637		public health. Transbound Emerg Dis. 2014;61: 91–96. doi:10.1111/tbed.12014
638	59.	Cameron CE. Leptospiral structure, physiology, and metabolism. Curr Top
639		Microbiol Immunol. 2015;387: 21-41. doi:10.1007/978-3-662-45059-8_3
640	60.	Wuthiekanun V, Chierakul W, Limmathurotsakul D, Smythe LD, Symonds ML,
641		Dohnt MF, et al. Optimization of Culture of Leptospira from Humans with
642		Leptospirosis. J Clin Microbiol. 2007;45: 1363–1365. doi:10.1128/JCM.02430-06
643	61.	Girault D, Soupé-Gilbert ME, Geroult S, Colot J, Goarant C. Isolation of Leptospira
644		from blood culture bottles. Diagn Microbiol Infect Dis. 2017;88: 17–19.
645		doi:10.1016/j.diagmicrobio.2017.01.014
646	62.	Meny P, Menéndez C, Quintero J, Hernández E, Ríos C, Balassiano IT, et al.
647		Characterization of Leptospira isolates from humans and the environment in
648		Uruguay. Rev Inst Med Trop Sao Paulo. 2017;59. doi:10.1590/S1678-
649		9946201759079
650	63.	Matthias MA, Ricaldi JN, Cespedes M, Diaz MM, Galloway RL, Saito M, et al.
651		Human leptospirosis caused by a new, antigenically unique Leptospira associated
652		with a Rattus species reservoir in the Peruvian Amazon. PLoS Negl Trop Dis.
653		2008;2. doi:10.1371/journal.pntd.0000213

- 654 64. Jorge S, Kremer FS, De Oliveira NR, Navarro GDOSV, Guimarães AM, Sanchez
- 655 CD, et al. Whole-genome sequencing of leptospira interrogans from southern Brazil:
- 656 Genetic features of a highly virulent strain. Mem Inst Oswaldo Cruz. 2018;113: 80–
- 657 86. doi:10.1590/0074-02760170130
- 658 65. Beriwal S, Padhiyar N, Bhatt D, Pandit PD, Ansari A, Lata KS, et al. LeptoDB: an
- 659 integrated database of genomics and proteomics resource of Leptospira. Database.
- 660 2018;2018. doi:10.1093/database/bay057
- 661 66. Llanes A, Restrepo CM, Rajeev S. Whole genome sequencing allows better
- understanding of the evolutionary history of leptospira interrogans serovar hardjo.

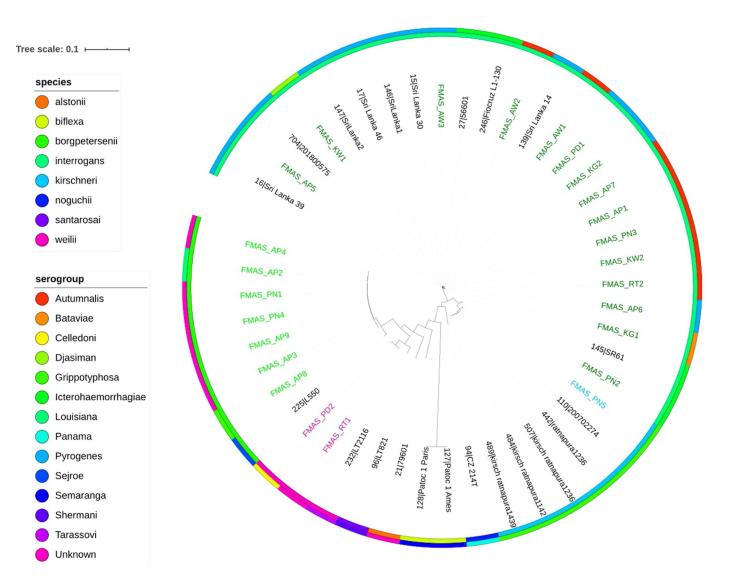
663 PLoS One. 2016;11. doi:10.1371/journal.pone.0159387

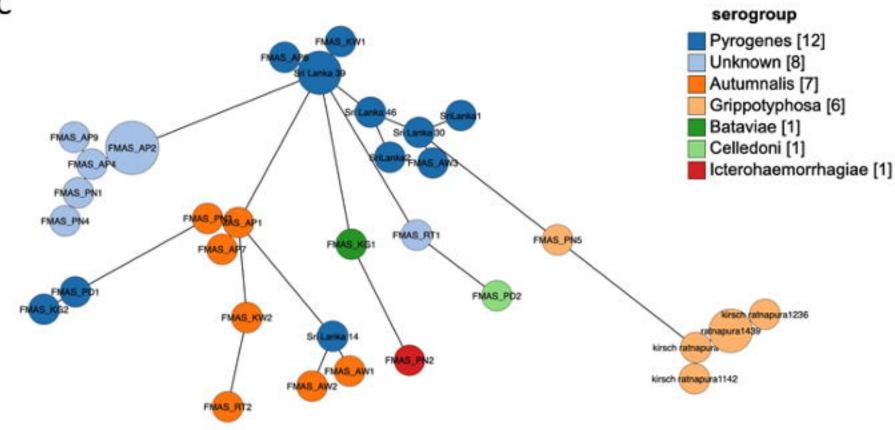

- 664 67. Xu Y, Zhu Y, Wang Y, Chang Y-F, Zhang Y, Jiang X, et al. Whole genome
- sequencing revealed host adaptation-focused genomic plasticity of pathogenic
- 666 Leptospira. Sci Rep. 2016;6: 20020. Available: https://doi.org/10.1038/srep20020
- 667 68. Kurilung A, Keeratipusana C, Suriyaphol P, Hampson DJ, Prapasarakul N. Genomic
- analysis of Leptospira interrogans serovar Paidjan and Dadas isolates from carrier
- dogs and comparative genomic analysis to detect genes under positive selection.

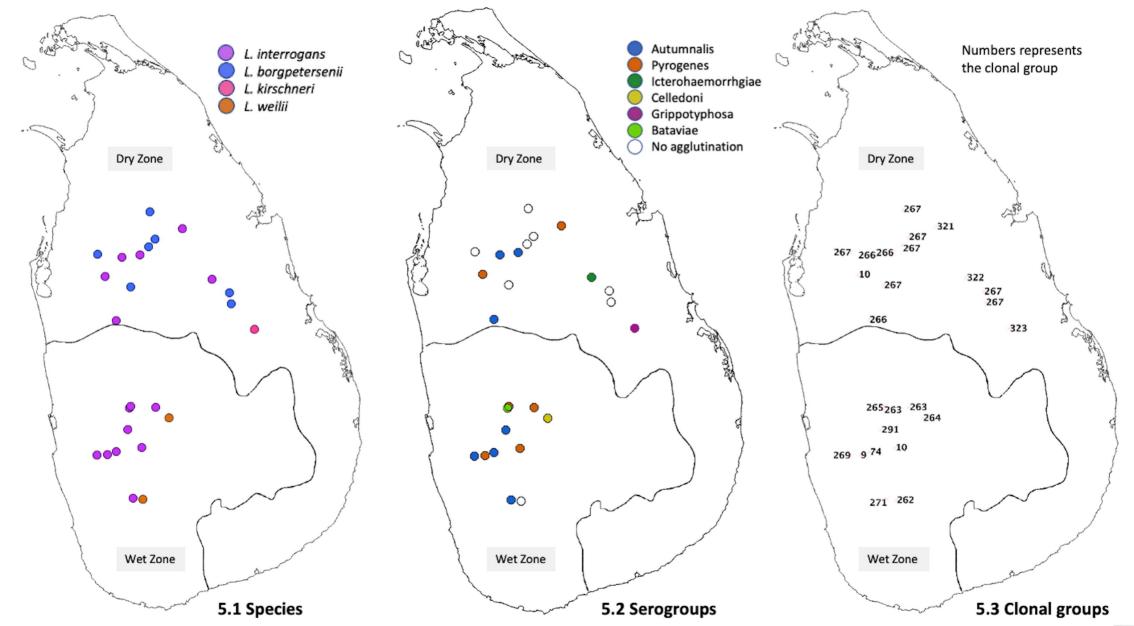
670 BMC Genomics. 2019;20: 168. doi:10.1186/s12864-019-5562-z

- 671 69. Llanes A, Restrepo CM, Riesgo-Ferreiro P, Rajeev S. Genomic Variability among
- 672 Field Isolates and Laboratory-Adapted Strains of Leptospira borgpetersenii Serovar
- 673 Hardjo. Int J Microbiol. 2018;2018. doi:10.1155/2018/2137036
- 674

- 675 Fig 1. Locations of hospitals used in this study and the ecological zones of Sri Lanka
- 676 Fig 2. Distribution of febrile patients by probable exposure sites/ residence.
- 677 Fig 3. Phylogenetic Tree showing the species and serogroup distribution of the isolates
- 678 from the present study (labelled as FMAS_) with previously reported Sri Lankan
- 679 isolates and others species.
- 680 4A: isolates, 4B: species, 4C:serogroups. New isolates are having the prefix FMAS
- 681 Fig 4. Genome GrapeTree showing the core-genome relationship among 25 new and
- 682 11 previously isolated Leptospira strains from Sri Lanka.
- 683 Fig 5. Geographical distribution of *Leptospira* species, serogroups and clonal groups
- 684
- 685 **Sup.Fig.1: Distribution of incubation period for culture isolation among 25** *Leptospira*
- 686 cultures
- 687 Sup.Table 1: Clinical and ddemographic profile of culture positive patients
- 688


THA: Teaching Hospital, Anuradhapura GHP: General Hospital, Polonnaruwa THP: Teaching Hospital, Peradeniya DGHK: District General Hospital, Kegalle BHK: Base Hospital, Karawanalla BHA: Base Hospital, Awissawella PGHR: Provincial General Hospital, Rathnapura


Numbers and colours represents the no. of cultures received from each district, with light-to-dark color scheme shows increasing numbers


0%

ě.

