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Abstract

Although there is no universal definition for texture, the concept in various forms is nevertheless

widely used and a key element of visual perception to analyze images in different fields. The present

work’s main idea relies on the assumption that there exist representative samples, which we refer

to as references as well, i.e., “good or bad” samples that represent a given dataset investigated in a

particular data analysis problem. These representative samples need to be accounted for when designing

predictive models with the aim of improving their performance. In particular, based on a selected

subset of texture gray-level co-occurrence matrices (GLCMs) from the training cohort, we propose

new representative spatial texture features, which we incorporate into a supervised image classification

pipeline. The pipeline relies on the support vector machine (SVM) algorithm along with Bayesian

optimization and the Wasserstein metric from optimal mass transport (OMT) theory. The selection of

the best, “good and bad,” GLCM references is considered for each classification label and performed

during the training phase of the SVM classifier using a Bayesian optimizer. We assume that sample

fitness is defined based on closeness (in the sense of the Wasserstein metric) and high correlation

(Spearman’s rank sense) with other samples in the same class. Moreover, the newly defined spatial

texture features consist of the Wasserstein distance between the optimally selected references and the
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remaining samples. We assessed the performance of the proposed classification pipeline in diagnosing

the corona virus disease 2019 (COVID-19) from computed tomographic (CT) images.

I. INTRODUCTION

Motivated by the goal of revealing the information hidden in standard-of-care images, the

research field of radiomics has emerged [1]. Radiomics, which consists of the high-throughput

extraction of quantitative features from medical images using automated quantification algo-

rithms, is becoming a powerful tool in different applications, e.g., outcome prediction, tumor

classification, treatment planning, and personalized therapy [2], [3], [4], [5] to cite a few ex-

amples. Among the computational radiomic quantifiers, texture is a key element that has been

successful in different studies, e.g., [6], [7], [8], [9], although it does not have a universal adopted

definition. Some authors proposed to define it as a measure of coarseness, contrast, directionality,

line-likeness, regularity, and roughness [10].

Texture analysis may also be characterized as the quantification of spatial variations in gray

levels within an image or region of interest (ROI). A variety of mathematical models have been

proposed to evaluate the gray-level and the position of the pixels within an image [10]. One of

the earliest methods using the spatial relationship to describe image texture features, which is

known as the second-order histogram method and introduced in 1973 by Haralick et al., is the

gray-level co-occurrence matrix (GLCM) [11]. The GLCM is defined as the joint probability of

two pixels which have particular (cooccurring) gray-level values, with a distance d apart, and

along a given direction θ . Another high-order statistic that characterizes local texture properties

of an image in a similar manner as the GLCM approach, is the run-length matrix (RLM) [12]. A

gray level run dictates the number of times two or more pixels having the same value in a preset

direction, and the RLM is the matrix of run-length frequency occurring in an image in each

considered direction. In radiomics research field, texture analysis consists usually of generating

features based on summary statistics from high-dimensional feature matrices such as GLCM and

RLM among others. This reduction step may lead to a loss of the spatial information that is

inherent in these texture matrices, which has been discussed in previous studies [13], [14], [15].

The present paper is a continuation of a previous work highlighting the importance of spatial

(multidimensional) texture features for robust medical image classification [15]. It is based

on the assumption that there exist representative samples, which we refer to as references
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as well, i.e.,“good or bad” samples that represent each class/data cohort in a given particular

classification/regression problem. This assumption results in new features which are represented

as the distance between all remaining samples in the cohort and the selected reference samples.

In particular, we propose to incorporate representative spatial texture features into a supervised

image classification pipeline. The proposed spatial features are captured by the Wasserstein

distance from optimal mass transport (OMT) theory [16], between the optimally selected refer-

ence GLCMs and the texture matrices of all other samples in the cohort. The selection of the

reference samples is conducted in the training phase using a Bayesian optimization algorithm

along with a support vector machine (SVM) classifier. A natural application of this advanced

textural classification approach is in diseases with specific patterns. As an example, corona virus

disease 2019 (COVID-19) related pneumonias, an infectious disease caused by the severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2), have a prototypical radiological appearance

that can be amenable to illustrate the virtues of the proposed methodology [17]. In this study, we

test the performance of the supervised classification algorithm to effectively diagnose COVID-19

using computed tomographic (CT) images.

The increased interest in the use of OMT-based metrics, known as Wasserstein distance or

Earth-Mover’s-Distance (EMD) in the engineering field, is mainly due to their natural ability

to capture spatial information when comparing signals, images, or other types of data. This

allows to provide various data distributions with different geometric interpretations, which we

are seeking to capture from multidimensional texture matrices in the present work. In particular,

the OMT problem seeks the most efficient way to transform one distribution of mass to another

given a cost function [16]. Its origin goes back to 1781, when Gaspar Monge formulated the

problem of finding the minimal transportation cost to redistribute earth for building fortifications

[18]. Leonid Kantorovich in 1942, relaxed Monge’s formulation to find an optimal coupling of

distributions using linear programming [19]. Since then, OMT has played a crucial role in many

fields of science and engineering; see [20], [21] and references therein.

The remainder of the present paper is organized as follows. In Section II, the different

components of the proposed classification pipeline are explained along with the data cohort and

its pre-processing. Section III displays and discusses the results of the proposed classification

algorithm, before concluding the paper in Section IV.
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II. MATERIALS AND METHOD

In this section, we will introduce the proposed classification algorithm and the data and

application we investigated to test its performance. We tested the algorithm for diagnosing

COVID-19 from CT images. At the time this paper is being written, the disease has infected

more than 40 million individuals all over the world and caused more than 1 million deaths.

A. Data and preprocessing

The COVID-19 CT images used in this study are publicly available1. The original dataset

includes 349 CT scans that are positive for COVID-19 and 397 negative CT scans that are

normal or contain other types of disease. The images were collected from 760 preprints about

COVID-19. For further details about the collection process, we refer the interested reader to

[22]. We resampled all images to a fixed grid of 512×512, and also equalized all the images

to adapt their contrast. The lung masks have been derived based on a contrast stretching with

an output range between (−1024,226).

The lung fields were segmented using a modified UNet architecture as described here [23]. This

network consists of encoding and decoding convolution blocks using a DenseNet design [24]. To

avoid representation bottlenecks, the network adopts an Efficient Net (ENet) representation [25]

that combines both max-pooling and strided convolutions on the same input. The architecture

also uses a squeeze and excitation block in the encoders and decoder blocks to perform activation

recalibration to enhance relevant features while suppressing irrelevant ones [26]. The network was

trained with 2D slices from randomly selected set of CT scans spanning a range of pathologies

including interstitial abnormalities that resembled some of the radiological patterns that can

be found in patients with COVID-19 pneumonias. The pre-trained network is available in the

Chest Imaging Platform open source toolkit [27]. This method was specifically designed to work

without the need of volumetric data. After applying the lung segmentation pipeline in all images,

non-valid segmentations were filtered out and removed which results in at the end 150 images

for non-COVID patients and 174 images for COVID patients.

1https://github.com/UCSD-AI4H/COVID-CT
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B. Texture extraction

The GLCM is a two-dimensional matrix in which each element represents the frequency of

occurrences of a pair of pixels in a spatial relation separated by a distance d and an angle θ . In

our study, GLCM texture matrices were extracted automatically from the segmented lungs using

the radiomics extension of the Computational Environment for Radiological Research (CERR)

[28]. They were computed by combining contributions from all 2-D neighbors (i.e., d = 1 and

θi = {0◦,45◦,90◦,135◦}), using a gray quantization level value of 32. Additionally, 25 scalar

statistical features, which are listed in Table I, were extracted from the GLCMs to be used in

the proposed supervised classifier in addition to the newly defined spatial texture features.

1 : Energy 10 : Inverse difference normalized 18 : Cluster tendency

2 : Joint entropy 11 Inverse variance 19 : Cluster shade

3 : Joint max 12 : Difference entropy 20 : Cluster prominence

4 : Joint average 13 : Difference variance 21 : Haralick correlation

5 : Joint variance 14 : Sum average 22 : Auto-correlation

6 : Contrast 15 : Sum entropy 23 : First measure of information correlation

7 : Inverse difference moment 16 : Sum variance 24 : Second measure of information correlation

8 : Inverse difference moment normalized 17 : Correlation 25 : Dissimilarity

9 : Inverse difference

TABLE I: GLCM-based scalar statistical features.

C. Optimal mass transport and Wasserstein distance

We use the Wasserstein-1 distance from OMT theory [16] to capture the geometrical properties

that are inherent in the GLCM texture matrices. The Wasserstein-1 distance between two d-

dimensional probability distributions ρ0, ρ1 defined on Ω⊂ Rd is defined as follows:

inf
π:Ω×Ω→R

∫
x,y∈Ω

‖x− y‖p π(x,y)dxdy,

subject to
∫

y∈Ω

π(x,y)dy = ρ0(x), ∀x ∈Ω

∫
x∈Ω

π(x,y)dx = ρ1(y), ∀y ∈Ω

π(x,y)≥ 0, ∀x,y ∈Ω

(1)
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where ‖.‖p, 1≤ p≤ ∞, is the ground metric of the Wasserstein distance. The variable π is the

set of joint distributions π : Ω×Ω→ R whose marginal distributions are ρ0, ρ1.

An equivalent alternative formulation of the Wasserstein-1 distance, which is simpler and

computationally more efficient, is defined by the following optimization problem:

inf
m:Ω→Rd

∫
x∈Ω

‖m(x)‖1 dx,

subject to ∇ · (m(x)) = ρ0(x)−ρ1(x), ∀x ∈Ω

m(x) ·n(x) = 0, ∀x ∈ ∂Ω

(2)

where n(x) denotes the normal to the boundary ∂Ω, and m is a d-dimensional field satisfying

the zero flux boundary condition [29]. A fast numerical scheme that relies on multilevel primal-

dual optimization algorithms was proposed in [30] to solve (2). This latter numerical scheme is

adopted in the present study.

D. Selection of representative texture matrices and supervised image classification algorithm

In this paper, we refer to the good and bad samples in a given dataset as representative

or reference samples. Moreover, the selection of such representative samples is presented for a

binary classification task. However, it can be easily adopted in multi-label classification problems

or even regression problems.

The main novelty of our approach consists of proposing a new set of features relying on

Wasserstein distance, and the 2-D texture matrices which are considered as probability dis-

tributions. The main assumption that underlies the proposed set of features is that there may

exist reference samples, either good or bad, in a studied dataset cohort (training set) and those

references will be used to assess their similarity to the remaining training and testing texture

samples through the Wasserstein metric.

Figure 1 depicts the devised workflow in our study. First, data were split into training (80%,

260 samples) and test (20%, 65 samples) sets. Then, reference samples are selected from each

class of the training set as explained in the following. The procedure of learning and testing was

replicated 100 times (Fig. 1).

Let T 1
i , i = 1 : m1, and T 2

i , i = 1 : m2, denote the GLCM texture matrices from the binary

classes C1 and C2, respectively. We initially compute the Wasserstein-1 distance between all
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pairs T 1
i from C1 and all pairs T 2

i from C2 in the training set. The similarity measures are

presented by the distance matrices Dt1 ∈Rm1×m1 and Dt2 ∈Rm2×m2 . For each sample in a given

class, we compute the correlation between its distance to all remaining samples in that class

through the Spearman’s rank-order correlation given as follows:

corr(Dti) = 1− 6∑ ∆2
i

mi(m2
i −1)

, i = 1,2 (3)

where ∆i, i = 1,2 is the difference between the ranks of each pair of columns in Dt1 and Dt2,

and mi, i = 1,2 is the length of each column in Dt1 and Dt2.

Then, we order the average Spearman’s rank-order correlations of the GLCM samples T 1
i

∣∣m1
i=1

and T 2
i

∣∣m1
i=1. We refer to the good reference samples those having high average correlation ranks,

and bad reference samples those with low average correlation ranks. Based on the computed

averaged correlation ranks, we use Bayesian optimization algorithm to find the optimal number

of good and bad samples (n∗1 and n∗2) that maximizes the classification accuracy of the training

set, or minimizes (1−accuracy), as follows:

(n∗1,n
∗
2) = argmin

0≤n1,n2≤U
(1− f (n1,n2)) , (4)

where f (n1,n2) is the training classification accuracy using n1 higher ranked samples and n2

lower ranked samples from the two classes C1 and C2. We note that the selected references are

removed from the training set that is used to train the optimal SVM classifier. So implicitly,

the proposed optimization approach optimizes the training efficiency, in addition to the training

accuracy, which is captured through the number of training samples employed to build the

prediction model after the reference samples have been removed. Moreover, the Wasserstein

distance between the selected reference samples and each sample from the remaining training

samples is added to the statistical features described previously. We should emphasize that the

added Wasserstein metric based features between the reference and other training/testing samples

captures the geometric similarity of their GLCM matrices to the good/bad representative GLCMs

in each class. This is why we refer to these newly proposed features as representative spatial

texture features.

A Bayesian optimizer has been chosen to find the optimal number of good/bad references in

each class because of the advantages it offers. This class of optimization techniques is considered

as a sequential design strategy that trades off exploration and exploitation mechanisms, unlike
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traditional active learning where the focus is often only in exploration, to attempt finding the

global optimum of black-box functions, that do not usually assume any functional form, in a

minimum number of steps [31]. This type of optimization approach has been adopted in different

application fields [32]. It has been also very successful for hyper-parameters optimization when

building predictive machine/deep learning-based models [33], [34].
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Fig. 1: Flowchart of the proposed supervised classification algorithm using representative spatial

texture features.

III. RESULTS AND DISCUSSION

Our classification pipeline starts with assessing the similarity of all training GLCM pairs in

each label class through the 1-Wasserstein distance. Figure 2 illustrates the similarity distance
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matrix of class 1 and class 2. As shown in Figure 2, some samples are closer in the sense of

Wasserstein distance, compared to others, to the other samples within the same class. For instance,

it is clear that sample 18 from class 1 is further away from other samples in that class compared

to other samples. This observation has led us to the second step of our classification pipeline,

which is to rank the similarity between samples within the same class through Spearman’s rank-

order correlation. Then based on the ordered averaged correlation coefficient, we decide about

the “good /bad” samples in a given class. Figure 3 shows the ranked correlation coefficients for

all training samples in C1 and C2. We focus on the n1 samples from the tail of the ordered

correlation vectors and n2 samples from its head. We optimized the accuracy of the trained

SVM model, to select best values of n1 and n2, using Bayesian optimization and by performing

5-folds cross-validation. Given the optimal values of reference samples in each class we build an

optimized classifier that accounts for the additional spatial texture features and that will serve for

testing its accuracy using the “no seen” samples. The classification results are shown in Figure

4.

The obtained results are very promising, especially given that the amount of data used to

train the classifier is not large, and also given that the base classifier that is used (a third

order polynomial SVM) does not inherently rely of many hyper-parameters, which may reduce

the over-fitting problem that usually exists in prediction models that rely on deeper structures.

Moreover, to better appreciate the added value of the newly introduced spatial GLCM features,

we compared our proposed classifier with a third order polynomial SVM classifier that uses only

the statistical features from GLCMs. It is worth-noting here that both the proposed SVM/OMT

based classifier and the classical SVM classifier were trained/tested on the same training/test

data cohorts, respectively. Prediction performance for both classifiers is provided in Table II. We

observe from the table that the proposed classification pipeline outperforms the SVM classifier

that is trained without the spatial texture features. This suggests the use of a subset of the training

GLCMs as references of each class.

It is worth noting that in the present study, we only made use of the GLCM texture matrices

to prove the concept of the additional value of the reference samples and the newly defined

spatial texture features. Additional texture matrices, such as the RLM, can be included in the

pipeline as well.
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Fig. 2: Distance similarity matrices between all training pairs of samples in Class 1 “Dt1” (left

panel), and Class 2 “Dt2” (right panel).
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Fig. 3: Averaged Spearman’s rank-order correlation for training Class 1 and Class 2.
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Sensitivity Specificity Accuracy
0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

Predicted Class 1 Predicted Class 2 total

True Class 1 252525 555 30

True Class 2 999 252525 34

Total 34 30 64

Fig. 4: Classification performance for testing set. Upper panel: Classification statistics among

100 training/testing repetition, the mean value is highlighted with stars and standard deviation

with bar plot. Lower panel: Confusion matrix for the maximum achieved classification accuracy.

Method
Proposed SVM/OMT based classifier Polynomial SVM classifier

mean (std) mean (std)

Sensitivity 0.7523 (0.0775) 0.6603 (0.0614)

Specificity 0.7491 (0.0245) 0.7329 (0.0220)

Accuracy 0.7560 (0.0338) 0.6989 (0.0304)

TABLE II: Classification results for test (“never seen”) data using the proposed classifier and

classical SVM classifier. The mean and std represent the average and standard deviation of the

classification statistics.
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IV. CONCLUSION

In this study, we proposed a classification pipeline for medical images that relies mainly

on GLCM texture features together with Bayesian optimization and the Wasserstein-1 metric.

The proposed method uses an optimal subset of samples to represent the training set and to

define a new set of geometric texture features based on the given optimal subset. The results

obtained indicated the importance of the reference sample selection step and consequently the

newly defined spatial features in the classification work flow. The present work provides a way

forward to more extensive studies with more data in order to build efficient prediction methods

for analyzing medical images for various clinical scenarios.
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