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Abstract 22 

In today’s absence of a vaccine and impactful treatments, the most effective way to combat the 23 

virus is to find and implement mitigation strategies. An invaluable resource in this task is 24 

numerical modeling that can reveal key factors in COVID-19 pandemic development. On the 25 

other hand, it has become evident that regional infection curves of COVID-19 exhibit complex 26 

patterns which often differ from curves predicted by forecasting models. The wide variations in 27 

attack rate observed among different social strata suggest that this may be due to social 28 

heterogeneity not accounted for by regional models. We investigated this hypothesis by 29 

developing and using a new Stochastic Heterogeneous Epidemic Model (SHEM) that focuses on 30 

subpopulations that are vulnerable in the sense of having an increased likelihood of spreading 31 

infection among themselves. We found that the isolation or embedding of vulnerable sub-clusters 32 

in a major population hub generated complex stochastic infection patterns which included 33 

multiple peaks and growth periods, an extended plateau, a prolonged tail, or a delayed second 34 

wave of infection. Embedded vulnerable groups became hotspots that drove infection despite 35 

efforts of the main population to socially distance, while isolated groups suffered delayed but 36 

intense infection. Amplification of infection by these hotspots facilitated transmission from one 37 

urban area to another, causing the epidemic to hopscotch in a stochastic manner to places it 38 

would not otherwise reach, resembling a microcosm of the situation worldwide as of September 39 

2020. Our results suggest that social heterogeneity is a key factor in the formation of complex 40 

infection propagation patterns. Thus, the mitigation of vulnerable groups is essential to control 41 

the COVID-19 pandemic worldwide. The design of our new model allows it to be applied in 42 

future studies of real-world scenarios on any scale, limited only by computing memory and the 43 

ability to determine the underlying topology and parameters.  44 
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Introduction 45 

Coronaviruses represent one of the major pathogens that primarily target the human respiratory 46 

system. Previous outbreaks of coronaviruses (CoVs) that affected humans include the severe 47 

acute respiratory syndrome (SARS)-CoV and the Middle East respiratory syndrome (MERS)-48 

CoV [1]. COVID-19 is a disease caused by the novel coronavirus SARS-CoV-2 virus that is both 49 

fatal and has a high transmission rate (R0), almost twice that of the 2017-2018 common influenza 50 

[2, 3]. The World Health Organization stated that this combination of high health risk and 51 

susceptibility is of great global public health concern, and efforts must be directed to prevent 52 

further infection while vaccines are still being developed [4]. As of November 2020, there are 53 

almost sixty million confirmed COVID-19 cases worldwide and close to confirmed one and a 54 

half million deaths. Older adults seem to be at higher risk for developing more serious 55 

complications from COVID-19 illness [5, 6]. In today’s absence of a vaccine and impactful 56 

treatments, the most effective way to combat the virus is to find and implement mitigation 57 

strategies. An invaluable resource in this difficult task is numerical modeling studies that can 58 

reveal key factors in pandemic development.  59 

What models could be useful? Direct study of the available data of COVID-19 is 60 

complicated because many cases and deaths are underrepresented. However, a simple model that 61 

correctly captures large-scale behaviors, but gets some details wrong, is useful, whereas a 62 

complicated model that gets some details correct but mischaracterizes the large-scale behaviors 63 

is misleading [7]. Previously, during the H1N1 pandemic, generic (i.e. non-specific) stochastic 64 

influenza models were important to understand and quantify the full effects of the virus in 65 

simulations of important scenarios [8]. Open source stochastic models such as FluTE (2010) or 66 
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GLEaM (2011) [9, 10] were developed to simulate the spatial interaction and clusterization of 67 

millions of people to discover epidemic patterns.  68 

Now, with respect to COVID-19, the FluTE model has recently been used to offer 69 

interventions to mitigate early spread of SARS-CoV-2 in Singapore [11], and GLEaM was 70 

adopted by Chinazzi et al. [12] to model the international propagation of COVID-19 to gain 71 

insight into the effect of travel restrictions on virus spread. Detailed statistical information about 72 

the social interactions and grouping of individuals is difficult to gather, but ultimately can be 73 

used to calibrate the parameters of agent-based models. Such calibrated agent-based models have 74 

been applied to model high-density housing in Brazil and their effect on viral spread to the rest 75 

of the population [13]. 76 

Despite extensive efforts to understand and predict the COVID-19 spread, the key factors 77 

that determine the multimodal rise patterns, the asymmetry of the recovery phase, and the 78 

emergence of a distinct second wave remain unclear. Therefore, instead of another data-based 79 

forecasting model, we chose to develop a scenario model to study the consequences of a set of 80 

hypothesis-driven conditions in a network of populations. One underexplored but important 81 

factor of pandemic spread is social heterogeneity which defines the degree of dissimilarity in the 82 

behaviors of embedded subpopulations. With regard to virus spread, the important characteristics 83 

of social heterogeneity to consider are levels of clusterization, societal interaction, and disease 84 

mitigation strategies. Our hypothesis is that complex infection curves that consist of multiple 85 

infection peaks and growth periods are the consequence of asynchronous propagation of 86 

infection among groups with widely varying degrees of intra-group interaction and isolation 87 

from main hubs (a metapopulation of infections).  88 
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To approach this problem, we developed a novel Stochastic Heterogeneous Epidemic 89 

Model (dubbed SHEM) which incorporates heterogeneous aspects of society. We also take into 90 

account over-dispersed stochasticity (super-spreading) [14], which is usually not incorporated 91 

into compartmental models but can be critical in small or virgin populations. The model design 92 

was inspired by our stochastic models of local calcium release dynamics inside heart cells, 93 

driven by explosive calcium-induced-calcium-release [15, 16]. We examine several key 94 

scenarios of heterogeneity where separate communities of various clusterization and 95 

transmission capabilities are linked to a large population hub. The basic reproduction number of 96 

infection (R0) of the bulk of our population was assigned to R0 = 2.5 which is within the range of 97 

SARS-CoV-2 basic reproduction number based on the early phase of COVID-19 outbreak in 98 

Italy [17]. Interplay of various degrees of heterogeneity and isolation periods in our model 99 

generated various dynamic patterns of infection, including a multi-modal growth periods, an 100 

extended plateau, prolonged tail, or a delayed second wave of infection. Most importantly, we 101 

found that vulnerable social subgroups play a key role in the propagation and unpredictability of 102 

the epidemic, and can defeat efforts at social distancing. 103 

 104 

Methods 105 

Model purpose 106 

In view of the constantly changing behavioral environment for COVID-19 in the United States 107 

and worldwide, data-based predictive modeling of the future of the epidemic is difficult. Our 108 

model is specifically intended to examine the effect of heterogeneity, including not only 109 

geographic but also social heterogeneity, i.e. the existence of groups within one geographic 110 

location that have different social interaction patterns and may be partially isolated from 111 
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neighboring groups, e.g. nursing homes, prisons, campuses. Alternatively, subgroups can be 112 

partially embedded in the main population, e.g. meat processing plants or warehouse employees 113 

who are unable to socially distance at work, but spend part of their day in the main community 114 

where they can acquire and amplify infection. The model is fully stochastic and, unlike most 115 

compartmental models, incorporates the effect of over dispersion of secondary infections (super 116 

spreading).  117 

Structure of the Model 118 

The general model consists of a number of subpopulations (“villages”) whose number is limited 119 

only by computing memory. The simulation is based on a generalization of the SEIRD 120 

representation. The state of each village is represented by the numbers of individuals in each of 5 121 

states: Susceptible, Exposed (destined to become infected), Infected, Recovered (immune) and 122 

Dead (however, see below under Super-spreading for additional state-dependence). Each village 123 

is, by definition, homogeneous and mixed. Villages could represent actual geographic units, but 124 

could also be groups or sub-regions that have different social interactions or behavior. The mean 125 

duration of infection (infectious period) was taken to be 7 days and the incubation period 5.5 126 

days. 127 

Each village J is characterized by its population, the expected mortality of virus 128 

infections, and its local value RINN(J) of the basic reproduction number R0.  R0 is defined as the 129 

mean expected number of secondary infections spawned by one infected individual over the 130 

duration of their illness, if the population were totally susceptible. It is a property of both the 131 

virus and the behavior of individuals in the population, but is distinct from R(t), the realized, 132 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for thisthis version posted November 30, 2020. ; https://doi.org/10.1101/2020.07.10.20150813doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.10.20150813


 

7 
 
 

time dependent, reproduction number that depends also on the fraction of susceptible individuals 133 

remaining during the epidemic. 134 

Villages are connected by a user-specified network of formally unidirectional links along 135 

which infection or individuals can travel at user-specified rates, including links from each village 136 

to itself to represent internal infection/recovery processes.  Infection can spread by two 137 

processes:  transient contact between groups (alpha process) e.g. nursing home staff coming 138 

from the city; or actual migration of individuals from one village to another (beta process).  Each 139 

non-self link is characterized by 4 user-supplied parameters: alphain and alphaout describe the 140 

degree of transient contact (see below) along or against the direction of the link respectively; 141 

betain and betaout are rates of migration of individuals (time-1). 142 

Transient Contact (alpha) Process   143 

 Infection transmitted by transient contact is modeled as though members of one village 144 

spend some (small) fraction alpha(in/out) of their time (i.e. of their inter-personal contacts) 145 

“visiting” the opposite village at the other end of the link, adjusted for any mitigations (an 146 

example would be staff working at a nursing home, or meat-packing plant employees, treated as 147 

a separate, high-risk population but living in the surrounding county). The spread of infection in 148 

each direction of the link has two components: (1) exposure of susceptibles by visiting infectious 149 

individuals and (2) exposure of visiting susceptibles in the visited village, who then carry the 150 

infection back to their village.  This formulation allows for the possibility that transmission is 151 

asymmetric.  The generation of exposure by these “visitors” at home and abroad is scaled so that 152 

each infected individual, generates (in an otherwise susceptible population) his destined number 153 

of secondary cases (see below under super-spreading). 154 
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This arrangement allows for the possibility that “visitors” from different villages could 155 

cross-infect while visiting a common hub (picture UPS and FEDEX drivers) even if there is no 156 

direct link between them.  To represent this process, “virtual links” are generated between pairs 157 

of physical links that meet in a hub (in graph-theory terms these are links of the adjoint graph of 158 

the network).  Infection by this indirect process is second-order in the alpha’s so it makes very 159 

little contribution in the case of highly isolated sub-populations (e.g. nursing homes, prisons) but 160 

could be important for embedded sub-populations with high contact with the hub.  Although 161 

each village is considered homogeneous by definition, further heterogeneity within a village 162 

could be represented by subdividing the population into several “villages” in close mutual 163 

contact via the alpha process (e.g. students in a college split into those who go to bars and those 164 

who study alone). 165 

 166 

Simulation Method 167 

The entire collection of populations is simulated as a single, continuous-time Markov chain 168 

(birth-death process). There are 16 types of possible events associated with each link: 169 

1) Infection from source to target by transient contact 170 

2) Infection from target to source by transient contact  171 

3) Infected individual moves from source to target 172 

4) Exposed individual moves from source to target 173 

5) Susceptible individual moves from source to target 174 

6) Infected individual moves from target to source 175 

7) Exposed individual moves from target to source 176 
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8) Susceptible individual moves from target to source 177 

9) Susceptible gets exposed inside village (self-link only) 178 

10)  Exposed converts to infected inside village (self-link only) 179 

11)  Infected recovers inside village (self-link only) 180 

12)  Infected dies inside village (self-link only) 181 

13)  Recovered moves from source to target 182 

14)  Recovered moves from target to source 183 

15)  Susceptible gets vaccinated 184 

16)  Recovered loses immunity 185 

The objective of the simulation is to generate a continuous-time sequence of Markov states, 186 

with transition rates determined by the SEIRD equations, modified as described below under 187 

Super Spreading.  The algorithm consist of a front-end program that sets up the network of 188 

villages and the rates of spread of infections by the alpha and beta processes, and an engine 189 

module that is called repeatedly by the front-end to walk the Markov scheme under a sequence of 190 

imposed conditions, e.g. open, lockdown etc.  The operation of the program is described by the 191 

following simplified pseudocode:  192 

PROGRAM FRONT_END 193 
use module simulator 194 
read parameter file !nh=number of villages 195 
  do ih=1,nh  196 
  initialize village population sizes and states  197 
  lrlinks(ilink,1:2)=ih !create self-links 198 
  set r0’s for first time period 199 

 end do 200 
!create network 201 
 lrlinks(ilink,1)=source  202 
 lrlinks(ilink,2)=target 203 
 set alphain,alphaout,betain,betaout(ilink) 204 
 ilink++ 205 
call episim(...lrlinks…tswitch,yflag)  !invoke the engine in simulator module 206 
if yflag=false on return then ! t reached a breakpoint 207 

change r0’s,alphas,betas 208 
advance tswitch 209 
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call episim again 210 
else 211 
 reached tmax 212 
 write output history 213 
end program front-end 214 
 215 
 216 
MODULE SIMULATOR 217 
contains  218 
subroutine episim ! main engine 219 
create bidirectional linked infectivity lists 220 
!generate virtual links by extending link array 221 
do ll1=1,nrlinks 222 

do ll2=ll1,nrlinks ! triangular search for common hubs j3 223 
ilink++ 224 
links(ilink,3)=j3 225 
alphav(ilink)=alphain/out(j1)*alphaout/in(j2) 226 

 end do 227 
end do 228 
t=0 229 
! main loop 230 
do while t<tswitch 231 

do over all links 232 
  do event=1,16 !generate cumulative rates of possible events 233 
  rtot=rtot+rate(event,link) 234 
  rtt(jtt)=rtot 235 
  jtt++ 236 
  end do 237 

end do 238 
! rtot is total rate of available markov transitions 239 
! time of next event in Poissant point process 240 

time of next event = t-log(random)/rtot !exponential distribution 241 
! choose the actual event link and type: 242 

find rtot*random2 in the cumulative array rtt at index jbin 243 
jl=(jbin-1)/16+1 ! find which link fired 244 
links(jl,1:3) gives the villages at the link ends and/or hub 245 
jp=jbin-16*(jl-1) ! remainder points to  the event type 246 

! carry out the event 247 
 if the event creates a new infectious person then 248 
  k=kranbin(random3,rinn(j),reff) ! personal infectivity 249 
  push k on the top of infection list of village j 250 
  inf(j)=inf(j)+k    251 
! inf is the collective infectiousness of  village j, plays role of    252 
!  (numberinfected)*r0 in SEIRD equations 253 
 end if 254 
 if the event removes infectious person by recovery or death then 255 
  pull k off bottom of infection list 256 
  inf(j)=inf(j)-k 257 
 end if 258 
 if the event is migration of infectious move between tops(most recent) of  259 
  infection list 260 
 end if 261 
 262 
 if t>tmax then 263 
  return with yflag=true 264 
 end if 265 
 266 
 if t>tout then 267 
  record state in kout array 268 
  increment tout 269 
 end if 270 
 271 
 end do over links 272 
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end do while ! continue with time steps until t>tswitch 273 
 return with yflag=false  ! continue to the next simulation period. 274 
end subroutine episim 275 
 276 
 277 
FUNCTION kranbin ! draws random negative binomial integer with mean r0 and  ! 278 
dispersion reff. 279 
 280 
end module simulator 281 

 282 

Super-spreading 283 

It is known that the distribution of secondary COVID-19 infections generated by a single, 284 

infected individual is over-dispersed (i.e. has a long tail compared to the Poisson distribution of 285 

infections expected if transmission were random).  Although the average R0 is estimated to be 286 

2.5-4 in the absence of social distancing mitigations, contact tracing has shown that single 287 

individuals have infected up to a hundred others. This is known as super-spreading events, and 288 

can occur by several possible mechanisms, involving either a predilection of an individual (e.g. a 289 

celebrity who travels widely and contacts many other people) or a situation in which individuals 290 

were placed in unusually close contact (e.g. a church choir in an indoor location).  On the other 291 

hand, the majority of infected individuals do not appear to spread the infection to anyone.  It has 292 

been shown [14] that this over-dispersed distribution can be approximated by a negative 293 

binomial distribution, with mean R0 (by definition) and dispersion parameter r<<1, for example 294 

3 and 0.16. By iterating this distribution for several generations of viral spread, it is found that 295 

the eventual distribution of epidemic size is predicted to be quite different than found for a 296 

hypothetical stochastic transmission by Poison-distributed secondary infections with the same 297 

R0. A recent model of contact tracing assumed, based on data from the Netherlands, that the 298 

distribution of number of personal contacts outside the family is distributed as a negative 299 

binomial and used this to generate random changes to infection levels at 1-day intervals [18]. 300 
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Unfortunately, viral generations do not remain synchronous in time, so it is not 301 

straightforward to incorporate super-spreading in a time-dependent epidemic evolution model 302 

except by following the interactions and infections of each individual in the population, as done 303 

for example in the FLuTE simulation for influenza [8].  This is very compute-intensive, but a 304 

more significant objection from our point of view is that it depends on knowing (statistically) the 305 

social interaction groups and travel behavior of the population at a fine-grained scale, and these 306 

have been severely disrupted by mitigation efforts during the current pandemic.  It is possible to 307 

try to adjust for these mitigations by calibration against the evolving case data, but this is 308 

difficult. Rather than speculate on these variables, we have developed a modified Markov 309 

scheme that tries to reproduce the observed distribution of secondary infections by replacing R0 310 

in the event-rate calculations by an infectivity that is itself stochastic.  This requires storing a 311 

partial history of individual infections, which makes the actual state-space, considered as a 312 

Markov process, much larger than that in a classic SEIRD model. 313 

The stochastic process of infection generation by one infected case is in competition with the 314 

independent stochastic recovery process.  In the model, recovery is a Poisson point process with 315 

a rate proportional to the number of infections.  If we don’t identify individuals, a super-spreader 316 

is likely to be “recovered” before (or after) generating his destined number of infections.  To 317 

avoid this, we have adopted the following scheme: 318 

• In each village j, at each event, an infectivity inf(j) is maintained that takes the place of 319 

ki*R0 in the SEIRD rate equations. 320 

• Whenever a new infection is created (by conversion of an exposed individual), a random 321 

number K is drawn from a negative binomial distribution of mean R0 and dispersion reff , 322 
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the latter to be determined.  Inf is incremented by K and the individual infectivity K is 323 

placed on the top of a linked list. 324 

• Whenever a random recovery event is generated at the above-mentioned rate, the oldest 325 

individual infectivity is removed from the bottom of the list and subtracted from inf. 326 

.  The number of secondary infections actually realized by one infected individual  is 327 

proportional to the actual length of  time he remains infectious.  Since infections recover in the 328 

order in which they were created, if there are n infections active, that lifetime will be the nth 329 

waiting time of the Poisson point process  whose rate is n times the mean recovery rate (i.e. the 330 

reciprocal of the mean infection duration).  The  secondary infections generated by individual K 331 

are a Poisson point process, which is then convolved with the recovery process to give the 332 

realized distribution of secondary infections generated by that individual.  Further convolving 333 

that with the negative binomial distribution of K  with mean r0  and dispersion r we find:  334 

 335 

as the distribution of the actual, realized number of secondary infections.  This is a long-tailed 336 

probability distribution that can be fit, by an appropriate choice reff for the dispersion parameter r  337 

so as to approximate the empirical negative binomial distribution with r=0.16 over the relevant 338 

range.  With more than a few active infections present, the distribution converges to the limit: 339 

 340 
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We choose reff to give the best least-squares fit on a linear scale for the case n=1, which is the 341 

most important stochastic case since it governs the chance that a single infected individual can 342 

start an outbreak, and gives the chance that an infected individual causes no secondary 343 

infections, p(0,1)=0.62 similar to the empirical distribution.  These distributions are all 344 

normalized and have mean R0 and differ dramatically from the Poisson distribution (Fig S3, 345 

dashed line) assumed in the classic SEIR model.  Larger values of n are decreasingly important 346 

because the aggregate distribution of the actual infection rate controlled by the sum inf behaves 347 

similarly to negbinomial (R0 ,n*r) which converges to Poisson, so stochastic effects become less 348 

important once there are many active cases. 349 

Super-spreaders vs super-spreading events 350 

Super-spreading can be a property of the individual or of the circumstances.  What happens when 351 

an individual infected patient migrates to a new village?  Does he keep his identity or does he 352 

assume the infectiousness typical of the local R0 of his new environment?  In the model we can 353 

make the choice, determined by a logical variable SPREADR (default TRUE. controlled in the 354 

demos by the input parameter spreads).  If SPREADR is true, a migrant keeps his prior K value 355 

which simply migrates from the top (newest) link to be added to the top of the infection list in 356 

the new village, thereby preserving his infectious lifetime in his new home.  If SPREADR is false 357 

then the K value of migrants is re-randomized using the local R0 and reff and the infectivity of 358 

transient visitors in the alpha process is re-scaled to the local value of R0.  In the current version 359 

of the program, SPREADR is a single variable governing all events, but it could easily be made 360 

specific to individual links to distinguish groups that are vulnerable due to high density in their 361 

home village (e.g. factory or warehouse) versus groups that are intrinsically super-spreaders due 362 

to their individual behavior (celebrities, bar hoppers).  363 
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 364 

Software Considerations 365 

The model software is written in Fortran 77/95.  The main simulation engine, described above, is 366 

in the form of a single Fortran module SIMULATOR.  It is intended to be driven by a front-end 367 

program that sets up the network and scenario.  For purpose of these demonstrations, we hand-368 

coded a front end (epichainF) describing a chain of urban clusters (or a single cluster) connected 369 

by bidirectional travel, each linked to a large set of small subpopulations whose characteristics 370 

differ from the urban cluster. The single Markov-chain structure of the model is intrinsically 371 

serial, and is implemented in a single processor thread.  For networks with many nodes and 372 

dense links this can be speeded up about 5-fold with 32 processors by parallelizing an inner loop. 373 

 374 

Results  375 

Simulations of infection in isolated clusters driven by an urban cluster 376 

In the first set of simulations we examined the virus spread in simple hypothetical scenarios with 377 

equal numbers of individuals in urban and isolated populations (Fig 1A, insert).  The large urban 378 

cluster was composed of 1 million individuals set to R0=2.5 (open level, but changing throughout 379 

the simulation). The isolated population consisted of 250 clusters, each with 4000 +/- 500 people 380 

and with the same internal R0=2.5 that remained constant throughout all simulation stages. The 381 

urban cluster was weakly connected with 0.001% transient contact into the isolated clusters 382 

(alphainpop) while isolated clusters had 0.1% contact into the urban cluster (alphaoutpop), see 383 

Methods for the definition of transient contact.   This can be visualized as a collection of small 384 

suburban neighborhoods or nursing homes that are attempting to isolate themselves from the 385 
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city. We investigated 4 scenarios, specified below. In each scenario except #1, the urban cluster 386 

closed to R0=1.25 at t=40 days (closed level, e.g. this was New York City under lockdown, based 387 

on 21% antibody positive tests at the peak [19]). 388 

1) No mitigation, i.e. freely expending pandemic: The large cluster of individuals stays 389 

always open.  390 

2) Premature, partial reopening to R0 = 1.9 at 100 days. 391 

3) Moderate lockdown period with full reopening at 225 days to R0 = 2.5. 392 

4) Long lockdown period with full reopening at 365 days to R0 = 2.5. 393 

A general tendency throughout all 4 scenarios was that as the lockdown period increased, the 394 

magnitude of the infection decreased but its duration increased. At the same time, the interplay 395 

of the urban cluster and the isolated clusters generated a variety of specific patterns in virus 396 

spread dynamics. In the first “no mitigation” scenario (Fig 1A) the isolated areas generated a 397 

strong second peak at the time when infection in the urban cluster had gone through its peak and 398 

was decaying. On the other hand, the infection rise in the “premature reopening” scenario (Fig 399 

1B) was multi-modal, and the cumulative peak in isolated clusters happened later than the urban 400 

cluster, creating an apparent plateau in active infection cases from day 175 to 225. The infection 401 

dynamics in the “moderate lockdown” scenario (Fig 1C) was more complex. During the closed 402 

stage (of the urban center), the infection in the urban cluster declined, but the delayed infection 403 

in isolated clusters continued to rise forming an additional peak in total infections (Fig 1E, inset). 404 

Then another peak in total infections emerged in the reopen stage that was generated mainly by 405 

the urban cluster, and then was echoed by the isolated subpopulations. Finally, in the “late 406 

reopening” (Fig 1D) scenario, infection decreased during the first wave in both urban and 407 

isolated clusters but a distinct delayed second wave of infection occurred.  408 
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We also performed a control simulation to validate that heterogeneity of isolated clusters is 409 

indeed important for the infection pattern. In the most complex scenario of “moderate lockdown” 410 

shown in Figure 1C we substitute 250 clusters by one big cluster with the same population of one 411 

million people keeping all other parameters the same. The simulations showed a different pattern 412 

in which the second big cluster always generated a peak of substantially larger amplitude (Fig 413 

S1).  414 

 415 

Simulations of integrated clusters driving infection in an urban cluster 416 

By altering parameters in the same topology as Figure 1A, we found that the outlying 417 

clusters, if they are unable to socially distance, can become potential “hotspots” that can drive 418 

the infection in the urban population even against efforts of the latter to lock down.  In this 419 

scenario the large urban cluster was composed of 1 million individuals with R0 = 1.25 throughout 420 

all simulation stages while the highly susceptible population consists of 250 clusters each with 421 

1200 +/- 500 people and internal R0 = 3.0 that are partially embedded in the urban cluster. This 422 

R0 value is based on data from four districts in Germany when essential manufacturing sectors 423 

were open – 95%-prediction interval: 2.16 – 3.73 [20]. The potential hotspot clusters were 424 

connected with 20% out-coupling into the urban cluster (alphaoutpop = 0.20, see Methods).  425 

This mechanism of transient contact implements short-term movement of the same people in and 426 

out regularly, which does not dilute the effect of the conditions in hotspots the way that random 427 

bidirectional migration would.  In other words, the same people “virtually” move back and forth 428 

but spend most of their time in the high- R0 locations where the infection regenerates. In this 429 

scenario, the small number of infections in the urban area are picked up by hotspots, amplified, 430 
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and then drive a wave of infection among the urban population despite their efforts to keep their 431 

internal R0 at 1.25 by social distancing.  432 

We performed 10 runs of these simulations which demonstrated that the integrated 433 

clusters drove infection in the urban cluster as shown in a typical example in Fig 2A, B, leading 434 

the late appearance of the epidemic in places that had seen few cases in a microcosm of the 435 

pattern. In the second “chain” topology multiple small urban areas (population 100K each) are 436 

sequentially connected and 30 potential hotspots with R0=2.0 drive infection within each urban 437 

cluster and facilitate propagation from cluster to cluster (Fig 3, Fig S2, and Movie S2 show the 438 

stochastic dynamics of individual hotspots). In this model, the first urban cluster began with R0 = 439 

2.5, then locked down to 1.25 at day 40, while the unsuspecting urban clusters connected through 440 

the chain kept R0 = 1.25 throughout, signifying efforts at social distancing. Ultimately these 441 

efforts were defeated by the hotspots picking up the small number of arriving infections and 442 

amplifying them. These results demonstrate that subgroups who cannot or will not socially 443 

distance can drive the propagation of the epidemic to new regions against the best efforts of the 444 

majority of the populations. It follows that it is possible to control the spread of the epidemic 445 

through the mitigation of hotspot amplification. To validate this finding, we simulate the 446 

application of vaccine treatments to just the hotspot members, who constitute only about 30% of 447 

the population. The vaccine treatment is applied to individuals in hotspots at the rate of 5% per 448 

day, and, as a result, the geographic spread of infection is sufficiently stopped and the entire 449 

downstream region is protected from infection and deaths (Fig 4).  450 

 451 

Reopening urban cluster after hotspots drive first wave of infection 452 
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We extended the single urban cluster hotspot scenario to reopen when infection numbers 453 

substantially drop. Here, the main cluster was composed of 1 million individuals which starts off 454 

closed with R0=1.05 and reopens to R0=2.50 at day 360. The cluster was connected to 30 455 

potential hotspots each with 1200 +/- 500 people with R0=3.0 which remained constant 456 

throughout all simulation stages. The urban cluster was connected with 0.1% transient contact 457 

into the isolated clusters (alphainpop) while isolated clusters had 1% contact into the urban 458 

cluster (alphaoutpop). The results show two distinct waves of infection (Fig 5). The hotspots 459 

drove the first wave of infection, whereas the second wave was almost entirely composed of 460 

infection from the urban area, demonstrating that the hotspots acquired immunity and did not 461 

participate at all in the second wave. The ending of the first wave, dominated by the vulnerable 462 

groups, created the illusion that the epidemic was nearly over, while a large fraction of the 463 

surrounding populations was in fact still susceptible when reopening occurred.  464 

 465 

Discussion 466 

Interpretations and implications 467 

Since Summer of 2020, the infection curves of the COVID-19 pandemic in various locations 468 

have been very different from standard smooth bell curves. Here we tested the hypothesis that 469 

multiple, asynchronous waves and plateaus are in part due to stochasticity and heterogeneity, as 470 

well as due to changing efforts at mitigation. Geographic heterogeneity is included in forecasting 471 

models [12, 21, 22] which use extensive, public databases of population characteristics and travel 472 

patterns, but these do not fully account for the stratification of social behaviors that controls the 473 

spread of the virus. Therefore, instead of building another data-based forecasting and estimation 474 

model, we developed a numerical scenario model that we used to explore mechanisms of 475 
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infection dynamics with regards to social stratification. The model was built as a network of 476 

“populations” which represent social and behavioral strata of geographic populations. Our model 477 

can be considered a metapopulation of SARS-CoV2, when a single species is spread among 478 

different environments that determine its local survival or extinction.  479 

We examined several scenarios which included one or more large urban populations 480 

connected to vulnerable subgroups that are unable/unwilling to socially distance and thus 481 

represent potential COVID-19 hotspots. Depending on the degree of interaction, these subgroups 482 

were either driven by infection from the main population, or acted as major drivers of the 483 

epidemic. Isolated subpopulations were infection-driven (e.g. nursing homes, prisons, remote 484 

suburbs, clustered religious groups) and had a substantially delayed contribution to total 485 

infection cases, ultimately forming an infection curve which could include multi-modal growth 486 

periods, an extended plateau, a prolonged tail, or a delayed second wave of infection (Fig 1). 487 

These communities, due to their isolated nature, had low herd immunity that put them at risk for 488 

explosive scenarios when basic mitigation strategies were not implemented. Alternatively, 489 

partially integrated subpopulations were driving infection (e.g. employees of factories, 490 

warehouses, meat packing plants, church groups, campuses, shelters, and other essential 491 

workers) in its connected urban population by picking up infection and amplifying it by (Fig 2, 492 

movie S1). We found that these “hotspots” ignite infection even in a locked down population, 493 

ultimately propagating and igniting other isolated populations (Fig 3, movie S2). The locked 494 

down population however does not acquire herd immunity, as opposed to the hotspots, and thus 495 

when lockdown is lifted, a second wave is generated by the main cluster (Fig 5).  496 

There are several implications that arise from our results. We can expect social 497 

heterogeneity to form delayed local asynchronous epidemics, creating a variety of infection 498 
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profiles in various regions over time, prolonging the pandemic time span, and spreading to new 499 

areas unpredictably due to the stochasticity of infection in small subgroups, as is becoming 500 

increasingly obvious in the United States in the Fall of 2020 Effective mitigation of the epidemic 501 

in the main population requires close attention to vulnerable subgroups in order to prevent the 502 

formation of COVID-19 infection hotspots. Otherwise vulnerable subgroups that cannot 503 

implement mitigation strategies spread infection to the socially distanced populations, defeating 504 

their efforts at mitigation. Despite hotspots possibly acquiring immunity, there still exists a threat 505 

of a second wave of infection in the socially distanced main population. Thus, an effective 506 

treatment or vaccination needs to be developed prior to full reopening. As vaccines become 507 

readily available, the selection and timing of their administration will be an important policy 508 

consideration. Our simulations in idealized scenarios (Fig 4) suggest that focusing vaccination on 509 

the small fraction of the population that is unable or unwilling to socially distance may be 510 

sufficient to interrupt regional spread and protect a much wider fraction of the public. Notably, 511 

achieving this effect requires vaccinating all hotspot groups, not merely medical personnel, and 512 

essential workers, but also uncooperative college students and those with an aversion to 513 

mitigations. This creates a kind of moral hazard – rewarding bad behavior – but the model 514 

suggests that it is the public interest.  515 

 516 

Comparison with other studies 517 

While our study is focused on vulnerable subpopulations in pandemic development, there are 518 

other important factors regarding social heterogeneity identified by previous studies.  519 

The study by Dolbeault et al. [23], using their multi-group SEIR model, underlined the 520 

importance of mitigation measures on single individuals with a high level of social interactions. 521 
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Indeed, their study showed that even a small group of individuals with high transmission rate can 522 

trigger an outbreak even if the R0 of the majority is below 1. Althouse et al. [14] identified and 523 

explored in depth another important factor, explosive super-spreading events originating from 524 

long-term care facilities, prisons, meat-packing plants, fish factories, cruise ships, family 525 

gatherings, parties and night clubs. This study further demonstrated the urgent need for targeted 526 

interventions as routes of effective virus transmission. Taking into account the importance of 527 

these super-spreading events and individuals, they were included in the design of our model (see 528 

Methods, Super-spreading) to generate more realistic outcomes of scenarios.  529 

With regard to agent-based models, Chinazzi et al. [12] used GLEaM to demonstrate that 530 

travel restrictions introduced in Wuhan in January 2020 only delayed epidemic progression by 3 531 

to 5 days within China, and international travel restrictions only helped slow infectious spread 532 

until mid-February. Our simulations of COVID-19 spread also show that ultimately, when 533 

enough time goes by, isolation does not prevent infection of vulnerable subpopulations (Fig 1). 534 

Chinazzi et. al. suggests that early detection, hand washing, self-isolation, and household 535 

quarantine are more effective than travel restrictions at mitigating this COVID-19 pandemic. Our 536 

recommendations are in accord, and we advocate for communities to take extra care of 537 

vulnerable subpopulations internally, as so to prevent a possible hotspot formation that may 538 

evolve into a regional epidemic. 539 

 540 

Model features, limitations, and future studies 541 

An epidemic can be likened to a forest fire, which spreads by diffusion along a front, but can also 542 

jump by embers that may or may not start a new blaze. Such spread to virgin areas, with a virus 543 

as with a fire, is intrinsically stochastic and such stochasticity, which is not explicitly included in 544 
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mean-field models, may contribute to the remarkable patchiness of the COVID-19 epidemic. 545 

This has caused the epidemic to appear entirely different to observers in different locations, 546 

leading to politicization of the response, which is, itself, a form of social heterogeneity. For rare 547 

spread to small, isolated subgroups (embers) this stochasticity is crucial. Patchiness is aggravated 548 

by the over-dispersion (super-spreading) of secondary cases of COVID-19, where the majority of 549 

infected individuals do not spread the virus, but some can cause up to a hundred secondary 550 

infections [14]. Our model is explicitly stochastic, with a mechanism to account for over-551 

dispersion, by keeping a partial history of individual infections. Furthermore, the design of our 552 

new model allows it to be applied in future studies of real-world scenarios on any scale, limited 553 

only by memory and the ability to determine the underlying topology and parameters. 554 

However in our model, we make no attempt to distinguish between symptomatic and 555 

asymptomatic cases, despite recent findings by Chao et al. [24] in their agent-based model 556 

(dubbed Corvid) that demonstrated that most infections actually originate from pre-symptomatic 557 

people. Since the relative infectivity of symptomatic and non-symptomatic is uncertain, there is 558 

no direct way to accurately determine the number of asymptomatic infections at present. Such a 559 

distinction (included in a number of other models) could easily be added by subdividing the 5 560 

compartments, at the risk of added complexity and more parameters needed in a scenario.  561 

We did not take into account recent suggestions that infectivity is concentrated in a short 562 

time window just before and after symptom onset. Instead, we used the standard SEIRD 563 

assumption that infections are generated throughout the period of infection, using a mean clinical 564 

duration of 7 days. The model does not consider the physical mechanisms of transmission of 565 

COVID-19, or the possibility that many recovered patients do not quickly re-enter their normal 566 
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social circles, delaying herd immunity. An additional compartment, with a pipeline mechanism, 567 

could also be added to account for this. 568 

We examined several simple scenarios as a demonstration of our model, which revealed 569 

the important role of embedded, non-distancing sub-populations in infection propagation. Further 570 

studies require consideration of the role of model network topology. Several studies have shown 571 

that epidemic propagation in large, scale-free networks can result in the establishment of an 572 

endemic state even with small infection rates, preventing random vaccination from effectively 573 

ending the epidemic [25, 26]. Strictly speaking this cannot happen in the scenarios we 574 

considered, which assumed that recovered individuals are permanently immune – a choice we 575 

made because of the extreme rarity of re-infections with SARS-CoV-2. A more important point 576 

is that prior theoretical analyses pertained to networks of individuals, each of whom can be either 577 

infected or susceptible. Within a single population cluster, over-dispersed link distributions such 578 

as in scale-free networks can enable persistence of infection because highly connected 579 

individuals can scavenge rare infections and widely redistribute them [27]. This is a major 580 

mechanism of super-spreading, which is incorporated in our model by heuristically handling 581 

super-spreading in each homogeneous cluster. However, stratification of the connectivity of 582 

individuals is not included in the model: Individual villages were taken to be homogeneous, 583 

characterized by their populations, R0 and reff that determine the effective dispersion of 584 

secondary infections. Further stratification of individual connectivity could be handled by 585 

splitting social behavior into separate, mutually embedded clusters e.g. college students who 586 

study together vs. those who study alone 587 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for thisthis version posted November 30, 2020. ; https://doi.org/10.1101/2020.07.10.20150813doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.10.20150813


 

25 
 
 

 It requires further studies to see if similar topological considerations pertain to networks 588 

of populations as in our model.  With that in mind, the model includes the possibility that a 589 

recovered individual may revert to being susceptible, with a specified rate constant.  How the 590 

topology of the larger-scale network of populations affects the propagation of the virus requires 591 

simulation studies too extensive to be considered in this paper. For example, whether physical 592 

transportation and communication networks are scale-free is controversial [28-30]. In our 593 

preliminary simulations (not shown), we found that a scale-free random network of 500 villages 594 

with populations proportional to the link numbers, and uniform behavior, had a significant 595 

probability of entering an endemic state even when the lifetime of immunity was as long as 500 596 

days.  However, the same was true of Erdös-Rényi random networks with a similar number of 597 

links.  Interestingly, both types of random networks produced smooth single-peak epidemics 598 

resembling a single population suggesting that the increasingly complex patterns now being 599 

observed do depend on behavioral heterogeneity.  600 

 601 

 602 

  603 
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Figure legends 716 

 717 

Fig 1: Complex dynamic patterns of SARS-CoV2 infection in simulations in a 718 

heterogeneous society when infection in isolated clusters are ignited by an urban cluster 719 

implementing various lockdown strategies. (A) isolated clusters generate a second delayed 720 

peak when no intervention is implemented. Inset schematically illustrates the society structure in 721 

this scenario. Contributions are shown by different colors. (B) an apparent plateau after early 722 

reopening and complex rise pattern during close period (inset). Green shade shows the lockdown 723 

periods. (C) A multimodal rise (inset) with additional peak generated by rural cluster after full 724 

reopening at day 225. (D) A delayed second wave emerged after full reopening at day 365. E, 725 

The dynamics of total number of deaths in each scenario. 726 

 727 

Fig 2: Highly susceptible integrated clusters (hotspots) drive SARS-CoV2 infection in an 728 

urban cluster. (A and B) Initial rise of infection in hotspot clusters is followed by the infection 729 

in urban cluster with a delay of about 30 days. Y-axis represents active infections in % 730 

population reflecting for hotspots (red line) the ratio of all active cases in all hotspots to entire 731 

population of all 250 hotspots. Inset shows schematically the society structure in this scenario. 732 

(C) Infection in individual hotspots (multiple colors) substantially fluctuates in terms of time of 733 

ignition and magnitude from the mean (red bold curve). See also Movie S1. (D) Explosive 734 

infection in hotspots within locked urban cluster substantially increased the peak of infection in 735 

the entire society and shifted it towards much earlier occurrence from about 400 days to 200 736 

days. Shown are 10 simulation runs for each scenario.  737 

 738 
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Fig 3: Complex infection propagation patterns in multiple urban areas containing hotspots.  739 

(A) Schematic illustration of the heterogeneous society used in simulations. (B) Total infection 740 

count oscillates as infection propagates. While individual oscillations exhibit substantial 741 

variations in timing and amplitude, the patterns remain the same (i.e. 4 oscillations, reflecting 742 

infection surge in each urban cluster). (C) The infection in hotspots is delayed before the 743 

lockdown at day 40, but then is always in the lead (red curves), driving infection in each urban 744 

cluster (blue curves) and facilitating infection propagation among clusters (Movie S2).  745 

 746 

Fig 4:  Multicity model as in figure 3 without (A) and with (B) vaccination of only the 747 

hotspot populations at a rate of 5% of the population per day, starting at day 150. 748 

Vaccination of hotspot individuals prevents geographic spread of the virus even though they are 749 

only about 1/3 of the population, thereby protecting the general population.  The colored curves 750 

show only the infections among the socially distanced majority of the city population. (C) 751 

Overall mortality with and without vaccine, assuming case mortality of 1% in all groups.  752 

 753 

Fig 5: Second wave in the hotspot scenario. Urban cluster generates a second wave of infection 754 

when it reopens from R0=1.05 to R0=2.50 on day 360 (green line), whereas hotspots with R0=3.0 755 

(red line) have acquired immunity in the first wave and do not participate in the second wave. 756 

 757 

 758 
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Fig. S1. The distribution of secondary infections generated by infectious individuals. 
Black: Observed negative binomial distribution (Althouse, B. M., et al. 2020; "Stochasticity and 
heterogeneity in the transmission dynamics of SARS-CoV-2." https://arxiv.org/abs/2005.13689); 
Green, blue, magenta, red: The actual realized number of secondary cases generated over the 
lifetime of one infection in the presence of n other infections individuals according to our 
scheme.   All distributions have mean R0 =3.0.  Dashed line: Poisson distribution with mean R0 
as implicit in mean-field SEIR models.
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Fig. S2. Heterogeneity of isolated clusters is important for the infection pattern. In the most complex scenario of “moderate lockdown” (Fig. 1C in 
main text) we substituted 250 clusters by one big cluster with the same population of one million people keeping all other parameters the same. The 
big isolated cluster generated substantial and sharp infection peak (panels A and B) that is absent or very small in case of 250 isolated clusters (panels 
C and D). Each panel shows 10 simulation runs (overlapped multi-color curves). The lockdown period from day 40 to day 225 is shown by green shade. 
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Fig. S3. Stochastic propagation of infection from one urban area to another via hotspots in a society of 4 
connected urban areas, each in lockdown but having hotspots.  Each plot from top to bottom shows 
infection explosions in each individual hotspot for each urban area (specified by labels). See main text 
for details and also Movie S2.
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Movie S1 (separate file). Highly susceptible integrated clusters (hotspots) drive SARS-Cov2 

infection in an urban cluster in stochastic simulations of SHEM model. Infection time-

dependent changes in hotspots (small squares) are coded by red shades saturating (pure red) at 

5% of infection in each individual cluster. Infection in the urban area (big square) are is coded by 

blue shades saturating (pure blue) at 5% of infection in the area. The time is shown in the left 

upper corner in number of days. Large urban cluster had 1 million individuals with R0 = 1.25 

while 250 hotspot clusters with 1200 +/- 500 people had the same internal R0 = 3.0. 

Movie S2 (separate file). Hotspots drive SARS-Cov2 infection in each urban cluster and 

infection propagation among urban clusters in stochastic simulations of SHEM model in a 

society of 4 connected urban areas. Time-dependent changes of infection in hotspots (small 

squares) are coded by red shades saturating (pure red) at 3% of infection in each individual 

cluster. Infection in the urban area (big square) is coded by blue shades saturating (pure blue) at 

3% of infection in the area. The time is shown in the left upper corner in number of days. Each 

urban area of 100,000 people at day 40 became closed from R0 = 2.5 to R0 = 1.25 at day 40. Each 

urban area has 30 hotspots with 1200 +/- 500 people that avoid closing and keep the same 

internal R0 = 2. 
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