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Abstract: We collected a multi-centric retrospective dataset of patients (N = 213) who were 
admitted to ten hospitals in Czech Republic and tested positive for SARS-CoV-2. The dataset contains 
baseline patient characteristics, breathing support required, pharmacological treatment received and 
multiple markers on daily resolution. Patients in the dataset were treated with hydroxychloroquine 
(N = 108), azithromycin (N = 72), favipiravir (N = 9), convalescent plasma (N = 7), dexamethasone (N 
= 4) and remdesivir (N = 3), often in combination. Most patients were admitted during the first wave 
of the epidemic. To explore association between treatments and patient outcomes we performed 
multiverse analysis, observing how the conclusions change between defensible choices of statistical 
model, predictors included in the model and other analytical degrees of freedom. Weak evidence to 
constrain the potential efficacy of azithromycin and favipiravir can be extracted from the data. 
Additionally, we performed external validation of several proposed prognostic models for Covid-19 
severity showing that they mostly perform unsatisfactorily on our dataset. 

Introduction 

The Covid-19 pandemic caused by severe acute respiratory syndrome coronavirus 
(SARS-CoV-2) has, as of November 2020, led to over 46 million cases and over 1.1 
million deaths. Proposed treatments include antivirals approved for other 
indications (chloroquine, hydroxychloroquine, lopinavir/ritonavir, remdesivir, 
favipiravir, umifenovir), azithromycin, corticosteroids, immunoglobulins, 
tocilizumab and convalescent plasma.1,2 As of this writing, the only treatment that 
exhibited positive effects in randomized trials is the corticosteroid dexamethasone 
for severe cases.3,4 Remdesivir, previously designed and approved for Ebola, SARS 
and MERS, is currently the only antiviral against SARS-CoV-2 approved by the FDA. 
However, during spring and summer it was available only in limited amounts via 
compassionate use programme. Randomized clinical trials on remdesivir have 
provided conflicting evidence.5,6 Despite initial promise, hydroxychloroquine has 
failed to show benefit for hospitalized patients,6,7 as an early treatment,8 as well as 
pre- and post-exposure prophylaxis.9–11 Further, no improvement could be 
discerned when adding azithromycin to hydroxychloroquine therapy.12 Similarly, 
lopinavir/ritonavir did not show benefit.13 No benefit was observed for 
convalescent plasma.14,15 

Interestingly, in observational studies, hydroxychloroquine was often found to be 
associated with better outcomes.16–18 

Favipiravir is one of the less explored experimental treatments, previously used for 
influenza including avian types, with only one larger RCT in Covid- 19 known to 
us,19 the study however has many potentially severe problems.20 Other studies are 
scarce - even when considering very small studies and case series.21–23 None of the 
results allow strong conclusions about benefits or harms of favipiravir, although a 
metaanalysis of all available small studies showed an effect of favipiravir on clinical 
improvement in mild and moderate disease.24 For additional summary of 
treatments under investigation see Siemieniuk et al. 25 

High IL-6, D-dimer values were observed to be associated with worse outcome and 
increased disease severity.26 Large study of electronic health records27 showed an 
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increase in C-reactive protein in early disease and increase of D-dimer and white 
blood cell count in later stages of the disease. 

An ongoing challenge in evaluating Covid-19 treatments is that the analysis and 
interpretation of the data is often inappropriate or misleading, most notably 
interpreting lack of evidence due to small sample size as evidence of no effect.28,29 

Additionally, many methods for predicting disease severity of Covid-19 were 
published, but the methods are at high risk of bias and lack external validation.30 

The present study aims to describe the outcomes and disease course of hospitalized 
patients with mild to severe clinical presentation in a multicentric Czech cohort, 
explore the association between the outcomes and pharmacological interventions 
and to provide external validation to previously published prognostic models for 
Covid-19 severity. 

Patients and Methods 

Data Collection 

A convenience sample of patients from 10 sites was collected. For each site, the 
dataset contains all patients hospitalized in the participating wards over the data 
collection period. The data collection started at the onset of the Covid-19 pandemic 
(except for one site where some older records were inaccessible), but the end date 
for collection differs between sites due to time constraints of the participating 
physicians. Three sites included total of 23 patients that could be considered part of 
“second wave”, i.e. admitted after September 1st, last patient included in the dataset 
was admitted on October 12th. See Supplementary Figure 1 for per-site data 
collection periods. Patients over the age of 18 were included if they had PCR-
confirmed infection of SARS-CoV-2 and were not participating in a clinical trial of 
any Covid-19 pharmacotherapy. 

We collected data on comorbidities and information about disease progression on 
daily resolution including breathing support required, oxygen flow rate, 
experimental anti-Covid-19 and antimicrobial drugs taken and several laboratory 
markers (PCR positivity for SARS-CoV-2, C-reactive protein, D-dimer, Interleukin 6, 
Ferritin, lymphocyte count). Full protocol for data collection is attached in the 
supplementary material. Due to very low number of patients using extra-corporeal 
membrane oxygenation (N = 1) or non-invasive positive pressure ventilation (N = 6) 
in our sample, we merged those categories with mechanical ventilation. 

Not all patients developed pneumonia or other symptoms of Covid-19. All patients 
received the standard of care which could include supplemental oxygen and 
ventilation and antibiotics for bacterial superinfections, as determined by the 
attending physician. Some patients were not indicated for all treatment modalities 
(especially mechanical ventilation) based on decision of the attending physician and 
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underlying patient condition. We note that the participating sites were not 
homogeneous in either patient population or treatment protocols. The choice of 
pharmacological treatment was based on the decision of the attending clinician and 
its availability. 

The study was approved by the Ethical committees of General University Hospital, 
Hospital Nový Jíčín, Motol University Hospital, Thomayer Hospital, University 
Hospital Vinohrady, Military Hospital Olomouc, Na Homolce Hospital, University 
Hospital in Pilsen, Hořovice Hospital, Jihlava Hospital. 

Statistical analysis 

The character of the convenience sample does not allow for a proper assessment of 
the association between treatments and patient outcomes, because the treatments 
had not been assigned to patients at random, but were only observed 
retrospectively. This can be partially remedied by adjusting for patient 
characteristics in the analysis, but such adjustments will always be imperfect and 
the analysis needs to be treated as exploratory and interpreted cautiously. 

Since many details of analysis may influence the conclusions made, we performed 
multiverse analysis31 and report results for all the hypothesis tested across multiple 
different models using both frequentist and Bayesian paradigms. For each model 
class we worked with several possible sets of adjustments. All analyses were 
performed in the R language,32 visualizations and data cleaning was run with the 
tidyverse package.33 

First class of models are frequentist survival and multistate models under the 
proportional hazards assumption as implemented in the coxph function from the 
survival package.34 We primarily use a model with competing risks for death and 
discharge from hospital (see Figure 1a). 

Second class of models are Bayesian hidden Markov models (HMM) of disease 
progression implemented via a custom extension to the brms package.35 The 
parametrization of the HMM is inspired by Williams et al.36: the actual process of 
disease is assumed to be continuous and allow only for transitions between 
neighboring states (as shown in Figure 1b, c). The total probability of transition 
between any two states over the period of a day is then computed as the total 
probability of transition across all possible paths. This class of models does not 
satisfy the proportional hazards assumption, instead, it is assumed the process has 
the Markov property - i.e. that the (potentially unobserved) state and the covariates 
at a given day contain all the information to determine probabilities of the states on 
the next day. We use two versions of such models, one working solely with the 
observed breathing support and one assuming a hidden improving/worsening 
distinction. All of the hidden Markov models take into account whether best 
supportive care was initiated and a patient was thus not indicated to progress to 
more intensive treatment modalities. 
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Figure 1: States used in the competing risk model (a) and in the two hidden Markov 
model variants (b,c). AA = Ambient air, Oxygen = Nasal oxygen, Ventilated = any form 
of ventilation (non-invasive positive-pressure ventilation, mechanical ventilation and 
extra-corporeal membrane oxygenation). In all models the ‘Death’ and ‘Discharged’ 
states are terminal. In the second hidden Markov model (c), the ‘Improving’ and 
‘Worsening’ variants of each non-terminal state are not observable - only the 
breathing support is observed and improving/worsening is inferred from progression 
of the disease. 

Finally we used a set of Bayesian regression models implemented with the brms 
package.35 Those included overall survival, state at day 7 or 28 as either binary or 
categorical outcome and a Bayesian version of the Cox proportional-hazards model. 

Except for age, sex and comorbidities, all covariates are treated as time-varying, e.g., 
the effect of taking a drug is only included for the days after the drug was taken. 
More details on the exact model formulations can be found in the supplementary 
statistical analysis. 

Evaluating prognostic models 

We searched the living systematic review of Covid-19 prognostic models30 for those 
that could be applied to our dataset (i.e. where we have gathered all the input 
features). We primarily focused on the Area Under Receiver Operating 
Characteristic Curve (AUC), and its bootstrapped 95% confidence intervals which 
we computed using the pROC package.37 When there were multiple reasonable ways 
to evaluate the outcome or a predictor in our dataset, we computed and reported all 
of those options. We used two simple scores with age or the decade of age as the 
sole predictor to have a baseline to compare the scores against. 

Complete code for all analyses is available at https://github.com/cas-
bioinf/covid19retrospective/. 

Results 

In total, we were able to gather data for 213 patients, see Table 1 for the overall 
characteristics of the patient sample and several subgroups we used in the analysis, 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.20239863doi: medRxiv preprint 

https://github.com/cas-bioinf/covid19retrospective/
https://github.com/cas-bioinf/covid19retrospective/
https://doi.org/10.1101/2020.12.03.20239863
http://creativecommons.org/licenses/by-nc/4.0/


including treatments taken. Counts of all treatment combinations are shown in 
Supplementary Figure 2 and Supplementary Figure 3 shows outcomes by study site, 
demonstrating quite large hospital-specific differences. The dataset includes 19 
patients already reported in a study of inflammatory signatures of Covid-19.38 

Table 1: Patient characteristics for the overall sample and treatment subgroups. Note 
that the favipiravir subgroup is not exclusive with either the HCQ or No HCQ group. 
IQR = interquartile range, COPD = Chronic obstructive pulmonary disease, BMI = body-
mass index, Best supportive care = patient was not indicated to undergo more 
intensive treatment modality. 

 
All HCQ No HCQ Favipiravir 

N 213 108 105 9 

Distinct sites 10 10 10 1 

Male 105 (49%) 53 (49%) 52 (50%) 4 (44%) 

Age (mean, IQR) 69 (58 - 80) 67 (56 - 80) 70 (64 - 82) 59 (51 - 68) 

Admitted for Covid 172 (81%) 96 (89%) 76 (72%) 8 (89%) 

Took azithromycin 72 (34%) 63 (58%) 9 (9%) 8 (89%) 

Took dexamethasone 4 (2%) 0 (0%) 4 (4%) 0 (0%) 

Took favipiravir 9 (4%) 8 (7%) 1 (1%) 9 (100%) 

Took remdesivir 3 (1%) 0 (0%) 3 (3%) 0 (0%) 

Convalescent plasma 7 (3%) 6 (6%) 1 (1%) 3 (33%) 

Ischemic Heart Disease 43 (20%) 15 (14%) 28 (27%) 1 (11%) 

Takes antihypertensives 141 (66%) 66 (61%) 75 (71%) 4 (44%) 

Heart Failure 34 (16%) 15 (14%) 19 (18%) 0 (0%) 

COPD 21 (10%) 9 (8%) 12 (11%) 1 (11%) 

Asthma 18 (8%) 9 (8%) 9 (9%) 0 (0%) 

Other lung disease 14 (7%) 7 (6%) 7 (7%) 0 (0%) 

Diabetes 51 (24%) 18 (17%) 33 (31%) 3 (33%) 

Renal Disease 43 (20%) 19 (18%) 24 (23%) 2 (22%) 

Liver Disease 14 (7%) 8 (7%) 6 (6%) 1 (11%) 

Smoking 28 (13%) 15 (14%) 13 (12%) 1 (11%) 

BMI (mean, IQR) 28 (24 - 31) 28 (24 - 30) 28 (24 - 31) 32 (27 - 35) 

Best supportive care 58 (27%) 22 (20%) 36 (34%) 0 (0%) 

Deceased 42 (20%) 15 (14%) 27 (26%) 0 (0%) 

Discharged 122 (57%) 76 (70%) 46 (44%) 8 (89%) 

In Figure 2 we show the overall disease progression for all patients and in Figure 3 
we show the time-course of a subset of the markers we have measured. The data 
show some interesting patterns: patients with low Interleukin-6 or D-dimer values 
are overrepresented among patients with better outcomes, most patients had high 
CRP upon admission and for many the CRP levels stayed elevated over the whole 
hospitalization. However, the limited nature of the data does not allow for any 
statistically robust conclusions. We also see that the marker levels were not 
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substantially stratified by study site. Those patterns should however be interpreted 
with care due to systematic missingness of the data - in particular, patients that 
fared worse were probably more likely to have the markers measured. However we 
believe this kind of patient-level view is useful to appreciate the extent of both 
between-patient and within-patient variability. 

 

Figure 2: Disease progression for all patients included in the study as determined by 
breathing support required. Each horizontal strip is a single patient, the ordering on 
the vertical axis is by disease severity, the split into two panels is for visual purposes 
only. Ventilated = any form of ventilation (non-invasive positive-pressure ventilation, 
mechanical ventilation and extra-corporeal membrane oxygenation). 

Association between patients’ characteristics and treatments 

As noted above, the nature of the convenience sample did not enforce random 
assignment of treatments to patients. In fact, patients with worse baseline 
characteristics, which lead to worse outcomes, were less likely to receive 
hydroxychloroquine (see Supplementary Figure 4). This clearly creates a bias 
towards a positive effect of hydroxychloroquine on the outcome (and potentially for 
other treatments as well - most were used in combination with 
hydroxychloroquine), which, however, could be false. 
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Figure 3: Values of selected markers over the course of the disease. Each line 
represents a patient, stratified by the worst breathing support required over the 
hospitalization. Color indicates study sites. The vertical scale is logarithmic. Ventilated 
= any form of ventilation (non-invasive positive-pressure ventilation, mechanical 
ventilation and extra-corporeal membrane oxygenation), CRP = C-reactive protein 
[mg/l], D-dimer [ng/ml DDU], Ly = lymphocyte count [10^9/l], IL-6 = Interleukin 6 
[ng/l]. 

Taken quantitatively, the comorbidities known upon hospitalization were 
informative with respect to the future hydroxychloroquine treatment: the score 
representing the cumulative presence of ischemic heart disease, hypertension 
drugs, former heart failure, COPD, other lung diseases, renal disease, or high 
creatinine was associated with a lower chance of taking hydroxychloroquine over 
the course of the hospitalization (the chance was only 79.9%, 95% confidence 
interval (65.3, 97)%, Chi-square test in the logistic regression model, 𝜒2=5.18, df=1, 
P=0.023). 

Association between treatments and outcomes 

Here, we focus on hydroxychloroquine and azithromycin as those are the only 
treatments with larger sample size. We also investigate favipiravir as it is less well 
reported in the literature. Hydroxychloroquine was dosed almost exclusively in a 5-
day regime starting with a loading dose of 800mg on the first day and followed by 
400mg. Majority of patients complemented hydroxychloroquine with azithromycin 
while azithromycin was rarely used alone (see Table 1). Azithromycin was most 
frequently dosed 250 or 500mg/day, but doses ranging from 100mg/day to 1500 
mg/day were observed. Favipiravir was used only at one site with a loading dose of 
3600mg on the first day, followed by at most 9 days with a 1600mg dose. All but one 
of the patients receiving favipiravir also received hydroxychloroquine. Treatment 
was initiated mostly within two days of admission (see Supplementary Figure 5). 
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The results of the multiverse analysis for association between hydroxochloroquine, 
azithromycin and favipiravir usage and death is shown in Figure 4 - here, we only 
show models that were not found to have immediate problems representing the 
data well or computational issues (see Supplementary statistical analysis for 
details). Results for all models we tested are reported in supplementary Figures 6-8, 
with additional details in supplementary statistical analysis. The results do not 
change noticeably when only patients from the first wave are included 
(supplementary Figures 6-8). 

Most models report that using hydroxychloroquine is associated with lower risk of 
death. We must however bear in mind the potential bias noted in the previous 
section. Also, we see that for the HMM models, as we add adjustments the credible 
intervals do not widen but instead shift towards zero. This is a weak indication that 
further adjustments could drive the effect towards zero. We did not attempt to 
model additional adjustments as the models became computationally unstable. The 
case of hydroxychloroquine serves as a “control group” for our other results - since 
randomized trials give us high confidence that hydroxychloroquine does not 
substantially reduce mortality, we can be quite certain the associations we observe 
for hydroxychloroquine are just a measure of bias in the data. Additionally, our 
models either cannot determine the sign of association between azithromycin and 
risk of death or even show an increase in risk of death. This serves as a weak 
evidence that a substantial improvement in mortality from azithromycin is unlikely. 

Most models exclude very strong association between increased risk of death and 
using favipiravir, but our data are necessarily quite limited, which is reflected in the 
very wide uncertainties around estimates. We also cannot put strict bounds on the 
association between favipiravir and length of hospitalization. 

We also examined the association between treatments and length of hospital stay 
for all the patients that survived. Almost all models cannot discern the sign of the 
association for all treatments examined (Supplementary Figures 6-8). Similarly, we 
studied the association between D-dimer and Interleukin 6 and outcomes, with 
unconclusive results as well (Supplementary Figure 9 ) 
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Figure 4: Estimates of model coefficients for association between treatments and main 
outcomes. Each row represents a model - Categorical 7/28 = Bayesian categorical 
regression for state at day 7/28, Bayes Cox = Bayesian version of the Cox proportional 
hazards model with a binary outcome, Cox (single) = frequentist Cox model with a 
binary outcome, Cox (competing) = frequentist Cox model using competing risks (as in 
Figure 1a), HMM A = Bayesian hidden-Markov model as in Figure 1b with predictors 
for rate groups, HMM B = Bayesian hidden-markov model as in Figure 1b with 
predictors for individual rates, HMM C = Bayesian hidden-Markov model as in Figure 
1c. For frequentist models, we show maximum likelihood estimate and 95% confidence 
interval, for Bayesian models we show posterior mean and 95% credible interval. The 
estimands are either log odds-ratio (Categorical, HMM) or log hazard ratio (Cox 
variants). In all cases coefficient < 0 means better patient outcome in the treatment 
group. Vertical lines indicate zero (blue) and substantial increase or decrease with 
odds or hazard ratio of 3:2 or 2:3 (green). Additionally the factors the model adjusted 
for are listed - Site = the study site, admitted = Admitted for Covid-19, Supportive = 
best supportive care initiated, Comorb. = total number of comorbidities, AZ = took 
azithromycin, HCQ = took hydroxychloroquine, FPV = took favipiravir, C. plasma = 
received convalescent plasma. 
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Published prognostic models are not better than using age as 

the sole predictor of outcome 

Following Wynants et al.30 we found five prediction models we were able to 
recompute: Li et al. report the ACP index39 combining CRP and age to form 3 grades, 
Chen & Liu40 report a continuous score using age, CRP, D-dimer and lymphocyte 
count, Shi et al. 41 use age, sex and hypertension to form 4 grades, Caramelo et al. use 
age, sex, hypertension, diabetes, cardiac disease, chronic respiratory disease and 
cancer to form a continuous score,42 Bello-Chavolla et al. 43 use age, diabetes, 
obesity, pneumonia, chronic kidney disease, COPD and immunosuppression to build 
a score ranging from -6 to 22. For the latter two scores we had to impute some of 
the predictors as they had no immediate equivalent in our dataset. The outcomes 
present in the studies were: 12-day mortality, 30-day mortality and mortality 
without any further details, here we report results for both 12-day and 30-day 
mortality. Full details on the scores and how we used our dataset to compute them 
is given in the supplementary statistical analysis. 

All prognostic models we tested performed similarly to or notably worse than using 
age as the only predictor and also worse than originally reported (Figure 5). 
Additionally, some publications did not provide enough detail to unambiguously 
reconstruct how the score and/or outcome was assessed. We thus concur with 
Wynants et al. 30 that reported prediction scores are at high risk of bias and need 
additional careful evaluation. 
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Figure 5: Performance of tested prediction scores as measured by AUC. AUC = 1 means 
perfect prediction while AUC ≤ 0.5 means that the score is worse than random guess 
and a better prediction would be obtained by reversing the score (marked by thick 
blue line). The line ranges represent the bootstrapped 95% confidence intervals. Red 
dots show results computed in present study - model variants (horizontal axis) vary in 
the outcome measured (12-day or 30-day mortality, severe disease) and potentially on 
how ambiguities in score computation were resolved, although this rarely makes a big 
difference - see supplementary statistical analysis for details. Cyan triangles show AUC 
as reported by the original authors or recomputed based on their published data. 
When the confidence interval or the AUC of the original study is not shown, it means 
that the value was not reported by the authors and not enough information to 
recompute it was given. 

Conclusions 

Our data show the extent of between-patient variability in progression of the 
disease in terms of both length of hospital stay, duration of various types of 
breathing support and basic markers. 

We provide very weak observational evidence against a substantial beneficiary 
effect of using azithromycin (both with or without hydroxychloroquine) and against 
substantial negative effect of using favipiravir in hospitalized Covid-19 patients. We 
also observed better outcomes associated with taking hydroxychloroquine, which is 
likely linked to substantial confounding by indication. Where our results contradict 
randomized trials, the most likely explanation is systematic bias in our dataset. 

A lesson from our analysis is that the assessment of treatment efficacy from 
observational data is very sensitive to modelling assumptions while it is usually 
almost impossible to determine which of the models is more likely to reflect reality 
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(if any). We believe that using multiverse analysis is an appropriate way to explore 
data in such contexts as it lets us be transparent about this sensitivity. We further 
believe that using hidden Markov models is a promising complement to the 
standard Cox proportional hazards analysis when detailed information on disease 
progression is available, particularly because it lets us impose additional structure 
on the model and thus make inferences with more disease states than would be 
possible to handle in the Cox framework, making better use of the available data. 

Additionally, our experience indicates that a substantial fraction of published 
prognostic models will perform much worse on new patients than on the datasets 
they were built for and that external validation is crucial. We suggest that 
comparing the prognostic models against simple baselines (e.g. decade of age as the 
single predictor) should be a first step in validation. Furthermore, some of the 
published scores lack enough information to let others implement the score in the 
same way. 
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