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Background 

Until pharmaceutical measures are widely available to slow the spread of SARS-CoV-2, social 

distancing strategies are key to avert overwhelmed health systems. Since schools host large 

numbers of students in enclosed spaces, they are feared to produce infection clusters. With 

school closures coming at high social and economic costs, social distancing measures within 

schools are needed to make them as safe as possible. One widely discussed distancing 

measure in the school context is to use cohorting strategies, i.e., to split larger clusters such 

as classrooms into smaller groups that are instructed separately. In addition to facilitating 

social distancing within these cohorts, cohorting strategies also aim to prevent transmission 

across cohorts. However, little is known about which cohorting strategies are particularly 

effective to prevent disease transmission between cohorts in schools.  

 

Methods 

Using nationally representative data on adolescents in classrooms in four European countries, 

we simulate how four different cohorting strategies can mitigate the spread of SARS-CoV-2 in 

high schools. We model the effect of forming two cohorts randomly, splitting cohorts by 

gender, optimizing cohorts by minimizing students’ out-of-school cross-cohort contacts, and 

approximating this optimization strategy by network chains. The rationale of all non-random 

cohorting strategies is to prevent the spread of SARS-CoV-2 from one cohort to the other by 

reducing cross-cohort out-of-school contact. We also compare the overall effect of cohorting 

to no cohorting and differentiate between a rota-system in which cohorts receive in-person 

instruction in alternating weeks and a system with separate but same-day in-person 

instruction for both cohorts. Data were collected between 2010 and 2011 as part of the 

CILS4EU project, a network panel study of 14-15-year-olds in England, Germany, the 
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Netherlands, and Sweden. Across all four countries, we model the transmission of SARS-CoV-

2 in 507 classrooms, capturing a total of 12,291 students. 

 
Findings 
Our simulations suggest that all four cohorting strategies reduce the spread of SARS-CoV-2 in 

classrooms, but vary in their effectiveness. Relative to random cohorting, all strategies that 

factor in out-of-school cross-cohort ties have particularly strong effects on the frequency of 

cross-cohort transmission but also substantively reduce the total number of infections and 

the share of students in quarantine when transmission dynamics are strong. Cohorting that 

explicitly minimizes out-of-school contact between students in different cohorts is most 

effective, but network-based approximation also breaks many cross-cohort ties and thus 

performs well. Because adolescents’ out-of-school contacts tend to be strongly segregated by 

gender, dividing classrooms by gender also outperforms random cohorting but is less effective 

than directly using network information. For all cohorting strategies, rota-systems with 

instruction in alternating weeks contain outbreaks more effectively than same-day in-person 

instruction.  

 
Interpretation 
Cohorting of school classes as a social distancing measure can help to effectively curb SARS-

CoV-2 outbreaks in the school context. If schools consider splitting up classes into two smaller 

cohorts, factoring in out-of-school contacts can help achieve a more effective separation of 

cohorts. The paper proposes effective cohorting strategies that outperform naïve random 

cohorting in preventing the spread of SARS-CoV-2. These strategies may limit outbreaks to 

one cohort, keep the size of infection clusters low, and reduce the number of students in 

quarantine if an index case occurs in the student body. Our findings thus suggest that if schools 

consider cohorting, they should assign students who meet after school to the same cohort. In 

particular, cohorting on the basis of gender or network chains is effective and may be 

successfully implemented within the constraints posed by the classroom context. 

 
Limitations 

Our parameter estimates rely on current information about SARS-CoV-2. New data on the role 

of adolescents in the transmission of SARS-CoV-2 may change modeling assumptions. More 

generally, we investigate plausible ranges for a number of parameters, and model results vary 



 
 
 

3 

across the parameter space, with lower, though still positive, effects of cohorting strategies 

that prevent cross-cohort interaction under conditions that lower transmission dynamics in 

classrooms. Specific cohorting strategies may also come with pedagogical, organizational or 

social costs.  
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Introduction 

Schools have long been identified as drivers of influenza and other respiratory-spread 

epidemics (Cauchemez et al. 2009; Glass and Glass 2008; Luca et al. 2018; Markel et al. 2007; 

Wallinga, Teunis, and Kretzschmar 2006). When the novel coronavirus SARS-CoV-2 resulted in 

a pandemic in early 2020, many countries reacted by closing schools. For various reasons, 

however, school closures are controversial in both epidemiological and broader public 

debates.  

 

While epidemiological studies indicate that school closures may mitigate the spread of SARS-

CoV-2, their impact still is contested, partly because the consequences of synchronized 

measures such as banning public gatherings or introducing mandatory masks are hard to 

disentangle (Aleta et al. 2020; Auger et al. 2020; Chang et al. 2020; Davies, Klepac, et al. 2020; 

Davies, Kucharski, et al. 2020; Flaxman et al. 2020; Y. Li et al. 2020; Panovska-Griffiths et al. 

2020; Prem et al. 2020; Viner, Russell, et al. 2020; Zhang et al. 2020) Moreover, the 

infectiousness and frequency of asymptomatic infections in children and adolescents are still 

unclear. Emergent evidence on a lower force of infection in children under the age of ten 

suggests that primary schools and childcare facilities are at comparatively lower risk.1 

However, secondary schools may be at higher risk because transmission appears to be more 

dynamic in adolescents than in children, possibly approximating transmission dynamics in 

adults (Goldstein and Lipsitch 2020; Goldstein, M. Lipsitch, and Cevik 2020; Levinson, Cevik, 

and Lipsitch 2020; Park et al. 2020; Viner, Mytton, et al. 2020). But even if adolescents were 

less susceptible than adults, their frequent contacts and exposure to transmission-facilitating 

contexts such as schools may amplify the spread of communicable diseases in this age group 

(Dattner et al. 2020). 

 

In broader public debates, school closures are seen as a last resort because of the high social 

and economic costs they involve (Bayham and Fenichel 2020; Lempel, Epstein, and Hammond 

 
1 It has been argued that comparatively lower numbers of infected children may be a result of shielding 
practices of cautious parents and proactive school closure policies rather than a physical mechanism (Hyde 
2020). Registered incidence numbers are also treacherous because many children may not get tested, e.g., a 
study from Germany recently showed that prevalence of SARS-CoV-2 antibodies in children may be up to six 
times higher than official numbers indicate (Hippich et al. 2020). 
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2009; Psacharopoulos et al. 2020). For example, distance learning is feared to be insufficient 

to compensate for the loss in learning that occurs when in-person classes are cancelled, which 

is supported by evidence from the Netherlands and Germany (Engzell, Frey, and Verhagen 

2020; Grewenig et al. 2020). 

 

As a consequence, pediatricians and public health experts have called for schools to stay open 

or re-open whenever possible (Munro and Faust 2020; Sharfstein and Morphew 2020; Walger 

et al. 2020). Many countries cautiously re-opened schools when incidence rates dropped in 

the summer of 2020. Early reports of large-scale school outbreaks in Israel soon after re-

opening (Stein-Zamir et al. 2020) were followed by outbreaks in Chile (Torres et al. 2020)and 

France (Fontanet, Grant, et al. 2020; Fontanet, Tondeur, et al. 2020). Other observations 

suggest that outbreaks at schools are rare and that index cases in schools scarcely led to 

onward transmissions. Yet most of these data were collected under conditions of low 

incidence and strict social distancing measures in schools, including hybrid in-person and 

online learning as well as reduced class sizes. Therefore, the role of schools as drivers of 

transmission and large-scale outbreaks is not yet settled. 

 

Cohorting as an alternative to school closures to prevent the spread of SARS-CoV-2 

As transmission rates rise again, intervention strategies that keep the number of infected 

students and teachers as small as possible become more urgent. To avoid school closures, 

strategies that reduce the probability of in-school infections are of key interest. In many 

countries, strategies that do not radically interfere with schools’ daily routines—such as 

wearing masks and ensuring sufficient ventilation—have already been implemented. 

However, these measures are feared to be insufficient to prevent infection clusters when 

community transmission rises, raising calls for social distancing measures in schools, which 

may be more intrusive but further help avoiding the transmission of SARS-CoV-2.2 Yet, there 

is hardly any evidence on social distancing measures and their effectiveness in schools, as 

 
2 For the public discussion in Germany, see, for example https://www.sueddeutsche.de/politik/corona-
deutschland-laschet-soeder-1.5119886, https://www.faz.net/aktuell/politik/inland/spahn-schlaegt-neues-
corona-konzept-fuer-schulen-vor-17065077.html or https://www.zeit.de/gesellschaft/schule/2020-11/corona-
massnahmen-schule-hybridunterricht-infektionsschutz-regeln-faq 
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evidenced by Viner et al. (2020:401), who identified “a remarkable dearth of policy-relevant 

data on the implementation of school social distancing during coronavirus outbreaks.” 

 

One social distancing measure that is more intrusive than some other precautions but still 

allows for in-person instruction is splitting larger clusters of students into smaller groups, 

which are kept separate to prevent cross-group infections. In line with the definition of the 

Centre for Disease Control and Prevention (CDC 2020), we term the corresponding process of 

splitting and isolating these clusters cohorting and the resulting separate groups cohorts. In 

the European context that we focus on, in-school instruction is typically organized in 

classrooms of 20-40 students. Most courses are taught in these classrooms to the same set of 

students.3 In this context, cohorting refers to splitting classrooms into smaller units and 

instructing these units separately. There is frequent discussion of splitting classrooms in half 

(see footnote 2), which, unlike dividing classrooms into three or more cohorts, may still be 

compatible with schools’ resources. Cohorts may either both be instructed in-person on the 

same day (using different classrooms or with one cohort present in the morning and one in 

the afternoon, for example) or in a rota-system with each cohort in turn being instructed in 

school and online in consecutive weeks. 

 

Cohorting classrooms has several benefits. First, it facilitates social distancing within the 

classroom because there is more space per student. Second, it reduces the number of 

students who are exposed to an infection within the classroom, which can moderate both the 

size and the reach of an initial outbreak. When cohorting separates groups effectively, 

infections in the other cohort can be avoided and quarantines can be restricted to a single 

cohort. Results from a modeling study based on UK data suggest that cohorting of school 

classes in a two-week rota-system may reduce the proportion of patients that need to be 

 
3 In the US, by contrast, instruction is largely organized at the grade level or even across grades. Comparable 
strategies that result in similarly small cohorts thus may be harder to implement, though the idea of learning 
pods (CDC 2020) captures a similar concept. One study from the US (Cohen et al. 2020) considers breaking up 
larger school interaction patterns into fixed classrooms and instructing different parts of the resulting 
classrooms at different points in time. However, Cohen et al. only consider randomly splitting classrooms and 
do not use actual student (network) data, which we focus on to compare the effects of different cohorting 
strategies. 
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successfully isolated through test-trace-isolate tasks in order to prevent an epidemic rebound 

from 75% to 65% (Panovska-Griffiths et al. 2020). 

How to make cohorting effective? 
While cohorting strategies were implemented in a number of places in the spring of 2020 and 

are still widely discussed, there is little guidance on how effective cohorting is in preventing 

SARS-Cov-2 transmission in schools and whether specific cohorting strategies are preferable. 

Our paper fills this gap by using simulation models to assess how cohorting affects 

transmission dynamics within classrooms. We consider cohorting strategies that split full 

classrooms (i.e., about 20-40 students) into two cohorts of approximately equal size.  

 

We first investigate the general efficacy of cohorting by simulating the transmission of SARS-

CoV-2 in classrooms without cohorting and in classrooms where students are randomly 

separated into two distinct cohorts. This random cohorting is comparable to dividing students 

by alphabetical order, which has the benefit of being easy to implement. However, the 

effectiveness of cohorting depends on preventing transmission between cohorts. While any 

kind of cohorting strategy—including random cohorting—precludes interaction with 

members of other cohorts within school, it does not necessarily prevent such interaction 

outside of school. If students have out-of-school contacts, and if these contacts span cohorts, 

they may serve as transmission channels between cohorts even if in-school contacts are 

separated. Cohorting strategies that take into account out-of-school contacts and try to 

minimize corresponding cross-cohort contacts are therefore likely to be more effective in 

containing outbreaks.  

 

Therefore, we also assess whether three more sophisticated cohorting strategies that 

consider students’ out-of-school contacts with their classmates are better in containing SARS-

CoV-2 than random allocation. These strategies are based on the well-established fact that 

social networks mostly consist of clusters that are well-connected internally but are more 

loosely connected to other clusters. Such clusters can form because people tend to associate 

with others who are similar to them and less with others who are dissimilar (McPherson, 

Smith-Lovin, and Cook 2001) or due to more structural processes such as transitive closure—

when friends of friends also become friends (Lewis 2015; Rivera, Soderstrom, and Uzzi 2010). 
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When social networks are organized in clusters with few connections between them, social 

distancing measures that successfully sever between-group ties may be much more efficient 

than strategies that do not take social network structure into account (Block et al. 2020; 

Manzo and Rijt 2020). Our network-based cohorting strategies apply this insight to the school 

context.  

 

The first network-based cohorting strategy splits classrooms by gender. While not explicitly 

considering students’ out-of-school contact, this strategy takes advantage of the strong 

gender segregation in adolescents’ friendship networks (McDougall and Hymel 2007; Rose 

and Rudolph 2006). Splitting classes by gender therefore should considerably reduce out-of-

school contact between members of different cohorts. This strategy is easy to implement, but 

an elevated transmission risk in cross-gender romantic relationships may undermine its 

efficiency. The second strategy is optimization that explicitly uses students’ self-reported out-

of-school contact with classmates to form cohorts in a way that minimizes the number of 

cross-cohort contacts. By definition, this strategy produces the cleanest separation of cohorts 

and should thus be most effective in preventing cross-cohort infection. However, this strategy 

is hard to implement as teachers need to know their students’ out-of-school contacts with 

classmates and optimize cohorts accordingly. Therefore, we also propose a network chain 

cohorting strategy that approximates optimization based on the out-of-school contact 

network and is much easier to implement. In this strategy, an initial student who is well-

connected—such as a class representative or a student known to be popular—names all of 

her classmates with whom she has out-of-school contact, and the resulting set of students 

forms the basis for the first cohort. Subsequently, the listed out-of-school contacts name their 

out-of-school contacts, who also become members of the first cohort. The process continues 

until half of the classroom is allocated to the first cohort,4 and the remaining students form 

the second cohort.  

 

 
4If the chain breaks, another random student can be allocated to the group and selected to nominate her out-
of-school contacts.  
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Figure 1: Cross-cohort out-of-school ties for different cohorting strategies in an example 

classroom from the CILS4EU data. 

 

Figure 1 shows an exemplary classroom in the dataset and demonstrates the success of 

different cohorting strategies in separating cohorts for this set of students. Nodes represent 

students and connections among nodes represent out-of-school contacts. Colors indicate the 

cohort to which students have been allocated. While there are many cross-cohort contacts 

under random cohorting, gender-split and network chain cohorting produce fewer cross-

cohort connections and optimized cohorting succeeds in perfectly separating cohorts. Of 

course, the effects of cohorting strategies may vary across classrooms. In the following, we 

use simulation models to investigate whether these cohorting strategies can help to prevent 

the spread of SARS-CoV-2 outbreaks across cohorts, limit infections among students, and 

avoid quarantines. 

Data and Simulation Model 

The CILS4EU data 

To assess the effectiveness of different cohorting strategies, we use student data from the 

first wave of the Children of Immigrants Longitudinal Study in Four European Countries 

(CILS4EU) project (Kalter et al. 2016). The data provide information on 14-15-year-old 

students from England, Germany, the Netherlands, and Sweden. Data was collected in 2010-

11 in randomly selected schools within each country, oversampling schools with a high share 

of immigrant students. In most schools, two ninth-grade classrooms were surveyed in full, 

providing individual student information as well as data on social relations between surveyed 

students within a classroom. The response rate at the student level was 81% in England and 
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Germany, 91% in the Netherlands and 86% in Sweden (CILS4EU 2016).5 Because cohorting is 

less likely to be an issue in small classes, our analysis considers all classrooms with information 

on 20 or more students. To compare the gender-split strategy with other strategies, we only 

consider classrooms with full information on students’ gender. In total, our sample consists of 

507 classrooms populated by 12,291 students. 

 

We focus on students’ social relations outside of the school context because these relations 

can serve as an additional channel of transmission for SARS-CoV-2 next to transmission within 

cohorts. Out-of-school interaction is captured by an indicator assessing the classmates a 

student “often spend[s] time with outside school”. Students could nominate as many of their 

classmates as they wanted.6 Whenever one student named another, we code an out-of-school 

contact between this pair of students, independent of whether the second student confirmed 

the nomination because contact necessarily goes both ways. The median student has out-of-

school contact with three classmates, with a mean of 3.58 contacts.  

Cohorting strategies and their evaluation 

We investigate how effective different cohorting strategies are in preventing cross-cohort 

disease transmission through out-of-school contact with classmates. All cohorting strategies 

are summarized in Table 1. Throughout our analysis, we consider outcomes when in-person 

instruction of cohorts takes place in alternating weeks or in different sessions on the same 

day.  

 

As a baseline, we compare a scenario without cohorting (i.e., full classrooms) with random 

cohorting. In random cohorting, the entire classroom is randomly split into two equally-sized 

cohorts that are taught separately. For this comparison, we simulate the transmission of SARS-

CoV-2 within classrooms (explained in more detail below) to examine the total proportion of 

students infected without cohorting and with random cohorting. 

 
5 The total response rate was lower because schools or (in very rare instances) classes could also decide to not 
participate in the survey. Factoring in all sources of non-response, response rates are 53% in England, 79% in 
Germany and the Netherlands, and 65% in Sweden. (CILS4EU 2016). 
6 In many classrooms, however, students were not allowed to nominate students who did not participate in the 
survey. Therefore, our networks are limited to students who participated in the student and/or network 
questionnaire.  
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Table 1: Overview of cohorting strategies and key simulation outcome measures  

Cohorting strategies 

Strategy Description 

Random cohorting Two cohorts are formed by randomly allocating half of 
the students to each cohort. 
 

Gender-split cohorting One cohort consists of boys, one of girls. Students from 
the smaller cohort (i.e., the underrepresented gender) 
are reallocated until both cohorts have the same size. 
(See appendix for variations.) 
 

Optimized cohorting Two equally-sized cohorts are formed to minimize the 
number of cross-cohort out-of-school contacts. 
 

Network chain cohorting An initial student names all of her out-of-school contacts, 
who themselves name their out-of-school contacts, etc., 
until the resulting set of students comprises half of the 
classroom. This set of students forms the first cohort, the 
remainder the second cohort.  

  

Key simulation outcome measures 

Proportion of simulations with 
transmission to second cohort 

Does SARS-CoV-2 spread from the seed node’s cohort to 
the other cohort, such that containment fails? 
 

Average proportion of students 
in quarantine at the end of the 
simulation 

How many students are quarantined and can thus 
(temporarily) not attend school? 
 
 

Average proportion of students 
infected at the end of the 
simulation 

How many students in the classroom (across cohorts) 
have been infected (by the seed node or other students)? 

 

Subsequently, we compare random cohorting and three non-random cohorting strategies in 

terms of their effectiveness in avoiding transmission across cohorts, reducing quarantines, 

and limiting infections. In all cohorting strategies, we split classrooms into two equally sized 

cohorts, but according to different criteria. In the gender-split strategy, cohorts are separated 
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by gender. If a strict separation of boys from girls leads to unequal cohort sizes because of an 

uneven gender composition, members of the larger cohort (the overrepresented gender) are 

reallocated to the smaller cohort until cohort sizes equalize.7 In the optimized cohorting 

strategy, students are allocated to cohorts in order to minimize the number of cross-cohort 

out-of-school contacts with classmates.8 Network chain cohorting approximates this strategy 

by using chains of out-of-school contact nominations. In this strategy, a random well-

connected student names all of her out-of-school contacts and this set of students forms the 

core of the first cohort.9 The nominated out-of-school contacts themselves subsequently 

nominate their (not yet nominated) out-of-school contacts, continuing this process until the 

set of nominated students comprises half of the classroom.10 This set forms one cohort and 

the remaining students are pooled in the second cohort.  

 

We compare the effectiveness of the different cohorting strategies in terms of three key 

indicators, which are also summarized in Table 1. First, we consider the proportion of 

simulations in which SARS-CoV-2 is transmitted to the second cohort, meaning that 

containment of an initial outbreak fails. Second, we assess the proportion of students who are 

quarantined and thus temporarily cannot participate in school activities in person. Third, we 

evaluate the overall proportion of students in the classroom who become infected to assess 

whether cohorting strategies can help to reduce the severity of outbreaks. 

 

 
7 There are other ways to split by gender, two of which we explore in the appendix. As explained there, from 
the perspective of preventing infections and quarantine, ensuring equal group sizes is preferable. 
8 We use brute-force optimization, considering all possible allocations to equally-sized cohorts to find the 
minimum number of cross-cohort out-of-school contacts. In eight classrooms with more than 32 students, 
optimization fails due to computational constraints. For these classrooms, we randomly sample 1,000,000 
allocations and report results for the allocation that minimizes the number of cross-cohort out-of-school 
contacts. 
9 In the simulations, we draw the initial student from the observed out-of-school relations, with the probability 
of being the initial student proportional to the number of out-of-school contacts. Therefore, better-connected 
students are more likely to be initial students. This simplifies allocation because the algorithm is less likely to 
break down. 
10 If there are no additional nominations at a certain nomination step and the set does not yet comprise half of 
the students, a random student is added to the set and can subsequently nominate her contacts. If, during the 
nomination process, the number of students in the group exceeds half of the class size, a random subset of the 
newly-nominated students is added to the set. These regulations, which ensure that the algorithm always ends 
up with an allocation, can also be easily implemented in practice.  
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Modelling transmission dynamics in classrooms 

We simulate the transmission of SARS-CoV-2 separately for each classroom and each 

cohorting strategy. The simulation model is summarized in Figure 2. Each simulation starts 

with one randomly infected seed node (i.e., student) in the classroom and investigates how 

SARS-CoV-2 spreads within the class. In the simulation model, infections originate from 

interaction with an infectious student. Interaction is modelled on a daily basis and takes place 

between all students within a cohort in the classroom. In addition, interaction can happen 

outside of school between classmates with out-of-school contact.  

 

Within-cohort interaction occurs only on school days (i.e., Monday to Friday) and only when 

the cohort is instructed in-person, i.e., every other week when cohorts are instructed in a rota-

system. The infection risk of individual students within classrooms is likely to vary, in particular 

with respect to physical closeness. To capture differential risks for infection, we randomly 

draw 25% of the within-cohort pairs of students to be at high relative risk of infecting one 

another. A cohort usually consists of 10-16 students, such that 2-4 other students are high-

risk contacts.11 For the remaining students, we assume a lower risk (20% of the high-risk 

contact) due to aerosol diffusion and unmodelled interaction patterns. 

 

Next to within-cohort in-school interaction, out-of-school interaction with classmates can also 

cause infection. Out-of-school interaction is assumed to have the same risk of infection as 

high-risk contact within the classroom. Out-of-school contact can take place on any day of the 

week, but only with a given probability, as discussed below.  

 

Irrespective of whether interaction occurs in school or outside school, it does not always lead 

to infection, but only with a given probability, as discussed below. Once a student is 

 
11 We report results for 12.5% and 50% of high-risk contacts in the appendix, but substantive conclusions are 
unchanged. We fix high-risk interactions for pairs of students (rather than at the daily interaction) because they 
tend to be stable over time due to the physical organization of the classroom. 
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Figure 2: Model for transmission of SARS-CoV-2 within classroom 
 

Initialization
Random seed student is exposed at random day of the week.
Seed student’s disease trajectory is drawn.

1. Check stopping conditions
The simulation ends if either of the following conditions holds:
• All students have been infected (i.e., are either exposed, infectious, or recovered; with no student susceptible)
• All students have been quarantined
• Seven weeks (49 days) have passed since the beginning of the simulation.

2. Check new quarantines
If a non-quarantined student became symptomatic on the previous day,
• the student herself
• the student’s entire cohort
• the student’s interaction partners in the last 14 days
are quarantined. Quarantine lasts for 14 days.

3. Interaction
Students interact within their classroom cohort and with their out-of-school contacts (among classmates):
• Interaction within the classroom cohort takes place Monday to Friday if the cohort is instructed in-person during that week. 

Students interact with all students in the cohort. Interaction can be high-risk or low-risk.
• Interaction with out-of-school contacts can take place on any day of the week. On each day, each possible interaction takes place 

with the probability of out-of-school contact. Out-of-school Interaction is high-risk.

4. Infection
Interaction with an infectious students results in exposure according to a to the baseline probability of infection upon contact, 
weighted by infectiousness of the infectious student and the risk level of the contact.

If a student is exposed, her disease trajectory is drawn.

5. Incrementation of disease trajectories and time
Every infected student‘s disease trajectory is incremented or initiated (if newly exposed, see 4.). Time is incremented by one day. 

Disease trajectories
Disease trajectories are given by simultaneous independent draws 
from distributions for the following characteristics (Davies et al. 
2020):
• Duration of latency period: !"##" $ = 3, ( = 4
• Duration of preclinical infectiousness: !"##"($ = 2.1, ( = 4)
• Duration of clinical infectiousness: !"##" $ = 2.9, ( = 4
• Duration of subclinical infectiousness: !"##" $ = 5, ( = 4
• Infectiousness 

• of clinical infection: 100%
• of subclinical infection: 50%.

Students recover after they are no longer infectious. There is no 
reinfection.

Risk level of interaction
• 25% of all pairs of students are involved in high-risk interaction 

in the classroom (e.g. physical closeness). The pairs are fixed 
within each simulation run. 

• All other pairs are involved in low-risk contact. 
• Out-of-school contact is considered high-risk contact. 
• For low-risk contact, the baseline probability of infection is 

weighted by factor 0.2 to determine whether an infection 
occurs. For high-risk contact, the probability is weighted by 
factor 1.

Parameters simulated across reasonable parameter ranges
• Baseline probability of infection upon contact, i.e., the baseline 

probability of exposure given single interaction with infectious 
student: {0.05, 0.1, 0.15, 0.2, 0.25}

• Probability of out-of-school contact, i.e., the probability of 
interacting with a given out-of-school contact on a given day: 
{0.05, 0.1, 0.15, 0.2}

• Proportion of subclinical infections: {0.2, 0.4, 0.6, 0.8}
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infected (either through the seed node or through longer chains of infection) and becomes 

infectious herself, she can infect other students. 

 

In order to characterize the period and intensity of infectiousness, we simulate trajectories 

for SARS-CoV-2 for each student. A disease trajectory is characterized by whether the infection 

is subclinical or clinical, the infectiousness of subclinical and clinical infection, the length of 

the latent period after exposure in which the patient is not yet infectious, the length of the 

infectious period, and the time until symptom onset given a clinical infection. We use the 

assumptions of Davies et al. (2020) on these characteristics of disease trajectories, which are 

themselves largely based on an aggregation of previous studies on SARS-CoV-2. Parameters 

are shown in Figure 2. 

 

Once a (non-quarantined) student with a clinical infection becomes symptomatic, all members 

of her cohort and all students involved in her out-of-school interactions in the last 14 days are 

quarantined one day later. Quarantine lasts for 14 days. A single simulation run ends when (i) 

all students have been infected, or (ii) all students have been quarantined, or (iii) seven weeks 

have passed (capturing the effect of school holidays). Given that infected seed nodes, disease 

trajectories, interaction patterns, and, for some cohorting strategies, cohort composition, are 

stochastic, we run at least 300 simulations for each classroom and each cohorting strategy 

and report average results throughout. 

 

Model parameters 
For most parameters related to disease trajectories, we rely on estimates from recent studies 

(discussed above). However, appropriate values for three key parameters of our transmission 

models are still highly uncertain. First, there is little knowledge on the probability of infection 

conditional on contact with an infectious student, especially for adolescents and in the school 

context. Second, the daily probability of out-of-school interaction with any given out-of-school 

contact is uncertain. Third, the proportion of clinical infections with SARS-CoV-2 is highly 

debated, in particular among children and adolescents.  
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Naturally, model outcomes are sensitive to these parameters. At a higher likelihood of 

infection, larger outbreaks are more likely; at higher probabilities of out-of-school interaction, 

out-of-school contacts become more relevant; a higher share of clinical infections triggers 

quarantines more quickly, but symptomatic cases may also be more infectious. Lacking precise 

estimates for these parameters, we model results for a range of plausible values, as discussed 

in the three subsequent subsections. 

 

Baseline probability of infection upon contact 
The probability of infection upon contact is contingent both on adolescents’ general 

susceptibility to SARS-CoV-2, which is still unclear (Goldstein, M. Lipsitch, et al. 2020; X. Li et 

al. 2020; Viner, Mytton, et al. 2020), and on how conducive the school context is for 

transmission. To some degree, classrooms provide ideal conditions for transmission as they 

are small, confined indoor spaces that are shared for multiple hours. However, in the course 

of the SARS-CoV-2 epidemic, many schools have adapted to pandemic conditions by enforcing 

frequent ventilation, the usage of masks, and other precautions.  

 

To capture this variation in conditions, we simulate model results across a range of infection 

probabilities. To be precise, we model a baseline probability of infection upon contact, which 

is the probability of becoming infected conditional on exposure to an infectious student on 

any given day.12 It is a baseline probability because this probability is further reduced if it 

involves a low-risk contact or a subclinical (and thus less infectious) infected student. We 

consider probabilities of 5%, 10%, 15%, 20%, and 25%. These values correspond to in-

classroom secondary attack rates for an average infectious seed node in the range from 3-4% 

to 23-27%, respectively.13 This corresponds well with ranges for the estimated secondary 

 
12 Same-day interaction within school and outside of school are considered to be to separate encounters that 
pose distinct infection risks. 
13 Secondary attack rates are calculated as follows. The average clinical classmate is infectious and 
unquarantined for three days (2 pre-symptomatic days and 1 symptomatic day), yielding a probability of 
infection of 1 − (1 − $%&'()*'	,-.$%$)()/0)! for high-risk contacts and 1 − (1 − 0.2 ∗
	$%&'()*'	,-.$%$)()/0)! for low-risk infections, with / the number of days of interaction, which depends on 
whether these days fall on weekdays or on the weekend. The average subclinical classmate is infectious for five 
days (and is not quarantined), yielding a probability of infection of 1 − (1 − 0.5 ∗ 	$%&'()*'	,-.$%$)()/0)! of 
infection for high-risk contacts and 1 − (1 − 0.1 ∗ 	$%&'()*'	,-.$%$)()/0)! for low-risk contacts, with / the 
number of days of interaction. Weighting each weekday with identical probability for the first day of 
infectiousness yields the secondary attack rates discussed in the text. Of course, the secondary attack rate is 
lower when instruction is organized in a weekly rota-system and parts of the infectious period do not 
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attack rate among adolescents from previous studies, with Liu et al. (2020) reporting a 

secondary attack rate of 4% in 10 to 19-year-olds in a contact study with all contacts, and 

Dattner et al. (in Viner, Mytton, et al. 2020:11)reporting a household secondary attack rate of 

34% among 7 to 19-year-olds.  Other estimates are in between (Chu et al. 2020; Goldstein, 

Marc Lipsitch, and Cevik 2020; Laxminarayan et al. 2020; Sachdev et al. 2020; Viner, Mytton, 

et al. 2020). 

 

Probability of out-of-school interaction, 
The probability of out-of-school interaction captures students’ propensity to meet some of 

their classmates outside school. In the model, the parameter refers to the probability of a 

focal student to interact with any specific out-of-school contact on a given day. Clearly, 

realistic values for this parameter strongly vary with momentary conditions in society. With a 

high incidence of SARS-CoV-2 or even a lockdown that prohibits certain contacts, probabilities 

for interaction will be lower than under normal circumstances. We consider probabilities of 

students to meet an out-of-school contact on a given day of 5%, 10%, 15%, and 20%. In our 

data, the median student nominates three (mean of 3.58) classmates who she has frequent 

out-of-school contact with. A probability of out-of-school contact of 5% thus means that the 

median student on average has 1.05 out-of-school interactions in a week, with a probability 

of 86% to not have any out-of-school interaction on any given day and a probability of 34% to 

not have any interaction in an entire week. A probability of out-of-school contact of 20% 

means that the median student has on average 4.2 out-of-school interactions per week, with 

a probability of 51% of having no contact on any given day and a probability of just below 1% 

of having no contact in an entire week.  

 

Proportion of subclinical infections among adolescents 
The proportion of subclinical SARS-CoV-2 infections, in particular among children and 

adolescents, is highly debated and, so far, unknown. Even if the proportion of truly 

asymptomatic infections is low, many other infections may come with very weak symptoms 

and thus go undiagnosed, in particular in high-incidence situations with limited access to 

 
correspond with in-person instruction. The secondary attack rate also varies with the share of high-risk within-
cohort interactions. The maximum average secondary attack rate of 23%-27% discussed above is for a 
proportion of 50% of high-risk interactions (results reported in the appendix), the minimum of 3%-4% for a 
proportion of 12.5% (see appendix) and 25% (see main text), respectively. 



 
 
 

18 

testing. Previous studies suggest a wide range of estimates for the share of subclinical 

infections, ranging from 22% (Han et al. 2020) to 86.6% (Chang et al. 2020) among children 

and adolescents with other estimates in between (Dattner et al. 2020; Davies, Klepac, et al. 

2020; Jung et al. 2020; Waterfield et al. 2020). To capture the high uncertainty in this 

parameter, we model transmission processes with assumed proportions of subclinical 

infections of 20%, 40%, 60%, and 80%. 

 

Results 

Does cohorting reduce transmission? 
We first assess whether cohorting is effective in containing outbreaks. In order to do so, we 

compare SARS-CoV-2 transmission dynamics in regular full classrooms—without cohorting—

to random cohorting, which divides classrooms into two cohorts but ignores out-of-school 

interaction. Figure 3 shows the average proportion of students across the entire classroom 

that is infected at the end of the simulation, comparing no cohorting and random cohorting. 

It differentiates results between teaching in a weekly rota-system and same-day instruction 

of both cohorts across different probabilities of infection, probabilities of out-of-school 

contacts, and proportions of subclinical cases. According to Figure 3, the classroom-level 

proportion of infections is about two times as high in the absence of cohorting compared to 

random cohorting. This holds not only for all parameter constellations but also irrespective of 

whether cohorts are instructed in-person in consecutive weeks or on the same day.14 

Throughout the analysis, instruction in a weekly rota-system always reduces infections 

relative to same-day  instruction: the weekly rota-system ensures that transmission dynamics 

within cohorts can only take place every other week, inducing a “natural quarantine” that 

frequently prevents outbreaks early on or stops them from spreading further—at the cost of 

less frequent in-person instruction. 

 
14 Note that, even when cohorting is organized in a weekly rota-system, the baseline proportion infected for 
the comparison scenario without cohorting will frequently be the proportion infected under same-day 
instruction. This is because, under normal conditions,  all students are usually instructed on the same day by 
default and only introducing a cohorting system requires switching to a rota-system (due to constraints in 
capacity).  
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Figure 3: Average cumulative proportion of infected classroom members in case of random cohorting (blue) and no cohorting (brown + blue).
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Distribution plots in in Figure 4 also corroborate that larger outbreaks are substantially more 

likely when classrooms are not cohorted, especially when the probability for infection is high. 

Under this condition, cohorting frequently contains an outbreak within one cohort, while 

SARS-CoV-2 spreads further if there is no cohorting. Figure 4 also shows that, at same-day 

instruction and an infection probability of 25%, outbreaks that affect entire classrooms are 

frequent. Given the other parameter values, higher probabilities of infection thus seem 

implausible because these outbreaks should be noticed empirically in high-incidence 

situations. Therefore, we consider this the upper bound for plausible probabilities of infection 

in the classroom context. 

 

In relative terms, Figure 3 indicates that cohorting is most effective when the probability for 

infection is low. When infection risk is low, a large number of contacts is required to induce a 

large outbreak, and this number is lowered through cohorting. The relative effectiveness of 

random cohorting is also higher when out-of-school interaction is unlikely. Under this 

condition, random cohorting effectively separates cohorts because there is little cross-cohort-

interaction and infection risk. At higher probabilities for out-of-school contact, cross-cohort 

contact more frequently results in transmission to the other cohort, lowering the benefit of 

cohorting. However, outbreaks become more severe at higher probabilities for infection and 

more frequent out-of-school interaction. Therefore, the lower relative effectiveness of 

cohorting under these conditions is compensated for by higher absolute effects on the 

number of resulting infections. Given that effects of cohorting are substantively large under 

all conditions, our model thus suggests that cohorting can effectively reduce infections in the 

school context.15 

 

 
15 Our model should capture both main consequences of cohorting: a reduced number of within-classroom 
interaction partners and improved opportunities for social distancing. Improved opportunities for social 
distancing are represented through a constant share of high-risk within-class contacts, such that the number of 
high-risk contacts falls when cohorting is introduced. A reduced number of within-classroom interaction partners 
is immediately implied by cohorting. 
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Figure 4: Distribution of classroom-level infections in case of random cohorting and no cohorting for selected parameter constellations. 
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How to improve the effectiveness of cohorting? 
The degree to which cohorting strategies succeed in containing outbreaks depends on how 

effective they are in breaking out-of-school ties between students from different cohorts. To 

see whether taking into account out-of-school contact with classmates improves the 

effectiveness of cohorting, we compare random cohorting with alternative strategies—

gender-split cohorting, optimized cohorting that minimizes out-of-school cross-cohort 

interaction, and network chain cohorting that approximates such an optimization. 

 

For an initial descriptive assessment of these strategies, Figure 5 shows the distribution of the 

average number of cross-cohort ties across classrooms for different cohorting strategies. 

Across all countries, all cohorting strategies yield a number of cross-cohort ties that is 

substantively smaller than the total number of ties in the out-of-school network. As expected, 

the optimization strategy results in the lowest number of cross-cohort ties, with an average 

of 3.5 cross-cohort ties per classroom—only 17% of the average of 20 cross-cohort ties 

resulting under random cohorting. The gender-split strategy produces an average of 11.4 

cross-cohort ties, 57% of the cross-cohort ties under random cohorting. The network chain 

strategy results in an average of 8.4 cross-cohort ties, thus outperforming the gender-split 

strategy, with 42% of the cross-cohort ties under random cohorting remaining. Therefore, 

next to the optimization strategy, network chain and gender-split cohorting are also likely to 

help contain outbreaks.  

 

 
Figure 5: Total number of ties in the out-of-school contact network and (average) cross-cohort 

ties for different cohorting strategies across classrooms.  
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In order to investigate the consequences of severing cross-cohort out-of-school ties, we 

simulate SARS-CoV-2 transmission for the random, gender-split, network chain, and optimized 

cohorting strategies in all classrooms. We show results for three indicators: the proportion of 

instances in which an initial outbreak spreads across cohorts, the proportion of infections 

across the entire classroom, and the proportion of students quarantined. Note that any given 

proportion of clinical infections implies a specific minimum share of students who are 

quarantined independent of the cohorting strategy used.16 Therefore, we show results for the 

excess proportion quarantined, i.e., quarantines up and above the minimum share implied by 

clinical infections. The choice of cohorting strategy can only affect this excess proportion. We 

show results aggregated across the entire sample, but provide classroom-level results by 

country in the appendix, with comparable substantive results. 

 

Figure 6 shows our main results. We show results for same-day instruction of both cohorts in 

the upper portion of the graph and results for the weekly rota-system in the lower portion. 

Furthermore, we show all results separately by the probability of out-of-school interaction 

along the x-axis, and across different probabilities of infection and proportions of subclinical 

cases in horizontal panels. Therefore, Figure 6 shows model outcomes across the entire 

parameter space. In the subsequent discussion, however, we will, whenever possible, 

summarize by highlighting comparable patterns across parameters. 

 

The choice of cohorting strategy has its strongest effect for the proportion of instances in 

which infection spreads to the other cohort, with substantive effects visible for all parameter 

constellations. Gender-split, network chain and optimized cohorting all clearly outperform 

random cohorting. Gender-split cohorting falls about halfway in between random and 

optimized cohorting. Network chain cohorting is more effective than gender-split cohorting 

but of course still less effective than optimized cohorting. The same pattern holds for effects 

on the proportion of students quarantined and the total proportion infected, though effects 

are weaker and almost absent for the proportion infected for some parameter constellations 

 
16 Any clinical student eventually triggers a quarantine for her cohort, independent of cohorting strategy. For 
example, when the proportion of clinical infections is 60%, 60% of all simulations result in a clinical infection of 
the seed node, causing her cohort (50% of all students) to go into quarantine. Independent of cohorting 
strategy, the proportion of students in quarantine across simulation runs thus cannot fall below 30%. The 
excess proportion quarantined is the proportion of students quarantined up and above this baseline level.  
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Figure 6: Epidemiological outcomes of different cohorting strategies: Proportion of instances of infection spreading to the second cohort, 
proportion of students infected, and excess proportion of students quarantined. Cumulative probabilities. 
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(i.e., low probabilities for infection or out-of-school contacts or low proportions of subclinical 

cases).  

 

Qualitatively, all cohorting strategies react to variation in parameter values in a similar way. 

The effects of cohorting strategies that successfully break cross-cohort out-of-school ties are 

particularly strong when the probability of infection, the probability of out-of-school 

interaction, and/or the proportion of subclinical students is high. Effective cohorting also has 

stronger effects when both cohorts are instructed on the same day rather than in consecutive 

weeks. (Note the different scales for the respective portions of the graph). Under these 

conditions, the transmission of SARS-CoV-2 is pronounced and enduring because students are 

easily infected, have more contacts that facilitate transmission to the other cohort, are less 

frequently quarantined (because infection goes unnoticed), and reinforce outbreaks within 

cohorts because of more frequent in-person instruction. This is also visible by higher overall 

cross-cohort spread and higher proportions infected and quarantined for all cohorting 

strategies.  

 

An effective cohorting strategy thus is most important to avoid the spread of SARS-CoV-2 

when conditions facilitate disease transmission. For example, at same-day instruction, a 

baseline probability of infection upon contact of 15%, a probability of out-of-school 

interaction of 20%, and 60% subclinical infections, random cohorting on average results in 

20% of outbreaks spreading to the second cohort, gender-split cohorting results in 12%, 

network chain cohorting in 9%, and optimized cohorting in 4%. Thus, cohorting that considers 

out-of-school contact between classmates can lower the frequency of spread by 39%-79% 

relative to random cohorting. The excess proportion of quarantined students can be reduced 

from 22% (random cohorting) to 20% (gender-split), 19% (network chain cohorting) and 18% 

(optimized cohorting), and can thus be reduced by 9-18%. The overall proportion quarantined 

is 20% higher because 40% of clinical infections imply a baseline proportion of quarantined 

students of 20%, but this baseline proportion cannot be affected by any specific cohorting 

strategy. The average proportion of infections at the same time falls from 11% (random 

cohorting) to about 10% in gender-split, network chain and optimized cohorting, with 

reductions of 4% (gender-split strategy), 5% (network chain strategy) and 7% (optimized 
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strategy). At a lower probability of infection, lower probability of out-of-school interaction, 

lower proportions of subclinical cases, and instruction in a weekly rota-system, effects on the 

frequency of spread to the second cohort and the excess proportion quarantined remain 

substantial, but effects on the proportion infected are smaller.  

 

An observation from Figure 6 that may be surprising at first sight is that the total proportion 

of infections reacts only very mildly to the type of cohorting strategy when the baseline 

probability for infection is low, while the frequency of failed containment and the excess 

proportion quarantined react considerably. This can best be understood by inspecting Figure 

7, which shows the distribution of the proportion of infected students across all classrooms 

for selected parameter constellations. (To see results more clearly, Figure 7 is limited to 

instances with at least one infection through the seed node.) 

 

 
Figure 7: Distribution of classroom-level infections (conditional on at least one infection) for 
different cohorting strategies for selected parameter constellations. 
 

 At low probabilities of infection, the transmission of SARS-CoV-2 breaks down very quickly, 

and outbreaks are in almost all instances limited to very few infected cases. In these situations 

with weak dynamics in transmissions, the substitution of cross-cohort out-of-school contacts 
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with within-cohort out-of-school contacts in the more effective cohorting strategies means 

that the few resulting infections occur within the cohort rather than across cohort borders. 

Therefore, effective cohorting improves containment of the outbreak to one cohort. However, 

the transmission dynamics reach a halt quickly independent of whether within-cohort 

students other cross-cohort students are infected and thus cohorting strategy hardly affects 

the total number of infections. Therefore, the number of infections does not react strongly to 

cohorting strategy, as seen in the left part of Figure 7. Only when the probability of infection 

is higher, such that dynamics are sustained in the second cohort if containment has failed, 

effective cohorting (and the ensuing containment) lowers the total number of infected 

students. This can be seen from the right part of Figure 7, which shows that many students in 

one cohort are infected in the gender-split, network chain and optimized cohorting strategies, 

but the disease is contained within that cohort—represented by high probability masses of 

50% or fewer infected students. By contrast, the disease more frequently spreads to and 

within the second cohort under random cohorting, indicated by a higher probability mass at 

higher proportions of infected students.  

 

Substantively, the usefulness of cohorting strategies that prevent cross-cohort out-of-school 

interactions thus depends both on how well SARS-CoV-2 is transmitted among students and 

the underlying goals of cohorting. If transmission is weak, the main advantage of effective 

cohorting is to reduce the frequency of quarantines, thus keeping students in school more. At 

higher probabilities for infection, however, effective cohorting also reduces the total burden 

of infections notably by frequently containing larger outbreaks to a single cohort rather than 

allowing them to spread to and within the second cohort. The same holds true when the 

probability of out-of-school interaction is high, which more frequently induces a second 

outbreak after containment has failed in one cohort. Similarly, a high proportion of subclinical 

cases means that SARS-CoV-2 can spread unnoticed to and within the second cohort, also 

strengthening the consequences of effective cohorting for the total number of infections. 

 

Discussion 

As we approach the end of 2020, the SARS-CV-2 pandemic has been a disruptive force in many 

areas of society. Social distancing measures, unprecedented in scope, have helped mitigate 
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the first wave of the epidemic, though at high costs. Among these high costs were school 

closures, which resulted both in missed learning opportunities for children and in considerable 

strain on their families. School closures therefore are now seen as a last resort when other 

measures have failed or were insufficient to prevent the spread of SARS-Cov-2. With 

increasing incidence of SARS-CoV-2, however, infections in schools become more likely, 

requiring effective social distancing strategies to avoid transmission and larger outbreaks in 

schools.  

 

One such measure that—though intrusive—allows schools to remain open is the 

decomposition of larger clusters of students into smaller isolated units. In the European 

context, where classroom size is between 20 and 40 students, such cohorting strategies are 

best applicable to splitting classrooms in half. Simulating the transmission of SARS-CoV-2 in 

classrooms in England, Germany, the Netherlands, and Sweden, we show that splitting 

classrooms in half helps contain school outbreaks, substantially reducing the number of 

infected students. Cohorting proves particularly effective when conducted in a rota-system, 

with each cohort receiving in-person instruction in alternating weeks and remote instruction 

in the weeks they are not in the school building. The mechanism that produces this finding is 

straightforward: Cohorting facilitates social distancing and helps contain initial outbreaks in a 

single cluster. Combining cohorting with a rota-system is even more effective because 

infectious students cannot transmit the disease in the classroom in the remote learning 

weeks, halting outbreaks or preventing them in the first place. 

 

Though effective in terms of containing outbreaks, classroom cohorting is disruptive to school 

routines. It requires either the introduction of hybrid learning modes (thus reducing in-person 

instruction) or further resources for same-day instruction (such as additional space or teacher 

capacities. Therefore, when cohorting is introduced, it should be designed to prevent SARS-

CoV-2 outbreaks as effectively as possible. By design, cohorting prevents interaction between 

members of different cohorts within school. Whether this is sufficient to completely separate 

cohorts, however, also depends on whether there are cross-cohort out-of-school contacts. 

Because these out-of-school contacts with classmates can transmit SARS-CoV-2 as well, 
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cohorting strategies should also factor in students’ out-of-school interactions in order to be 

effective.  

 

Social network-based cohorting limits the spread of SARS-CoV-2 in school classes 

In our simulations, we considered three cohorting strategies that account for students’ out-

of-school contact with classmates in allocating them to cohorts. Our results show that all of 

these strategies outperform random cohorting by more frequently containing outbreaks to a 

single cohort. They also reduce the frequency of quarantines and the number of students 

infected, though the latter effects are weaker when transmission dynamics are limited—i.e., 

when instruction is organized in a rota-system, the risk of infection is low, the share of clinical 

cases is high (inducing early quarantine), and/or out-of-school contact is rare. Splitting cohorts 

by gender reduces transmission dynamics, reflecting the fact that adolescents’ out-of-school 

contacts are mostly among students of the same gender. A cohorting strategy that explicitly 

minimizes the number of cross-cohort out-of-school contacts proves even more effective. 

However, since this optimization strategy requires full knowledge of students’ out-of-school 

contact with classmates, it might be difficult to implement in practice. Fortunately, a simple 

approximation based on the chained nomination of out-of-school contacts among students 

themselves also performs substantially better than random allocation and gender-split 

cohorting. In this strategy, an initial student names all classmates she meets outside of school. 

The nominated students in turn indicate their within-class out-of-school contacts until the 

resulting nominations comprise half of the class. The resulting set of students then constitutes 

one cohort, the remainder of students the other. While somewhat less effective than explicit 

optimization, this strategy has the benefit of being much easier to implement in practice, as 

teachers do not need full information on contact networks but can allocate students through 

a simple method. 

 

Once the decision to cohort classes has been made, choosing one of these non-random 

allocation strategies seems beneficial. When transmission dynamics are strong, these 

strategies help to reduce both the frequency of quarantines and the total proportion of 

infections. When transmission dynamics are less pronounced, their benefits are lower and 

largely concentrated on producing fewer quarantines. However, given uncertainty about 
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transmission dynamics, a strategy that prevents cross-cohort interaction more effectively may 

still be preferable. 

 

Some of our cohorting strategies may have drawbacks that are not modelled explicitly in our 

study. Separating cohorts by gender may be undesirable from a pedagogical perspective. 

Furthermore, heterosexual romantic relationships among classmates may carry an elevated 

transmission risk and thus may serve as infection channels between gender-specific cohorts. 

Finally, the extent of gender segregation varies across classrooms, such that splitting by 

gender may be less effective in some classrooms. Optimizing cohorts by minimizing out-of-

school contact across cohorts is not affected by such problems. However, this strategy is 

harder to implement in practice because schools need to know students’ out-of-school 

contacts and be able to optimize cohorts based on this information. Our approximation to this 

optimization strategy, which builds on network chains created by subsequent nominations of 

out-of-school contacts among students themselves, does not face such limitations. However, 

this strategy may cause socially awkward situations because only some students are asked to 

name their out-of-school contacts, because some students may be disappointed when not 

nominated, or because students may not be cooperative. Still, unlike the optimization 

strategy, it requires less information on students’ out-of-school contacts and no optimization 

techniques, thus offering a good compromise between effectiveness and practicability. 

 

Limitations 

Our modelling approach has a number of limitations. The model assumes that there is some 

degree of out-of-school contact among classmates. If there is no interaction among students 

outside of the classroom—for example, in a very strict lockdown scenario—allocation to 

cohorts according to out-of-school contacts becomes irrelevant, or could, under certain 

conditions, even be harmful. If there is no transmission between cohorts because students 

cease to meet after school, the focus will shift to infection probabilities within classrooms. If 

the risk of infection in the classroom is elevated between students who meet after school, it 

may be beneficial to allocate close contacts to different rather than identical cohorts. Such 

potential correlated infection risks among out-of-school contacts within the classroom are not 

modelled in our simulations. We also do not consider teachers, who may connect cohorts, 
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have different risks for infection, and may be both more infectious and more frequently 

symptomatic. However, because these teacher characteristics are constant across cohorting 

strategies, they are unlikely to affect the relative evaluation of the different strategies. 

Similarly, the out-of-school contacts we consider are limited to classmates and do not extend 

to parents, siblings, or other interaction partners. In reality, if an infected student induces a 

symptomatic infection in such an interaction partner, this may trigger a (delayed) quarantine 

in the classroom when the student is tested belatedly. However, this is also unlikely to change 

conclusions about the relative effectiveness of the different cohorting strategies. 

 

Our data also comes with a number of limitations. The data is from 2010-2011, and interaction 

patterns among students may have changed since then. Interaction patterns are particularly 

uncertain during a pandemic, in which students are likely to rapidly adapt their behavior to 

prevailing conditions. We have tried to capture such uncertainty by modelling a wide range of 

probabilities for interaction, but we have no recent empirical data on actual interaction 

patterns that could be used to calibrate our models. Finally, our network data is incomplete, 

and like other survey data, is likely to contain errors.  

 

However, there is no immediate reason to expect these limitations affect our qualitative 

conclusions. In sum, our study shows that cohorting can decrease the transmission of SARS-

CoV-2 in the classroom, thus lowering the number of quarantines and infections. We have 

demonstrated that simple and easily implementable strategies can further improve the 

effectiveness of cohorting by reducing cross-cohort out-of-school interaction with classmates. 

The ensuing separation between cohorts limits the spread of SARS-CoV-2 across cohorts and 

can further reduce quarantines and infections, especially in situations with strong 

transmission dynamics. Therefore, we hope that this study demonstrates how real-world data 

on social networks can help to evaluate and improve social distancing strategies.  
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