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Abstract
Stress management is a pervasive issue in the modern high schooler’s life. Despite many
efforts to support adolescents’ mental well-being, teenagers often fail to recognize signs of
high stress and anxiety until their emotions have escalated. Being able to identify early signs
of these intense emotional states and predict their onset using physiological signals collected
passively in real-time could help teenagers improve their awareness of their emotional well-
being and take a more proactive approach to managing their emotions. To evaluate the
potential of this approach, we collected data from high schoolers with Empatica E4 wearable
health monitors (wristband) while they were living their daily lives. The data consisted of
stressful event reports and physiological markers over the course of 4 weeks. We developed a
random forest model and a support vector machine model and systematically assessed their
performance in terms of predicting the onset of stress events and identifying physiological
signals of stress. The models showed strong performance in terms of these measures and
provided insights on physiological indicators of adolescent stress.

Key Words: Machine learning, wearable health monitors, individual-specific modeling,
adolescent stress, stress prediction, teen mental health

1. Introduction

In recent years, it has become increasingly clear that mental health is a serious con-
cern for modern teenagers. Stress from school, extracurriculars, college, and their
social lives have major negative repercussions for adolescents’ physical and mental
well being. A 2017 survey [2] conducted in the State College Area School District by
the Pennsylvania Department of Education showed that a high number of teenage
students in the district reported being at elevated risk for anxiety, depression, low
self-efficacy, and suicidal ideation. This problem is not unique to teens in that area,
but an epidemic [3] in today’s world. Despite many efforts to support teenagers’
mental well-being, teens often fail to recognize or pay attention to signs of stress
until their emotions have escalated, or are unwilling to discuss their feelings with
or seek support from others. Being able to identify early signs of high stress, anxi-
ety, and “low” feelings and predict their onset using physiological signals collected
passively in real-time could help teens improve their awareness of their emotional
well-being and take a more proactive approach to managing their emotions.

As technology has improved rapidly and become increasingly mobile and person-
alized, access to wearable health monitors, such as FitBits, has greatly improved.
Wearable health monitors are relatively unobtrusive tools for collecting physiologi-
cal data.When combined with predictive models, they can help people proactively
handle serious health issues, both physical and mental. Devices such as Empatica
E4, sociometric badges, and EEG bands provide high-quality, real-time, ecologically
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valid physiological and social data streams in real-life contexts, often with minimal
burden to participants. Data from wearables have shown promise to help identify
psychological states such as stress [9, 10] and emotional arousal [12, 14]. Getting re-
liable predictions of psychological states from wearable device data would allow for
contributing to the design of cost-effective prevention and intervention programs;
for example, helping prevent costly negative health outcomes and support the adop-
tion or maintenance of positive health behaviors. Before wearable data can be used
to inform intervention, however, well-designed analytical approaches are needed
to distill it into actionable decision rules. This study provides new insights into
optimally selecting such approaches.

2. Data Collection and Preparation

2.1 Study Setting

The data in our study was collected from eight participants, all female highschoolers
attending a public high school in Pennsylvania. For one participant, data was
collected from the beginning of October 2019 to the end of January 2020. For the
other seven, data was collected from the beginning of March 2020 to mid April 2020.
The participants wore the Empatica E4 wristband [13] on their non-dominant wrist
during the study period to collect physiological data and performed their regular life
activities. The participants were instructed to press a specific button on the device
whenever they felt stressed at the onset of their physical symptoms (e.g. feeling
hot, sweating, sound of blood rushing past ears, belly pain, etc.).

Each participant received one device and a charging dock, along with instruc-
tions on how to care for the device and upload data. The data was uploaded
through the locally downloaded data management portal, E4 Manager application.
After logging in with the assigned account, the device was to be connected to the
charging piece, which needed to be connected to the computer using a microUSB
before data could be uploaded and new firmware for the device could be down-
loaded using the E4 Manager interface. This data was then visible on the Empatica
cloud, E4 Connect, that is accessible through logging in on a website using the same
credentials as the account used to upload data through E4 Manager.

Due to its limited battery and storage capacity, the participants were instructed
to wear the device continuously for two days, removing the device to recharge and
upload data every other night as they sleep. The participants were also instructed
to avoid turning the device off during a session if they needed to remove it. Instead,
they were to take it off and leave it somewhere safe and dry until they could put it
on again.

At the end of the study period, we examined the number of stress events from
each individual and dropped two participants with a very low number of stress
events (3 and 5), yielding a final sample size of N = 6. The number of stress events
ranged from 10 to 33 in the remaining participants.

2.2 Passively Collected Physiological Data

Empatica’s E4 contains four primary sensors and an event mark button. A photo-
plethysmographic (PPG) sensor measures blood volume pulse (BVP) at a rate of
64 Hz (measurements per second), from which cardiovascular information such as
heart rate, heart rate variability, and others may be derived. Tonic electrodermal
activity (EDA) [15], also called Skin Conductance Response (SCR), is recorded at 4
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Hz using a pair of stainless steel electrodes mounted on the underside of the band,
which reports electrical properties of the skin that have been shown to be impacted
by stress. A 3-axis accelerometer captures motion of the wrist at a sampling rate
of 32 Hz. We derive an ACC “data stream” (time series sequence from one sen-
sor) using root mean square acceleration over the x, y and z coordinates in the
accelerometer data stream. The E4 is also equipped with infrared thermopile read-
ing peripheral skin temperature at 4 Hz. Finally, it has an event mark button for
the participant to press that marks the data at that time with an “event.” In this
study, such an event indicated the onset of noticeable physical stress symptoms.
The unique combination of available information from these sensors and the event
mark button allow us to leverage the information of multiple data streams: several
different physical properties, other properties that can be derived from them, and
input from the wearer. Figure 1 below shows how the raw data from the sensors is
displayed in the E4 Connect Portal.

Figure 1: Time series of raw BVP, EDA, accelerometer, temperature, and HR data
for a day with stress events (left) and a day without stress events (right). The red
vertical lines in the left figure mark button presses.

2.3 Data Preprocessing with R and python

Before the data from the sensors could be used in a classifier, it needed to be
preprocessed. The main part of this process was downsampling. The sensors on the
E4 wristband report measurements at different speeds. The PPG sensor reports
BVP at 64 Hz, the accelerometer reports at 32 Hz, while EDA and temperature are
measured at 4 Hz. We downsampled the raw data streams to 1 Hz (one measurement
every second) by computing the mean of the raw data in that interval. This was done
to both reduce computing time, as we aim at developing models that can do timely
computations for near real-time inference, and homogenize the frequency of the data
for each metric. Although there is no clear theoretical reasoning for the specific
choice of 1 second windows, we found that more frequent sampling greatly increases
memory requirements and computational time without much corresponding increase
in accuracy. Pilot testing showed the sampling frequency of 1 Hz has minimal impact
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on the accuracy of prediction of a reported stress event.
The measurements for each metric used in our model (BVP, EDA, Temp, ACC,

and HR) from the 15 minutes prior to each button press were then extracted to
form an n by 900 matrix, where n is the total number of events during the col-
lection period and 900 is the number of measurement collected in 15 minutes (1
measurement per second, 15 × 60 = 900) for each metric. Then the same n number
of non-events were chosen randomly and were processed in the same way. In doing
so, each individual has balanced data and we maximize the number of events used
for training the models. The event matrix and non-event matrix for each metric
were then combined to form a 2n × 900 data matrix.

To ensure that the non-events are not correlated with the events, the non-events
were randomly chosen from times far away from the events using the locator()
function in R. Several different sets of randomly chosen non-events were used to fit
the classifier for the participant who collected data from October through January
to test its flexibility, as shown in the results section (Table 1).

3. Machine Learning Approach to Predicting Stress Events

Figure 2: Our data analysis workflow

3.1 Feature-based Binary Classification

3.1.1 Feature extraction

In order to study which characteristics of a time series are important for stress
classification, we first extracted features of the time-series. These features may
represent either global (e.g. grand mean, the maximum/minimum of the time series)
or local characteristics of the time series structured around a specific time point
(e.g. a wavelet transform coefficient). We used the python package tsfresh to
extract features for each metric. These features range from simple measures such as
minimum, maximum, variance, and autocorrelation to count-based measures such
as the number of measurements above or below the mean to more intricate features
such as approximate entropy, frequency domain measures such as power spectrum
density, and time-frequency measures such as wavelet transform coefficients. See
the tsfresh documentation for details [1].

As explained, for each dataset, a 2n×900 matrix was generated for each metric.
These matrices were then fed into tsfresh separately to return the values of 756
metric-associated features [7] for the 15 minute interval before each selected time
point (event or non-event), resulting in a matrix of n by 756 features as columns.
The matrices associated with each set of non-events were then combined, resulting
in 756 × 6 = 4536 total features for each data set fed into tsfresh since 6 metrics
(BVP, EDA, Temp, ACC - root mean squared and root mean squared velocity, and
HR) were considered in our model. The extracted features were used as the input
for the classifier.
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3.1.2 Classification models

We used random forest (RF) to classify the features extracted from the physiological
signals [5]. Random forest is an ensemble classifier, consisting of a large number of
decision trees. Each decision tree is a simplistic classifier which attempts to find
a series of simple binary conditions that are most predictive of a given outcome.
The predictions of the many decision trees in the random forest are combined using
majority vote. By combining a series of these conditions into a tree, it is possible to
capture arbitrarily complex interactions among the predictors. However, because
the selection of decision criteria is performed by searching a large number of features
and potential split points, it has a tendency to overfit data sets. To reduce the
tendency of decision trees to overfit, randomness is introduced into both the data
selection and feature selection. As a result, random forests do not require much fine-
tuning of parameters and are also robust to the presence of noise in the predictors.

Random forests also provide an inherent measure of feature importance, allowing
us to quantify the contribution of a given feature in the predictive model. For
each tree the algorithm excludes some observations, called “out-of-bag” (OOB)
observations, from the original dataset. After fitting, the algorithm ranks a feature
by comparing accuracy in the OOB data before and after randomizing the values
of the feature in it. A larger drop in accuracy results in a higher importance score.
This measure allows us to rank the features by how helpful they are in predicting a
stress event for a specific individual.

We also used radial support vector machines (SVM) to classify the features
from physiological signals [4, 8]. A support vector machine looks for the optimal
separating hyperplane between the two classes by maximizing the margin between
the classes’ closest points. The points lying on the boundaries are called support
vectors with the hyperplane in the middle of the margin. When a linear separator
cannot be found, which is the case for most real datasets, kernel techniques are used
to project the points into a higher-dimensional space where they become linearly
separable. A variety of kernels can be used including polynomial, radial basis func-
tion (RBF), and sigmoid. SVM models can also have a “hard” or “soft” margin
depending on if they allow for misclassified points (soft) or not (hard). With a soft
margin, which is more commonly used for real datasets since they have noise, data
points on the “wrong” side of the discriminant margin are weighted down to reduce
their influence. We used a soft margin due to the noisy nature of our data.

We used a radial SVM because of its good general performance in classification
tasks and few number of parameters (two). The two parameters in radial SVM are
cost and sigma (sometimes called gamma). Cost or cost of misclassification trades
off correct classification of training examples against maximization of the decision
function’s margin. The gamma or sigma parameter defines how far the influence of a
single training example reaches. Because SVMs can be quite sensitive to the proper
choice of parameters, the best results are obtained by checking every combination
of parameters through a grid search [6]. While radial SVM does not have built-in
feature importance scores, a quantitative comparison of feature importance can still
be obtained using the varImp() function in caret [11], which computes and compares
the AUC for each predictor.

3.2 Models Developed

For our models, we used the R caret package (version 6.0-85) [11], which calls the
randomForest package (version 4.6-14) and the kernlab package (version 0.9-29)
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support vector machine. We developed a set of models for each individual. For
each data set, we developed 5 random forest models based on the features of a
single metric, one overall random forest model that used all 4536 features from all
the metrics, 5 radial SVM models based on the features of a single metric, and
one overall radial SVM model that used all 4536 features. We used the features
extracted by tsfresh as the predictor and whether the participant was stressed or
not as the binary response.

The tuning parameters were determined using cross-validated grid search, the
default search process in R’s caret package. We set the number of trees at 500 with
10-fold cross validation repeated 3 times. For the SVM, we also used 10-fold cross
validation repeated 3 times with the 90% non-validation dataset to pick the cost
and sigma parameters before testing the model on the 10% validation set.

4. Results

When a binary classifier is applied to a new time series, it reports a probability
that the time series sequence represents a high-stress state for a certain individual.
A threshold can then be used to determine whether to deliver an intervention in
response to this time series. At each threshold, false negatives or false positives
may be generated. The trade-off between false positives and false negatives at
different levels of threshold can be captured in the Receiver Operating Characteristic
(ROC) plot. The area under the ROC curve (AUC) provides a measure of accuracy
across all possible thresholds. The larger the AUC, the better the discrimination
between the two classes. Because AUC gives a concise summary of the classifier’s
performance over a range of thresholds, we used it to compare different models.

(a) (b)

Figure 3: Performance comparisons (AUC) of overall and single-metric classifiers.
(a) RF and (b) SVM. Each black dot is a participant.

As shown in Fig. 3a, movement (ACC) is the best single-metric classifier (Avg
AUC = 0.874), showing a substantially higher classification accuracy than the other
single-metric classifiers (Avg AUC in the range of 0.710 − 0.796). The overall clas-
sifier (Avg AUC = 0.864, SD = 0.067) performs similarly to the ACC classifier.
These two classifiers (SD of AUC: 0.070, 0.067) are also substantially more con-
sistent across individuals than the other single-metric classifiers (SD of AUC in
range 0.125-0.146). This demonstrates that these two models can predict the on-
set of stress 15 minutes prior accurately for various individuals, despite individual
differences.

For the SVM models, we split our data into test/train and validation sets in
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order to tune for the parameter C. We report AUCs from the cross validation to
pick C and accuracies from the validation set. The overall SVM models had an
average AUC of 0.803, which is lower than the average for the overall RF models
(0.864). The SVM models also varied much more across individuals in AUC (SD of
AUC = 0.160) than the RF models (SD of AUC = 0.067). As shown in Fig. 3b,
the highest AUC was over 0.950 and the lowest was 0.600. We then ran the model
on the validation datasets. These validation datasets had very few points (2 − 6),
so we consider the accuracies we observed ranging from 0.5 to 1 to satisfactorily
demonstrate that our model works on novel data. The two of the participants
whose overall models had AUC ≥ 0.9 had validation accuracies of 1. The third
participant’s had accuracy 0.67. The models with AUC < 0.7 had accuracies of 0.5
and the model with AUC between 0.7 and 0.9 had accuracy 0.75.

As with the RF single-metric classifiers, the ACC classifier (Avg AUC = 0.821,
SD of AUC = 0.143) is significantly more accurate than the rest of the single-metric
classifiers and similar to, but slightly better than, the overall model. However, as
observed in the RF models, each single-metric classifier performed well on some
participants and very poorly on other participants, with the rest falling somewhere
in between.
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Figure 4: Comparison of the ROC curves of the overall RF and SVM models for
each individual.

In Fig. 4, we compared the two overall models for each individual using ROC
curves. The overall SVM model performed well for four participants but very poorly
on the other two (Individuals 1 and 6), whereas the overall RF model performed
relatively well on all six participants. For Individual 2, the two models performed
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similarly. For Individuals 3, 4, and 5, the RF model either trailed the SVM or
traced a similar curve before picking up in the right section of the curve at lower
thresholds. In summary, RF has a more consistent performance than SVM across
individuals and performs better than or similar to SVM in most cases.

(a) (b)

Figure 5: Feature importance for the most important feature of each metric type in
the overall classifier. (a) RF and (b) SVM. Each black dot represents an individual.

To identify predictive features, we obtained the feature importance for each fea-
ture in the overall classifier for each individual from random forest. To visualize the
importance of each metric, we extracted the feature with the highest feature impor-
tance in each metric, and used it to represent the importance of the corresponding
metric. Fig. 5a plots the feature importance of these representing features across
individuals. We find that the representing features for HR and ACC have a much
higher median feature importance than those for the other metrics. This is consis-
tent with the observation in Fig. 3a, i.e. the ACC and HR classifiers having the
highest AUC medians among all single-metric classifiers. Interestingly, we also ob-
serve a huge variation in feature importance across individuals for the same metric.
A metric that is highly predictive for stress in one individual may be unimportant
for the prediction in another individual.

Fig. 5b shows the feature importance of the most important feature of each
metric in each overall SVM model. Similar to RF, the importance scores of the
representative features for HR, Temp, BVP, and EDA in both models vary greatly
across participants. However, for the SVM, ACC has a much smaller range than the
other metrics, while in the RF models, ACC has a similar range to the other metrics.
Based on this result, SVM appears to be more sensitive to movement-related signals
of stress than RF.

We further explored the individual difference for the metrics. Fig. 6a plots
the metrics that are represented in the top 10 most important features for each
individual’s overall RF model. Some individuals show very strong signs in a specific
metric but little in other metrics, such as heart rate (Individual 5, Fig. 6a) or ACC
(Individual 1 and 5, Fig. 6a). For Individual 5, whose top 10 features consisted of
nine HR features and one ACC feature, we observed that features of other metrics
had either 45% importance or lower. This is consistent with the participant reports
from this individual that she generally feels her heart pound rapidly when stressed
and has a hard time sitting still when extremely stressed. Individual 1’s top 10
features consisted of only ACC features, indicating that she may move around a
lot or fidget when nervous. ACC appears in the top 10 most important features
for all the participants, further indicating that it is generally important for stress
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Figure 6: Metrics that are in the top 10 features for each individual’s overall model.
(a) RF and (b) SVM. Dark points indicate a feature associated with the metric can
be found in the individual’s top 10 most important features.

prediction. However, each individual has very different physiological signals for the
onset of stress. Thus, individualized models are required for accurate prediction of
stress; there is no one-size-fits-all model.

Next, we compared the metrics that appeared in the top 10 most important
features in the two overall models. For three of the participants (Individuals 1,
3, and 6), the SVM and RF models agree with each other. Additionally, ACC
appeared in the top 10 for all the participants in both models. Some changes are
observed in the top 10 for Individuals 2, 4, and 5. Individual 2 went from having
three metrics (ACC, HR, BVP) in the overall RF model to just one (ACC) in the
overall SVM model. Individual 4 went from four (ACC, HR, BVP, EDA) to three
(ACC, BVP, Temp). Individual 5 went from two (ACC, HR) to four (ACC, HR,
BVP, EDA). However, changes in the metrics in the top 10 do not appear to be
associated with model performance. These results indicate that the SVM and RF
models pick up better on different features and that ACC is a consistently good
stress predictor.

Table 1: The AUCs for the overall classifier and the single-metric classifiers for four
different data sets from a single person (non-events chosen were varied) is shown
here along with the average AUC and standard deviation for each type of classifier.

Classifier AUC
Different sets
of non-events Overall BVP only EDA only Temp only HR only

a 0.894 0.842 0.686 0.697 0.875
b 0.892 0.747 0.797 0.839 0.666
c 0.827 0.774 0.677 0.571 0.780
d 0.833 0.874 0.747 0.793 0.786
Average 0.862 0.809 0.727 0.725 0.777
Standard deviation 0.036 0.059 0.056 0.118 0.086

To assess the sensitivity of our RF model to the choice of non-events, we chose
four different sets of non-events for Individual 5, who collected data from October
through January, creating 4 different datasets. For each dataset, we trained an
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overall RF and four single-metric (EDA, BVP, Temp, HR) RF models. As shown
in Table 1, the overall RF model performs consistently across different datasets,
maintaining a high AUC in all datasets (Range: 0.827 − 0.894). In contrast, the
performance of the single-metric classifiers are much more variable across datasets,
depending on the choice of non-events This result demonstrates the robustness of the
overall RF model, suggesting that it could be used in an application that periodically
retrains with a new dataset from the user.

5. Conclusion and Future Considerations

We developed a predictive model for stress based on blood volume pulse, electroder-
mal activity, heart rate, movement, and peripheral skin temperature collected from
wearable wristbands using the random forest classifier and a radial support vector
machine. The random forest model has a high predictive power across individuals
for predicting stress 15 minutes prior to the onset of noticeable physical symptoms.
The radial support vector machine model performed better than the random for-
est model for two participants and had an AUC > 0.9 for three participants, but
was outperformed by the random forest model in both average AUC and standard
deviation. We found that movement (ACC) was the individual metric with the
highest predictive power (Avg AUC = 0.874) but each person’s specific best predic-
tors are very individualized. Despite the small sample size, the individual variability
shown in our study can be extended to the general population. Therefore, every
person needs a model trained specifically to their data for accurate stress predic-
tion. Additionally, knowledge of the most important features for stress prediction
in an individual could also improve their conscious understanding of their body’s
signals. Because the features describe properties of the data, behaviors even more
specific than simply movement or heart rate, such as finger tapping versus folding
and unfolding the arms, can be pinpointed as stress indicators. Not only can this
knowledge help them better notice stress on their own, but also help them develop
more personalized and effective stress management practices. Additionally, paying
more attention to their body’s stress signals could make teens have better mental
health awareness in general. Thus, our findings could have a positive impact on
teen mental health protection.

Due to the small sample size, we cannot generalize the finding that movement
is particularly predictive of stress. We would also like to note that though the
number of data points per person varied (20 to 66) depending on how many stress
events they had (10 to 33), there was no obvious correlation between the number of
data points and the model performance. It is possible that with a longer study the
machine learning model performance would improve for each person, as each person
has more of their own stress events for the model to learn from, resulting in less
variation in the random forest and overall SVM models’ performances. However,
ecological momentary assessment studies with self-reports each day generally do
not run longer than 4 weeks because the participant compliance rate drops after
that point. Thus, some significant changes to the data collection process will be
needed in order to collect more classified target states per individual. Nevertheless,
these data provide evidence that the random forests algorithm is particularly useful
for training individual-specific classifiers on physiology data collected in real-life
studies.

Possible future directions include a study on adolescent males or a study with
a larger sample size so we can better understand general trends in teen stress in-
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dicators. We plan to improve our random forest model by developing a systematic
or automated way to pick non-events on different days from the events. We also
plan to try our model on time intervals farther prior to the onset of physical stress
symptoms, such as an hour or half an hour. This will allow our model to pick up
early indicators of stress, notify the wearer, and provide timely intervention through
an app.
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