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Abstract 
 
There is increasing evidence that the 2020 COVID-19 pandemic has been influenced 
by variations in air temperature and humidity. However, the impact that these 
environmental parameters have on survival of the SARS-CoV-2 virus has not been 
fully characterised. Therefore an analytical study was undertaken using published 
data to develop a psychrometric model to predict the biological decay rate of the 
virus in aerosols. This revealed that it is possible to predict with a high degree of 
accuracy (R2 = 0.718, p<0.001) the biological decay constant for SARS-CoV-2 using 
a regression model with enthalpy, vapour pressure and specific volume as predictors. 
Applying this to historical meteorological data from London, Paris and Milan over the 
pandemic period, produced results which indicate that the average half-life of the 
virus in aerosols was in the region 13-21 times longer in March 2020, when the 
outbreak was accelerating, than it was in August 2020 when epidemic in Europe was 
at its nadir. As such, this suggests that changes in virus survivability due the 
variations in the psychrometric qualities of the air might influence the transmission of 
COVID-19. 
 
 
Introduction 
 
There is increasing evidence that the COVID-19 pandemic may have a seasonal 
component that is influenced by environmental factors [1-6], similar to that observed 
for the influenza A virus [7-10]. For example, in Hubei, China, it has been found that 
a 1°C increase in the air temperature was associated with a 36-57% decrease in the 
daily COVID-19 cases when the relative humidity (RH) was in the range 67.0-85.5%. 
Similarly, a 1% increase in RH led to a 11-22% decrease in the daily confirmed cases 
when the air temperature was in the range 5.0-8.2 °C [1]. In Bangladesh, higher air 
temperatures and higher RH levels have also been significantly associated with a 
reduction in the transmission of COVID-19 [11]. Indeed, it has found worldwide that 
the virus tends to spread more in regions that are cooler, with an average 
temperature of 5-11°C, and drier, with an absolute humidity (AH) of 4-7 g/m3, 
suggesting that the SARS-CoV-2 virus might exhibit seasonal behaviour [12]. 
Collectively, these findings suggest that COVID-19 might behave similarly to 
influenza A, also an enveloped RNA virus, which is known to survive in aerosols for 
much longer when AH and vapour pressure (VP) levels are low [10] - something that 
is possibly due to the ordering of the phospholipid envelope contributing to viral 
stability, leading to increased transmissibility at lower air temperatures [13]. 
 
The reasons for the seasonal variations in the behaviour of COVID-19 are unclear, 
but may be related to variations in air temperature [1, 4, 14-16], humidity [1, 4, 16] 
and ultraviolet (UV) radiation from sunlight [2, 17-19], as well as immunological [5, 
17] and behavioural [20] changes. However, because of the many confounding 
factors that can affect COVID-19 transmission, it is difficult to identify the extent to 
which each of these environmental factors has influenced the course of the epidemic. 
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For example, while it is known that both higher air temperatures [1, 16] and increased 
UV-B radiation in sunlight [17-19] are associated with reduced COVID-19 
transmission, because in many parts of the world higher air temperatures are closely 
associated with increased UV-B radiation it becomes difficult to distinguish between 
the two. The situation is further complicated by the fact that many researchers 
misunderstand the concept of RH, which is a ratio of vapour pressures rather than an 
absolute value. RH is actually the ratio of the observed VP to saturated vapour 
pressure (SP) expressed as a percentage and as such is strongly affected by 
temperature because air can hold much more moisture at higher temperatures 
compared with low temperatures. Unfortunately, researchers do not always 
appreciate this fact, with the result that it is sometimes reported that during the winter 
months the air is more humid than in the summer because the RH values are higher, 
when in fact the air is actually much drier in winter due to SP being considerably 
lower. Furthermore, many researchers have performed statistical analysis on the RH, 
failing to appreciate that because it is a ratio involving SP, it is actually a function of 
air temperature (see equation 1 in the methods section below) and therefore not an 
independent variable. As such, there is a risk that questionable conclusions may 
have been reached. Consequently, although a clear association exists between 
COVID-19 prevalence and air temperature and humidity, the precise nature of that 
association and the reasons for it are much less clear.   
 
Given this confusion, we designed the study presented here using published 
experimental and meteorological data (both in the public domain) with the aim of 
quantifying the extent to which changes in the psychrometric quality of the air (i.e. 
changes associated with temperature and humidity) influence the biological survival 
of the SARS-CoV-2 virus in aerosols. We did this because it is now recognised that 
‘far-field’ transmission of COVID-19 can occur due the inhalation of small aerosolised 
respiratory droplets that can remain suspended in the air for considerable periods of 
time [21, 22], especially in poorly ventilated room spaces [23]. Therefore, there is a 
need to better understand how long the SARS-CoV-2 virus can remain viable in 
aerosols and the extent to which variations in air temperature and humidity influence 
biological longevity.   
 
 
Methods 
 
A search of the relevant scientific literature (i.e. published literature, pre-prints and 
relevant websites) was undertaken to identify published data relating to the survival 
of the SARS-CoV-2 virus in aerosols under various environmental conditions. Only 
experiments conducted in the dark were included in the study, with those conducted 
in the presence of UV light excluded. From each study, the reported biological decay 
constant, k, together with the mean air temperature and RH used during 
experimentation were extracted and compiled into a dataset. With regard to this, the 
survival of the virus can be computed using the following first order decay equation. 
 

     ).(

0

tk

t eNN −×=     (1) 
 
Where:  N0 and Nt are the number of viable viral particles (virions) at time zero and t 
seconds respectively; and t is time in seconds. 
 
From the reported mean air temperature and RH values, the psychrometric 
parameters saturated vapour pressure (SP), vapour pressure (VP), absolute humidity 
(AH), specific volume (SV), and specific enthalpy, h, were computed using the 
following empirical equations: 
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Where; ps is saturated vapour pressure (kPa) and T is air temperature (oC). 
 

Vapour pressure:   
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Where; pv is saturated pressure (kPa) and φr is relative humidity (%). 
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Where; φa is absolute humidity (kg of moisture per m3 of dry air). 
 
 

Moisture content:   
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Where; g is moisture content (kg of moisture per kg of dry air) and pb is barometric 
pressure (i.e. 101.325 kPa). 
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Where; s is the specific volume per kilogram of dry air (m3/kg) 
 
 
Specific enthalpy [26]: ( )( ) ( )( )T(+g+T=h ××−× 1.8425010.0261.007  (7) 
 
Where; h is specific enthalpy (kJ/kg).  
 
Having computed the above psychrometric variables, partial correlation analysis was 
performed, controlling for whether or not the virus was aerosolised in artificial saliva. 
The impact of using artificial saliva on the k values was also assessed using a one-
way ANOVA. All the statistical analysis was performed using R (R: A language and 
environment for statistical computing. R Foundation for Statistical Computing, 
Vienna, Austria), with p<0.05 deemed as significant. 
  
Multiple linear regression analysis was then performed with the decay constant, k, as 
the response variable and SP, SV, enthalpy, and SV (or AH) as predictor variables. 
Because SV and AH are known to be highly correlated, it was necessary to build two 
competing models, one containing SV and the other, AH, in order to avoid 
multicollinearity issues. Similarly, RH was not included in the models because it is 
wholly described by VP and SP and therefore not independent. Refinement of the 
models was performed using backward exclusion, with only variables exhibiting 
p<0.1 retained. Heteroscedasticity was evaluated using the Breusch-Pagan test, and 
general applicability assessed using leave one out (LOO) cross-validation (CV). 
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In order to evaluate the impact of changes in psychrometric variables on the survival 
of the SARS-CoV-2 virus in aerosols the refined (minimum acceptable) regression 
model was used to predict weekly and monthly average k and biological half-life, l0.5, 
values from historical meteorological data [27] for London, Paris and Milan for the 
period 1st January to 25th October 2020. These were then compared with published 
COVID-19 case data acquired for the UK, France and Paris [28] for the period March 
to October, which approximates to the epidemic period in these countries. As it was 
only possible to acquire countrywide COVID-19 data, the aim here was simply to 
compare the relationship between the k values for the cities and the national case 
data, rather than to draw any firm inference. The half-life, l0.5, values used in this 
analysis were computed as follows. 
 

Biological half-life:   
k

=l
6931.0

5.0     (8) 

 
 
Results 
 
The results of the literature search are summarized in Table 1, which shows the 
biological decay constants, k, for the SARS-CoV-2 virus in aerosols, reported for 21 
experiments by five research teams [29-33].  Of these, 13 experiments were 
conducted with the virus aerosolised in artificial saliva, while the rest used a buffer 
solution. No statistical difference was found (p = 0.546) between the k values 
reported for experiments conducted using artificial saliva and those that did not. 
Table 1 also includes computed psychrometric values for AH, VP, SP, enthalpy, and 
SV based on the mean air conditions reported for the various experiments. 
 
The partial correlation results are presented in Table 2. These reveal that, after 
controlling for the use of artificial saliva, the k value was positively correlated with air 
temperature and RH, as well as with all the other psychrometric variables (all 
p<0.001). Notwithstanding this, the strongest correlations were with AH (r = 0.777), 
VP = 0.788; enthalpy (r = 0.794) and SV (r = 0.632). It can also be seen that the 
correlation between AH and VP was r = 0.999, implying that these two variables 
behave almost identically.  
 
The results of the linear regression analysis (utilising the predictor variables Temp, 
enthalpy, SP, SV, artificial saliva and VP or AH) are presented in Table 3, which 
shows two similar competing minimum adequate models, one containing VP and the 
other AH. These models produce almost identical results, although Model 1, utilizing 
VP, is the slightly superior model of the two, with: R2 = 0.718; mae =  0.007; and AIC 
= -129.9. The Breusch-Pagan test revealed no heteroscedasticity problems for either 
model. LOO CV analysis of Model 1 revealed the cross-validated R2 value to be 
0.479 (mae =  0.009), implying that this model is general applicable. Interestingly, 
when the variables, enthalpy, VP, AH and SV were individually regressed onto the k 
value, the models produced were weaker, exhibiting for: enthalpy (R2 = 0.609); VP 
(R2 = 0.583); AH (R2 = 0.563); and SV (R2 = 0.397).  
 
The results for Model 1 are graphically presented in Figure 1, which shows a 
regression plot for the various studies aggregated together. From this, it can be seen 
that the k values from the various experiments all lie close (R2 = 0.718) to a linear 
plot line produced by Model 1.  
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The computed mean monthly psychrometric data for the period 1st January to 25th 
October 2020 for London, Paris and Milan are summarised in Table 4, whereas 
Table 5 shows the predicted mean monthly k and half-life values produced by 
applying Model 1 to the data in Table 4. From this it can be seen that the predicted 
biological half-life of the SARS-CoV-2 virus in aerosols during the winter months and 
early spring is much longer than that for the summer months. For example, in Milan 
during March, when the epidemic first took hold in Italy, the mean biological half-life 
of the virus was 517.2 minutes, whereas in August it was only 25.8 minutes – an 
approximate 20-fold reduction. A similar pattern was also observed for London and 
Paris. 
 
When the mean weekly k values for London, Paris and Milan are compared with the 
COVID-19 case data for the UK, France and Italy (Figure 2), it can be seen that there 
is a broadly inverse relationship between the two plots (March to October, r = -0.258 
(London); -0.124 (Paris); -0.512 (Milan)), with infections lowest during the summer 
months when the biological decay constant, k, is at its greatest. However, this 
relationship only reached significance in the case of Milan and Italy (p = 0.002).      
 
 
Discussion 
 
The principal finding of our study is that the biological decay constant, k, for the SAR-
CoV-2 virus in aerosols can be predicted with reasonable accuracy using a linear 
regression model with the variables: enthalpy, SV and VP (or AH) as predictors. As 
such, this further supports the growing body of evidence that COVID-19 transmission 
is influenced by changes in temperature and humidity [1, 4, 14-16] and suggests that 
in this respect the SARS-CoV-2 virus behaves similarly to influenza A [10, 11], which 
is also an enveloped RNA virus. Indeed, Shaman and Kohn [10] and Marr et al [34] 
(re-analysing Harper’s [35] original data) both produced similar results to ours, 
demonstrating that the survival of the influenza virus in aerosols is inversely 
correlated with VP (or AH) and air temperature. This mirrors our finding that the k 
value is most strongly correlated (r = 0.794, P<0.001) with specific enthalpy, h, which 
is a composite measure representing total heat energy in the air and as such is a 
function of both VP and air temperature. In practical terms, this implies that survival 
of the SARS-CoV-2 virus in aerosols is strongly influenced by the total energy in the 
air (i.e. the sensible heat energy of the dry air and the latent heat energy in the 
evaporated moisture combined). Consequently, as air temperature, VP and enthalpy 
increase, so the value of k also increases, with the result that the biological half-life, 
l0.5, decreases and the virus survival time becomes shorter.     
 
The reasons why survival of the SARS-CoV-2 virus should reduce as the air 
temperature and VP increase are poorly understood. However, the fact that other 
enveloped viruses such as influenza, respiratory syncytial virus (RSV) and human 
coronavirus (HCoV), all exhibit seasonal cycles similar to COVID-19 [5], suggests 
that structural changes in the phospholipid envelope and surface proteins due to 
variations in temperature and humidity may be responsible [10, 34]. It may be that 
low-temperature conditions promote the ordering of lipids in the viral envelope and 
that this contributes to viral stability [13]. However, this does not explain how RH can 
affect viral stability in respiratory droplets when the actual virions are not exposed to 
the ambient air and therefore not directly interacting with the water vapour [34]. It 
therefore appears likely that evaporation from the droplet surface plays a key role in 
determining survivability. This is because evaporation affects the chemistry of 
droplets, which in turn might affect the stability of any viral particles contained within 
[34]. 
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The evaporation process is dominated by the difference between the SP at the 
droplet surface and the ambient air VP [36]. It also depends on the temperature 
difference between the droplet surface and the ambient air; with flow convective 
effects influenced by the Reynolds, Schmidt and Prandtl numbers playing an 
important role [37]. As such, the droplet evaporation process exhibits a complex 
dependency on both temperature and humidity, which is difficult to model. However, 
Shaman & Kohn [10] developed a simplistic evaporation model which related time 
and the rate of decrease in the droplet’s radius, dr/dt, with the ratio of the air vapour 
pressure deficit to the ambient air temperature, (PS - PV)/(273.15 + T), where T is in 
the range –20oC to 40oC. As such, they were able to show that the rate at which 
volumetric change occurs in aerosol droplets, and by inference changes in the solute 
(i.e. salts, proteins, etc.) concentration, are largely influenced by VP and air 
temperature. In particular, changes in pH within the aerosol droplet that are induced 
by evaporation may trigger conformational changes of the surface glycoproteins in 
enveloped viruses and subsequently compromise their infectivity [38]. 
 
As well as having a biological effect, evaporation profoundly influences droplet size 
and thus the aerodynamic behaviour of any respiratory droplets exhaled. With 
respect to this, respiratory droplets can be classified as being either large (>100-125 
μm in diameter) or small (<100-125 μm in diameter). With large droplets the 
sedimentation process dominates over the evaporation process, with the result that 
they tend to travel only short distances from the source due to their ballistic 
behaviour [36, 39]. By comparison, small droplets are dominated by evaporation in 
their initial stage, rapidly reducing in size to become semi-solid aerosol particles 
containing proteins and salts [34] or fully dry particles called droplet nuclei, both of 
which can be transported long distances on convection currents and widely 
distributed in room spaces [22]. While the former are largely unaffected by air 
humidity, the latter are profoundly affected by VP if the flow convective effects are 
small [39]. So as well as affecting virus survival in aerosol droplets, air temperature 
and humidity can also affect the aerodynamic behaviour of respiratory aerosols and 
thus the transmission of viral diseases [10]. Indeed, Shaman & Kohn [10] were able 
to show that increased evaporation produced smaller aerosol particles (i.e. the 
formation of greater numbers of droplet nuclei) that stay airborne for longer. 
However, no strong correlation was found between the ratio of vapour pressure 
deficit to temperature and the actual transmission of influenza, suggesting that 
increased production of airborne droplet nuclei in low-VP conditions was not the 
principle means by which AH modulates influenza transmission [10]. Rather, they 
found a much stronger statistically significant relationship between VP and virus 
survival, suggesting that the modulation of viral survivability in aerosols is the primary 
means through which VP affects airborne influenza transmission [10]. 
 
In order to evaluate how changes in weather during the 2020 COVID-19 pandemic 
might have affected the SARS-CoV-2 biological decay constant, k, and thus survival 
half-life we applied our regression model (Model 1) to historical meteorological data 
for London, Paris and Milan (Table 4). This revealed (Table 5) that for all three 
locations the virus survived in the air for much longer during the winter, autumn and 
spring compared with the summer. For example, in Milan during March 2020 (when 
the Italian COVID-19 epidemic started to accelerate) the predicted mean half-life of 
the virus was 517 minutes, whereas in July and August (when the Italian epidemic 
reached its low point) the mean half-life was just 26 minutes. Mirroring Shaman & 
Kohn’s findings for influenza [10], this suggests that changes in VP (and by inference 
AH) and air temperature may have contributed to the seasonal fluctuations observed 
in the COVID-19 epidemic, particularly in temperate regions. Indeed, when the 
predicted weekly mean k values for these cities are compared with the weekly 
number of COVID-19 cases for the UK, France and Italy respectively, it can be 
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observed that a broadly inverse relationship exists in all three countries, with COVID-
19 cases lowest when the k values are highest. While, comparisons between 
individual cities and whole countries can only ever be considered illustrative, it 
nonetheless may be indicative of a relationship between virus survival in aerosols 
and transmission of the disease. 
 
While in this study we have been able to characterise the strong relationship that 
exists between the psychrometric qualities of the air and survival of the SARS-CoV-2 
virus in aerosols, it is important to note that we cannot say to what extent this 
contributes to the overall transmission of COVID-19. This is because the seasonal 
variations that result in large changes in air temperature and VP also coincide with 
changes in: UV-B irradiation levels; population behaviour; building occupancy levels; 
and ventilation rates, as well as changes in the human immune system. For example, 
in temperate regions during the summer months, populations spend more time 
outdoors, as well as ventilating buildings to a greater extent [23], both factors that 
tend to inhibit spread of the COVID-19. Likewise, viral degradation due to UV-B 
radiation in sunlight is greatly increased during the summer months [19, 31, 40], as 
are vitamin D levels due to exposure to sunlight [17, 19]. Furthermore, the effect of 
low air temperatures and VP levels during winter on the respiratory tract should not 
be ignored. Dehydration due to inhaling dry cold air can cause the mucosal layer in 
the respiratory tract to become more viscous, immobilising the cilia, and reducing the 
body’s ability to clear pathogens from the airways during wintertime [5]. 
Notwithstanding this, our finding that the SARS-CoV-2 virus is likely to survive in 
aerosols for much longer during winter and early spring compared with summer 
supports the observations of many other researchers [14-16, 29, 31]. Importantly 
however, it should be noted that the half-life survival times of several hours predicted 
by our model for the winter, spring and autumn months in Table 5, are much longer 
than the period virions are likely to remain airborne in a typical room space. As such, 
this raises two intriguing questions:  
 

(i) Does the psychrometric quality of the air alter the viral load in aerosol 
droplets that are inhaled and does this influence the progression of the 
epidemic? And; 

(ii) Does the psychrometric quality of the air alter the survival time and viral 
load in respiratory droplets that impact on surfaces and hands, etc. and 
does this in any way influence the transmission of COVID-19? 

 
While it would appear reasonable to assume that increased viral load is associated 
with an increase in the biological half-life, the answers to both these question are at 
this stage unknown, and further investigation will be required in order to determine 
whether or not changes in air temperature and VP significantly affect the 
transmission of COVID-19 by either route. 
 
Although we have characterised a strong relationship between survival of the SARS-
CoV-2 virus in aerosols and air enthalpy, VP and SV, we are aware that our study 
has several noticeable limitations. Chief amongst these is our reliance on a limited 
dataset collected by disparate researchers, using a variety of experimental 
procedures. Furthermore, when calculating the psychrometric parameters we used 
the mean temperature and RH values reported in the respective publications, which 
meant that we could not compute any margins of error. Notwithstanding this, 
because of the ensemble approach taken and the strength of the linear relationship 
observed in Figure 1 and Table 3, which we cross-validated, it suggests that our 
findings and conclusions are valid. Having said this, we recommend that our results 
be treated, as being indicative only and that further experimental work should be 
undertaken to refine our findings.     
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Conclusions 
 
In conclusion, we have been able to demonstrate that survival of the SARS-CoV-2 
virus in aerosols is inversely related to both air temperature and VP, with survival 
greatly increasing during the winter months when the air is cooler and drier. More 
specifically, we have been able to show that it is possible to predict with a high 
degree of accuracy (R2 = 0.718) the biological decay constant, k, of SARS-CoV-2 
using a regression model with enthalpy, VP and SV as predictors. When applied to 
historical meteorological data for the 2020 COVID-19 pandemic for London, Paris 
and Milan, the results suggest that the average half-life of the virus in aerosols was in 
the region 13-21 times longer in March, when the outbreak was accelerating, than it 
was in August when it was at its nadir. As such, this suggest that changes in virus 
survivability due the variations in the psychrometric qualities of the air might play an 
important contributory role in influencing the transmission of COVID-19. 
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Tables 
 
 
Table 1. Reported biological decay constant, k, results for various air conditions, 
together with computed psychrometric values. 
 

Ref. 
No. 

Artificial 
Saliva 

Decay 
Constant, k. 

(min-1) 

Mean 
Temp. 

(oC) 

Mean 
Relative 
Humidity 

(%) 

Absolute 
Humidity 
(kg/m3) 

Vapour 
Pressure 

(kPa) 

Saturated 
Vapour 

Pressure 
(kPa) 

Specific 
Enthalpy 
(kJ/Kg) 

Specific 
Volume 
(m3/kg) 

Source 

           

1 No 0.01060 22.0 65.0 0.0126 1.7185 2.6439 49.402 0.8504 [29] 
2 No 0.00618 23.0 53.0 0.0109 1.4890 2.8094 46.728 0.8513 [30] 
3 Yes 0.01000* 20.0 20.0 0.0035 0.4676 2.3382 27.433 0.8342 [31] 
4 Yes -0.00250* 20.0 37.0 0.0064 0.8651 2.3382 33.708 0.8375 [31] 
5 Yes 0.00800* 20.0 53.0 0.0092 1.2393 2.3382 39.659 0.8406 [31] 
6 Yes 0.01750* 20.0 70.0 0.0121 1.6368 2.3382 46.031 0.8440 [31] 
7 No 0.01500* 20.0 20.0 0.0035 0.4676 2.3382 27.433 0.8342 [31] 
8 No 0.01300* 20.0 37.0 0.0064 0.8651 2.3382 33.708 0.8375 [31] 
9 No 0.00750* 20.0 53.0 0.0092 1.2393 2.3382 39.659 0.8406 [31] 

10 No 0.01500* 20.0 70.0 0.0121 1.6368 2.3382 46.031 0.8440 [31] 
11 Yes -0.01100 10.0 20.0 0.0019 0.2456 1.2279 13.851 0.8040 [32] 
12 Yes 0.01800 10.0 70.0 0.0066 0.8595 1.2279 23.451 0.8089 [32] 
13 Yes 0.00600 20.0 20.0 0.0035 0.4676 2.3382 27.433 0.8342 [32] 
14 Yes 0.01700 20.0 70.0 0.0121 1.6368 2.3382 46.031 0.8440 [32] 
15 Yes -0.00300 30.0 20.0 0.0061 0.8486 4.2429 43.612 0.8659 [32] 
16 Yes 0.06600 30.0 70.0 0.0212 2.9701 4.2429 78.197 0.8846 [32] 
17 Yes 0.04000 40.0 20.0 0.0102 1.4751 7.3754 63.911 0.9001 [32] 
18 No 0.00910 20.5 55.5 0.0099 1.3384 2.4116 41.755 0.8429 [33] 
19 Yes 0.01590 20.5 55.0 0.0098 1.3264 2.4116 41.562 0.8428 [33] 
20 No 0.02270 20.5 86.0 0.0153 2.0740 2.4116 53.614 0.8491 [33] 
21 Yes 0.04000 20.5 81.0 0.0144 1.9534 2.4116 51.658 0.8481 [33] 

* Values estimated from plots. 
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Table 2. Partial correlation r value results, controlling for artificial saliva. 
 

 k Temp RH AH 
Vap. 
Pres Sat. pres Enthalpy 

Spec. 
vol 

k 1.000 0.491 0.474 0.777 0.788 0.478 0.794 0.632 
Temp 0.491 1.000 -0.173** 0.392 0.423 0.965 0.753 0.971 
RH 0.474 -0.173** 1.000 0.792 0.768 -0.229* 0.478 0.052** 
AH 0.777 0.392 0.792 1.000 0.999 0.312* 0.900 0.601 
Vap. Pres 0.788 0.423 0.768 0.999 1.000 0.346 0.915 0.628 
Sat. pres 0.478 0.965 -0.229* 0.312* 0.346 1.000 0.682 0.921 
Enthalpy 0.794 0.753 0.478 0.900 0.915 0.682 1.000 0.889 
Spec. vol 0.632 0.971 0.052** 0.601 0.628 0.921 0.889 1.000 
NB. All r values are significant at p<0.001, except: * (p<0.05) and ** not significant. 
 
 
 
 
 
Table 3. Refined multiple linear regression models with the biological decay constant, 
k, as the response variable. 
 

 
Model 

 
Response 
Variable 

Predictor 
Variables 

Coefficient 
(b) 

Significance 
(p value) 

Model 
AIC (p value) 

 
Model 

R2 (mae) 

 
LOO CV 
R2 (mae) 

Model 1 k Intercept 16.980 0.030 -129.9 (<0.001) 0.718 (0.007) 0.479 (0.009) 
  Enthalpy 0.062 0.028    
  Vap. Pres. -0.796 0.031    
  Spec. Vol. -21.950 0.030    
        
Model 2 k Intercept 6.107 0.029 -129.8 (<0.001) 0.717 (0.007) 0.451 (0.009) 
  Enthalpy 0.022 0.025    
  Abs. Humidity -36.084 0.033    
  Spec. Vol. -7.882 0.029    
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Table 4. Average monthly values for the various psychrometric parameters for 
London, Paris and Milan during the 2020 (January to October).  
 

City 
 

Parameter 
 

January 
Mean  
(SD) 

February 
Mean  
(SD) 

March 
Mean  
(SD) 

April 
Mean  
(SD) 

May 
Mean  
(SD) 

June 
Mean  
(SD) 

July 
Mean  
(SD) 

August 
Mean  
(SD) 

September 
Mean  
(SD) 

October* 
Mean  
(SD) 

London Temp (oC) 7.78 7.99 8.00 12.27 15.09 17.02 18.23 19.93 16.20 11.87 
  (2.80) (2.89) (2.95) (4.52) (5.25) (4.37) (3.67) (4.80) (4.19) (2.47) 
London RH (%) 83.25 76.46 70.26 62.55 56.26 66.99 66.05 69.56 71.83 83.28 
  (7.92) (10.84) (15.35) (17.13) (16.67) (15.98) (17.73) (16.83) (15.89) (10.60) 
London S.pres (kPa) 1.0734 1.0905 1.0925 1.4854 1.8037 2.0089 2.1454 2.4247 1.9012 1.4067 
  (0.2007) (0.2111) (0.2250) (0.4703) (0.6253) (0.6129) (0.5608) (0.8051) (0.5368) (0.2311) 
London V.pres (kPa) 0.8919 0.8320 0.7559 0.8664 0.9391 1.2776 1.3501 1.5923 1.3118 1.1608 
  (0.1837) (0.2000) (0.1986) (0.1536) (0.2108) (0.2478) (0.2711) (0.3296) (0.2841) (0.1922) 
London Sp.vol (m3/kg) 0.8028 0.8029 0.8024 0.8154 0.8241 0.8324 0.8365 0.8434 0.8303 0.8167 
  (0.0093) (0.0096) (0.0093) (0.0134) (0.0159) (0.0136) (0.0109) (0.0153) (0.0134) (0.0082) 
London AH (kg/m3) 0.0069 0.0064 0.0058 0.0066 0.0071 0.0095 0.0100 0.0118 0.0098 0.0088 
  (0.0014) (0.0015) (0.0015) (0.0011) (0.0015) (0.0018) (0.0020) (0.0024) (0.0021) (0.0014) 
London Enthalpy (kJ/kg) 21.710 20.991 19.805 25.869 29.899 37.239 39.630 45.273 36.953 30.120 
  (5.552) (5.739) (5.277) (5.809) (7.445) (7.141) (5.872) (8.726) (7.664) (5.064) 
Paris Temp (oC) 6.85 8.93 9.06 15.24 16.68 18.89 20.95 22.43 18.84 12.59 
  (3.59) (3.08) (3.54) (5.08) (5.09) (4.89) (4.30) (5.46) (5.06) (2.71) 
Paris RH (%) 84.18 76.99 66.70 54.74 55.57 62.65 55.47 60.34 64.52 79.79 
  (9.84) (10.71) (19.07) (18.55) (16.93) (17.20) (16.82) (18.74) (17.96) (11.35) 
Paris S.pres (kPa) 1.0178 1.1646 1.1824 1.8132 1.9872 2.2769 2.5588 2.8534 2.2751 1.4789 
  (0.2433) (0.2429) (0.2952) (0.5900) (0.6479) (0.7703) (0.7405) (1.0471) (0.7587) (0.2701) 
Paris V.pres (kPa) 0.8517 0.8937 0.7809 0.9243 1.0422 1.3250 1.3280 1.5728 1.3669 1.1676 
  (0.2146) (0.2186) (0.2666) (0.2544) (0.3076) (0.2405) (0.2782) (0.3405) (0.2839) (0.2105) 
Paris Sp.vol (m3/kg) 0.7998 0.8061 0.8056 0.8244 0.8295 0.8382 0.8441 0.8504 0.8384 0.8188 
  (0.0117) (0.0103) (0.0115) (0.0153) (0.0159) (0.0148) (0.0126) (0.0165) (0.0156) (0.0090) 
Paris AH (kg/m3) 0.0066 0.0069 0.0060 0.0069 0.0078 0.0098 0.0098 0.0115 0.0101 0.0088 
  (0.0016) (0.0016) (0.0020) (0.0019) (0.0022) (0.0017) (0.0021) (0.0025) (0.0020) (0.0015) 
Paris Enthalpy (kJ/kg) 20.139 22.915 21.276 29.815 33.161 39.906 42.058 47.516 40.536 30.970 
  (6.766) (6.223) (6.908) (7.457) (8.579) (7.230) (6.325) (8.569) (8.112) (5.570) 
Milan Temp (oC) 3.05 7.04 8.52 13.44 18.13 20.41 23.92 24.47 19.52 12.43 
  (4.54) (5.31) (4.96) (5.88) (4.21) (4.87) (4.15) (4.51) (5.25) (3.87) 
Milan RH (%) 83.51 66.13 68.84 60.61 66.81 70.89 65.55 64.43 72.32 81.10 
  (19.18) (26.63) (23.47) (24.40) (20.94) (19.83) (17.35) (18.78) (19.07) (17.53) 
Milan S.pres (kPa) 0.7967 1.0640 1.1679 1.6397 2.1448 2.4953 3.0501 3.1672 2.3745 1.4835 
  (0.2689) (0.3887) (0.4049) (0.5979) (0.5579) (0.7695) (0.7659) (0.8628) (0.7617) (0.3756) 
Milan V.pres (kPa) 0.6231 0.6431 0.7469 0.8913 1.3426 1.6358 1.8981 1.9108 1.6198 1.1614 
  (0.1267) (0.2524) (0.2373) (0.3237) (0.2911) (0.2654) (0.3204) (0.3297) (0.3693) (0.2627) 
Milan Sp.vol (m3/kg) 0.7872 0.7987 0.8037 0.8190 0.8361 0.8452 0.8575 0.8592 0.8425 0.8183 
  (0.0135) (0.0158) (0.0149) (0.0174) (0.0124) (0.0146) (0.0129) (0.0135) (0.0169) (0.0122) 
Milan AH (kg/m3) 0.0049 0.0050 0.0057 0.0067 0.0100 0.0121 0.0138 0.0139 0.0120 0.0088 
  (0.0010) (0.0019) (0.0018) (0.0024) (0.0022) (0.0019) (0.0023) (0.0024) (0.0027) (0.0019) 
Milan Enthalpy (kJ/kg) 12.701 17.062 20.187 27.474 39.416 46.451 54.299 55.071 45.297 30.708 
  (5.862) (7.409) (7.157) (8.456) (6.463) (7.168) (7.479) (7.356) (9.823) (6.872) 

* Data for 1 to 25th October 2020 only. 
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Table 5. Predicted monthly mean biological decay constant, k, and half-life values for 
London, Paris and Milan during the 2020.  
 

City 

 

Parameter 

 

January 
Mean 

(SD) 

February 
Mean 

(SD) 

March 
Mean 

(SD) 

April 
Mean 

(SD) 

May 
Mean 

(SD) 

June 
Mean 

(SD) 

July 
Mean 

(SD) 

August 
Mean 

(SD) 

September 
Mean 

(SD) 

October* 
Mean 

(SD) 

London k.pred (min-1) 0.00113 0.00108 0.00078 0.00262 0.00484 0.00963 0.01150 0.01697 0.00980 0.00488 

  (0.00192) (0.00183) (0.00158) (0.00265) (0.00388) (0.00528) (0.00486) (0.00828) (0.00607) (0.00355) 

London Mean half-life (min) 613.4 641.8 888.6 264.5 143.2 72.0 60.3 40.8 70.7 142.0 

            

Paris k.pred (min-1) 0.00110 0.00171 0.00140 0.00500 0.00704 0.01143 0.01287 0.018.23 0.01224 0.00545 

  (0.00192) (0.00254) (0.00229) (0.00359) (0.00548) (0.00562) (0.00530) (0.00830) (0.00639) (0.00380) 

Paris Mean half-life (min) 630.1 405.3 495.1 138.6 98.5 60.6 53.9 38.0 56.6 127.2 

            

Milan k.pred (min-1) 0.00008 0.00077 0.00134 0.00442 0.01142 0.01756 0.02626 0.02686 0.01762 0.00565 

  (0.00035) (0.00149) (0.00208) (0.00386) (0.00521) (0.00722) (0.00870) (0.00824) (0.00800) (0.00417) 

Milan Mean half-life (min) 8663.8 900.1 517.2 156.8 60.7 39.5 26.4 25.8 39.3 122.7 

            

* Data for 1 to 25th October 2020 only. 
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Figures 
 
 
 

 
Figure 1. Scatter plot of actual and predicted k values for the various experiments. 
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(a) 
 

(b) 
 

Figure 2. Plots of: (a) the biological decay constant, k, for London, Paris and Milan 
during the period 1st January to 25th October 2020.; (b) weekly COVID-19 cases for 

the UK, France and Italy during the same period. 
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