SUPPORTING INFORMATION:

CDH26 amplifies airway epithelial IL-4 receptor α signaling in asthma

Yuchen Feng^{1,2}*, Shengchong Chen^{1,2}*, Chenli Chang^{1,2}, Wenliang Wu^{1,2}, Dian Chen^{1,2}, Jiali Gao^{1,2}, Gongqi Chen^{1,2}, Lingling Yi^{1,2}†, Guohua Zhen^{1,2}†

1 Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;

2 Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan 430030, China;

*These authors contributed equally to this work.

[†]Correspondence to: Guohua Zhen, Division of Pulmonary and Critical Care Medicine, Tongji Hospital, 1095 Jiefang Avenue, Wuhan 430030, China; e-mail: ghzhen@tjh.tjmu.edu.cn. Lingling Yi, Division of Pulmonary and Critical Care Medicine, Tongji Hospital, 1095 Jiefang Avenue, Wuhan 430030, China; e-mail: yilingling20061281@163.com

SUPPLEMENTARY METHODS

Histology and immunofluorescence staining

For immunofluorescence staining, tissue sections were incubated with anti-CDH26 antibody (Sigma-Aldrich Chemie Gmbh, Munich, Germany, 1:100 dilution) and then incubated with Cy3 donkey anti-rabbit secondary antibody (Boster, Wuhan, China). Double staining was performed in immunofluorescence staining by using two different host species antibodies. The combinations of the primary antibodies include CDH26 (Sigma-Aldrich, 1:100 dilution) with human IL-4Ra antibody (R&D system,1:20 dilution), CDH26 (Sigma-Aldrich, 1:100 dilution) with mouse IL-4Ra antibody (R&D system, 1:200 dilution). Paraffin tissue sections were deparaffinization, rehydration, and processed with pH9.0 Tris-EDTA retrieval buffer (Servicebio, Wuhan, China) before blocking with 10% donkey serum. Paraffin tissue sections were incubated with primary antibodies at 4°C overnight and then incubated with Cy3 or FITC conjugated secondary antibodies (donkey-anti mouse or rabbit IgG, Wuhan, China) at 1:200 in the dark for 1 hour at room temperature. Nuclei were stained with DAPI (Servicebio, Wuhan, China). All photographs were taken by using a fluorescence microscope (Olympus Corporation, Japan).

Assessment of airway inflammation

Cell counts for macrophages, eosinophils, lymphocytes, and neutrophils in bronchoalveolar lavage fluid (BALF) were performed. The severity of peri-bronchial inflammation in H&E-stained mouse lung sections was scored using the following features: 0, normal; 1, few cells; 2, a ring of inflammatory cells (1 cell layer deep); 3, a ring of inflammatory cells (2–4 cells deep); 4, a ring of inflammatory cells (> 4 cells deep).

Periodic acid-Schiff (PAS) staining

Lung sections were stained with PAS (Servicebio, Wuhan, China) for detection of mucus. The number of PAS-staining-positive cells was counted in five random fields for each lung section at 200× magnification.

The sequence of CDH26 siRNA

The sequence of CDH26 siRNA (sense strand) was:5'-GGGACUUUCCCAGAA GCAATTUUGCUUCUGGGAAAAGUCCCTT-3'. The sequence of negative control siRNA was: sense: 5'-UUCUCCGAACGUACGUTT-3'; antisense: 5'-ACGUG ACACGUUCGGAGAATT-3'.

SUPPLEMENTARY TABLES

	Healthy controls	Asthma patients	P value
Number	17	56	
Age, y	35.94+9.43	38.09+11.33	0.574
Sex, M: F, %F	5:12, 70.6	13:45, 80.4	0.604
Body mass index	22.15+3.32	22.33+3.19	0.716
FEV ₁ , %predicted	89.82+32.63	79.15+19.89	0.007
Methacholine PD20, mg	2.505+0	0.177+0.34	< 0.0001
Sputum eosinophil, %	1.63+2.77	17.03+18.85	< 0.0001
FeNO, ppb	15.612+11.10	100.80+60.84	<0.0001

Table S1. Subject characteristics.

Note: Values were presented as mean \pm SD.

Abbreviations: FeNO, fraction of exhaled nitric oxide; FEV1, forced expiratory volume in the first second; PD20, provocative dosage required to cause a 20% decline in FEV1. The minimal and maximal provocative dosages were 0.01 and 2.505 mg, respectively.

Gene	Species	Primer sequence (5'-3')	
GUSB	Harrison	Forward	GTCTGCGGCATTTTGTCGG
	Human	Reverse	CACACGATGGCATAGGAATGG
GAPDH	Harrison	Forward	AAGGTGAAGGTCGGAGTCAAC
	Human	Reverse	GGGGTCATTGATGGCAACAATA
CDH26	Human	Forward	CCTACCTCACGTCTACAGCGA
	пuman	Reverse	TTGAACCCAAAGAGTCCAGCA
IL-4Rα	Human	Forward	AAATCGTGAACTTTGTCTCCGT
		Reverse	CCCAGTGCCCTCTACTCTCAT
MUC5AC	Uumon	Forward	CGACAACTACTTCTGCGGTGC
	Tiulliali	Reverse	GCACTCATCCTTCCTGTCGTT
MUC5B	Uumon	Forward	CCCGTGTTGTCATCAAGGC
	Tiuman	Reverse	CAGGTCTGGTTGGCGTATTTG
CCL26	Human	Forward	TTGAGGCTGAGCCAAAGACC
	Tiuman	Reverse	GCCCTTCTCAGGTTTCTCCC
CCL24	Human	Forward	ACATCATCCCTACGGGCTCT
	Tiuman	Reverse	CTTGGGGTCGCCACAGAAC
CCL11	Human	Forward	GAAAGCTGTGATCTTCAAGACC
	Tuman	Reverse	GGCTTTGGAGTTGGAGATTTTT
Gapdh	Mouse	Forward	AGAGAGGCCCAGCTACTCG
	Wibuse	Reverse	GGCACTGCACAAGAAGATGC
Cdh26	Mouse	Forward	CCAGCAGAAATCCTTCCAAGGAG
	mouse	Reverse	CGATCCAAGAGAAGATGGGTTCTC
Il-4Ra	Mouse	Forward	TGACCTCACAGGAACCCAGGC
	Wiouse	Reverse	GAACAGGCAAAACAACGGGAT
Muc5ac	Mouse	Forward	CAGGACTCTCTGAAATCGTACCA
	Wibuse	Reverse	GAAGGCTCGTACCACAGGG
Muc5b	Mouse	Forward	CTACTCGAACTGCTTGTTTGAC
	Wibuse	Reverse	CTTGTAGCAAACTTTGTCCCTC
Ccl26	Mouse	Forward	ATCCCATGGAGCTGGGTGTA
	WIGUSC	Reverse	CCTGGCTGGACACAGAATTG
Cc124	Mouse	Forward	CAGCCTTCTAAAGGGGGCCAA
	Wiouse	Reverse	GCTGGTCTGTCAAACCCCAA
Cell1	Mouse	Forward	CAACAGATGCACCCTGAAAGC
		Reverse	TGATATTCCCTCAGAGCACGTCTT
I1-4	Mouse	Forward	GTCATCCTGCTCTTCTTTCTCG
		Reverse	CTCTCTGTGGTGTTCTTCGTTG
II-13	Mouse	Forward	CTGAGCAACATCACAAGACC
	wiouse	Reverse	AATCCAGGGCTACACAGAACC

 Table S2. Primers for quantitative PCR

SUPPLEMENTARY FIGURES

Figure S1. Generation of $Cdh26^{-/-}$ mice. A) Primer Strategy and scheme of $Cdh26^{-/-}$ mice. Exon 2 to exon 12 of cdh26 gene including 31,042 base pair was knocked out. B) Representative images of Cdh26 immunofluorescence staining in mouse lung sections. Scale bar, 50 µm. n =5-8 mice per group.

Figure S2. Cdh26 and II-4R are co-located in airway epithelium in mouse.

Quantitative analysis of protein colocalization between Cdh26 and Il-4R α proteins by Pearson and Manders' coefficients. Colocalization of Cdh26 and Il-4R α were analyzed using ImageJ plug-in Coloc2. Data are mean \pm SD.

Figure S3. CDH26 promotes IL-13-induced IL-4R α expression, JAK-1 and Stat6 phosphorylation. A) The protein levels of IL-4R α , IL-13R α 1 in BEAS-2B cells after transfection with empty or CDH26 cDNA expression vector with or without IL-13 stimulation at 48h were detected by Western blotting. B) Densitometry assay of the Western blotting results was analyzed using ImageJ. C) IL-13 stimulation increased JAK1 and STAT6 phosphorylation at 30min, and CDH26 vector transfection contributed IL-13-induced JAK1 and STAT6 phosphorylation. Densitometry of phospho-JAK1 relative to total GAPDH and phosphor-STAT6 relative to total STAT6. D) Densitometry assay of the Western blotting results was analyzed using ImageJ. The data are representative of three independent experiments. Data are mean \pm SD. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001(one-way ANOVA followed by Tukey's multiple comparison test).

Figure S4. Selective JAK1/2 inhibitor Ruxolitinib blocked IL-13-induced CCL11, CCL24, CCL26 transcript expression. A-C) BEAS-2B cells were treated with vehicle or ruxolitinib (100nM) with or without IL-13 (20ng/mL) stimulation for 48h. The mRNA levels of *CCL11 (A)*, *CCL24 (B)*, *CCL26 (C)* in BEAS-2B cells were determined by quantitative PCR. The transcript level was expressed as log2 transformed and relative to the mean of control group. n = 3-4 wells per group. Data are mean \pm SD. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.001(one-way ANOVA followed by Tukey's multiple comparison test).

Figure S5. CDH26 regulates Eotaxin-1, Eotaxin-2, Eotaxin-3 expression in human bronchial epithelial cells. A) The transcript levels of *CDH26* after transfection with empty or CDH26 cDNA expression vector with or without IL-13 (20ng/mL) stimulation for 48h were detected by quantitative PCR. B-D) The protein levels of CCL11 (*B*), CCL24 (*C*) and CCL26 (*D*) in cell culture media after transfection empty or CDH26 cDNA expression vector with or without IL-13 stimulation were detected by ELISA. n = 4 wells per group. Data are mean \pm SD. *P < 0.05; **P < 0.01; ****P < 0.001; ****P < 0.0001(one-way ANOVA followed by Tukey's multiple comparison test).