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A Methods

A.1 Epidemiological model

The disease is described using an age structured compartmental model comprising 11 distinct
categories and 9 age groups. Each age group represents a ten year interval (0-9, 10-19, etc),
with the last representing the population over 80 years old. The choice is dictated by the strati-
fication used for data on hospitalized cases and deaths [1, 2, 3]. The epidemiological model is
schematically described in the main text. Susceptible individuals (S) become exposed (E) upon
transmission of disease from an infected individual. Exposed individual remain in the exposed
class for 1/σ days after which they transition to either a detected infection (I) with probability
zi or an undetected infection (U) with probability 1 − zi, where zi is the age-dependent ascer-
tainment rate. Both detected and undetected cases may transmit the disease to susceptible
individuals with transmission rate β = R0γ/λCH and susceptibility σi as explained in the main
text. All cases remain infectious for an average of 1/γ days, after which they are removed from
the transmission chain. Undetected cases move to an undetected-removed class (Z), while de-
tected cases may quarantine at home (Q), become serious (H) or critical cases (C). Those who
become serious or critical, do so with a delay which is taken into account with a waiting class
(W). The probability of a detected case to home quarantine is qi, and that of a non-quarantined
detected case to become a serious case is hi. These two probability are calculated from the
probabilities of a detected case to become a hospital case ĥi or a critical case ĉi as

qi = 1− ĥi − ĉi
hi = ĥi/(ĥi + ĉi)

The average permanence in the waiting class W is 1/ρ. The average permanence in hospital
and critical care is respectively 1/µh and 1/µc. Age dependent death probabilities for individuals
in hospital and critical care are respectively dhj and dcj . Transition between exposed to infectious
classes and from infectious classes to subsequent classes may be implemented using multiple
classes to provide gamma distributed transitions, although we did not take advantage of this.
The full model is described in figure 1.
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Figure 1: Full set of stochastic transitions implemented. There are three sets of transitions
involving transmission: the first two are implemented separately because each has a distinct
associated action: the work transmission for instance only occurs if individual are not staying at
home, whereas non-work transmission may still occur for all individuals, depending on the set-
up. Household transmission is implemented separately from the other two. The waiting class W
describes the delay to hospitalization.
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A.2 Household attack rate and modifications to the force of infection

The use of a household structure alters the force of infection: a household will tend to contain
the wider spread of the disease, especially if a quarantine or stay-at-home policy is enabled.
Since we are breaking the local full mixing of the population, the epidemic curve will follow a
less steep growth rate. Thus to compare the household model with the well mixed description
we need to introduce an effective basic reproductive number that reproduces the same growth
rate of the well mixed model: this allows to parametrize the model with the estimates obtained
using simpler well mixed models.

The basic reproductive number Reff
0 is the maximum eigenvalue of the matrix

Zij(α) =
RCH

0

λK

(
Kwork
ij +Kschool

ij +Kother
ij + αKhome

ij

)
=

RCH
0

λK
Kij(α)

(1)

for an appropriate value of α, where RCH
0 is the estimated pre-lockdown basic reproductive

number for China, and λK is the maximum eigenvalue of the full Chinese contact matrix. It
follows that R0 evaluated for the well mixed model in the country of interest is the maximum
eigenvalue of the matrix Zij(α)|α=1. On the contrary, when α = 0 the model has no transmission
in households. Thus the correct value when including a household description is in between
these two extremes. The factor α, representing the contribution of Khome

ij to the transmission,
is related to the fraction of individuals who will become infected within a household. Given a
household of mean size µ, if the transmission probability per individual per day were 1, then
at most there would be µ − 1 secondary infections. Thus, the contribution of Khome

ij would be
multiplicatively bounded by α = (µ− 1)γ/λKhome . Note that such ratio must be necessarily less
than one.

Suppose now that the probability of transmission per individual per day is less than 1, then
the average number of secondary infections within a household will be µ∗ < µ − 1. We can
evaluate µ∗ numerically by randomly sampling individuals from the age structured population.

Parameter Use Value
R0 Basic reproductive number fitted
1/σ Permanence in the exposed class 3 days
1/γ Average duration of transmission window fitted
1/ρ Delay to hospitalization 3 days
zi Ascertainment rate 0.68% - 29%
ĥi Probability to be a severe case if detected 10.3% - 57.1%
ĉi Probability to be a critical case if detected 0.66% - 7.37%
1/ζ Average time to removal if undetected 2 days
1/µh Average permanence in hospital ward 6 days
1/µc Average permanence in critical care 7 days
dhi Probability of dying if hospitalised 1.2% - 68.5%
dci Probability of dying if critical 0.0% - 64%

Table 1: List of parameters and values used in simulations. When a range of value is provided,
this is due to the fact that the parameter is age dependent.
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Country Mean size Household Reff
0 /R0 β∗,HH/β∗

of household attack rate [95% C.I.]
Italy 2.31 0.1948±0.0005 1.23730 [1.23728–1.23732] 1 (a)

Spain 2.5 0.1976±0.0005 1.26042 [1.26040–1.26045] 1 (a)
UK 2.4 0.2020±0.0005 1.28792 [1.28789–1.28795] 1 (a)

Wuhan 2.85 0.1968±0.0005 1.25459 [1.25456–1.25461] 1 (a)

Italy 2.31 0.3000±0.0006 (b) 1.23311 [1.23308–1.23313 ] 1.639±0.003
Spain 2.5 0.2997±0.0006 (b) 1.25531 [1.25528–1.25534] 1.609±0.003

UK 2.5 0.3002±0.0006 (b) 1.28205 [1.28202–1.28209] 1.575±0.004
Wuhan 2.85 0.3000±0.0006 (b) 1.24933 [1.24931–1.24936] 1.615±0.003

Table 2: Corrective coefficient to the general and household transmission rates, based on
average household size and country. (a) For the first set of values, the household transmission
rate was imposed to be the same as the general transmission rate. (b) The second set of values
has the attack rate set to converge to 0.30.

We build households around infected individuals by choosing the household size according
to a Poisson distribution with mean equal to the mean household size, and other susceptible
members according to the age distribution g(i) = Khome

ij /
∑
iK

home
ij , where j is the age group of

the infected individual. Since household members are chosen according to g(i), the distribution
of contacts within households reflects the Khome

ij matrix. For each household we attempt, each
day, transmission from the primary infected to other household members at rate β, during a
period of 1/γ days. Finally we count the final fraction of infected in each household excluding
the infector: this represents the household attack rate ν. The attack rate can be used to evaluate
α via

α = νµ∗γ/λKhome (2)

By repeating the procedure 1,000 times using each time 1,000 households, we get an initial
estimate for the household attack rate. Using this value we get the ratio between R0 and the
effective Reff

0 – the effective reproductive number associated with the household description.

R0

Reff
0

=
maxλ∈σ(Zij(α)|α=1) λ

maxλ∈σ(Zij(α)|α∗ ) λ
(3)

This ratio can also be estimated by directly simulating early growth with a fully well mixed trans-
mission model, leading to values comparable to the ones reported in table 2. Since the repro-
ductive number is proportional to the transmission rate, to correct the growth rate of the early
epidemic so that it reflects the growth rate of the corresponding well mixed model for a given
R0, it is sufficient to increase the per contact transmission rate to β∗ = βR0/R

eff
0 , so that the

new effective reproductive number R∗,eff
0 becomes equal to R0. The household attack rate ν∗

resulting from the new per contact transmission rate can be readily evaluated (Table 2).
The value for the household attack rates are higher than that measured by Bi et al. . [4]

(11.2% 95% C.I. [9.1-13.8]), but lower than the 30% estimated in Ref. [5]. The R script that was
used to evaluate the above results, can also force the household attack rate to a specific value,
if this is available, by further tuning the within household transmission rate β∗,HH. Since the
reproductive number is not a linear function of the household attack rate (due to the small finite
size of households), the correct values for β∗ and β∗,HH must be found iteratively.

We introduce a sequence of household transmission rates β∗t , β∗,HH, attack rates ν∗t and
corresponding effective reproductive numbers (Reff

0 )t: we set β∗0 = β and β∗t = β∗t−1R0/(R
eff
0 )t.
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Figure 2: Population distribution for Italy, Spain and the United Kingdom. The three countries
are represented under the same spatial scaling using an equirectangular projection. The spatial
resolution is 5km.

We further set β∗,HH
t /β∗t = (β∗,HH

t−1 /β∗t−1) ν̂/ν∗t−1, where ν̂ is the target attack rate. The se-
quences β∗t , β∗,HH, ν∗t and (Reff

0 )t converge rapidly to their limit values. Using this method we
evaluated how much the within household transmission rate β∗,HH should be increased with
respect to the general transmission rate β∗ for an attack rate of 0.30. As shown in table 2,
the within household transmission rate is roughly 1.6 times the general transmission rate. This
suggests that increased contact from lockdown restrictions might be at the source of such in-
crease. We thus assumed that household transmission increased during lockdown. Taking into
account the increase in number of hours of close contact between family members we assumed
a peak of 100% increase in contact when both school closures and stay-at-home policies are
implemented.

When at home, at the start of the day, each individual will choose one of his preferred
locations and will move there for a number of hours corresponding to the average work shift.
Individuals who move for more days will stay in the target location for the required number of
nights before moving back. While in their target locations individuals will be subject to the local
transmission dynamics.

A.3 Human Mobility

We use a radiation model [6, 7] for human mobility to describe fluxes of individuals. Our base
areal units are the elements of the gridded map (Fig. 2). The probability that an individual in i
will travel to grid element j, according to the radiation model, is given by:

pij =
Nc
N

ninj
(ni + sij)(ni + sij + nj)

where ni is the population at grid element i, sij is the population within a circle of radius rij
centered in i, excluding locations i and j, and the mobility ratio Nc/N is a fittable parameter.

To reproduce the fluxes, we identified the grid cells corresponding to the different subdi-
visions, and calculated the resulting aggregated fluxes. These fluxes depend on Nc/N : the
optimal value was identified by maximizing the Common Part of Commuters – a measure of
similarity used in various works on human mobility modelling [8, 9, 10]:

CPC({Tij}, {T ∗ij}) =
2
∑
ij min

(
Tij , T

∗
ij

)∑
ij Tij +

∑
ij T
∗
ij

(4)
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where Tij = nipij is the estimated flux between locations i and j, and T ∗ij is the true flux
from data. Assignment of areal units to provinces was achieved by applying a point-in-polygon
algorithm for each grid cell with the polygons describing the shape of each province. A proximity
algorithm was used to assign any grid cells that was left out because had its centre slightly
outside of these polygons. Pre-calculation of bounding boxes for each polygon was used to
speed-up the assignment.

For Italy, the 2011 Census provides the number of working individuals commuting daily be-
tween provinces [11]. Province boundaries were electronically downloaded from the web site
of the Istituto Nazionale di Statistica [12]. For Spain we used microdata from the ‘Encuesta de
Poblacion Activa’, which is a continuous detailed survey of the Spanish population published
every three months [13]. The microdata contains information on the provinces of residence and
work, from which commuting fluxes can be derived. We built commuting matrices by combining
data from the whole 2018 and 2019. Province boundaries are available in electronic format from
the Spanish Instituto Geográfico Nacional [14]. Commuting data for the UK is obtained by the
home-work commuting matrices available from the 2011 Census [15]. Based on information of
residence and place of work of a sample of the population in each Local Authority, these ma-
trices provide an estimate of the number of individuals commuting between the various Local
Authorities for work. Polygons for Local Authorities are available through two sets of files [16, 17]
that can be electronically downloaded. Differently from other countries, Local Authorities (which
represent a basic administrative subdivision in the UK), vary hugely in size, with the City of Lon-
don extending for just 2.90 km2, and the Highlands in Scotland, extending over 25,657 km2. We
thus aggregated commuting data and Local Authorities to a more spatially homogeneous set,
corresponding to Ceremonial Counties in England, and NUTS2 level regions in Scotland and
Wales.

For all countries in this study, data represents daily trips from home to work. The time spent
at destination reflects the average duration of a work day in the each country [18].

A.4 Interventions

Interventions reflect both actions taken by government as reported by online news outlets (La
Repubblica, Il Corriere, BBC, The Guardian, El Paıś [19]) and behavioural changes as measured
by data. Tables 3, 4 and 5 show the set of interventions implemented for Italy, the United
Kingdom and Spain. In all cases, school closures were implemented immediately on the day
the measures was activated by the government, and household transmission was increased to
reflect accordingly increased transmission. Stay at home for working individuals reflected data
from the Google COVID-19 Community Mobility Report for workplaces, while social distancing
as well as stay at home for non working age groups reflected the Google data for retail and
recreation. In Italy and Spain lockdown measures prevented movement between all the 20
Italian regions and all 48 Spanish provinces: the reduction of travel can be estimated to be at
least 50-60% in the Veneto region based on data from one major telecom operator [20, 21].
We thus assumed that for both countries the resulting travel reduction was already taken into
account by the stay-at-home policy.

A.5 Hospitalization, critical care and death rates

The Spanish government made available detailed age stratified data on admissions to hospital
and critical care, and overall death rates until to the middle of May [1]. We use the latest
data available to obtain a crude estimate of the age stratified rates of critical care admissions
for detected COVID-19 cases. Due to the epidemic being far advanced beyond the peak and

6



Timeline Day Intervention Delay Extent Target

23rd Feb 7 Tracing probabilitya 0 Local 1.00
Travel reduction 0 Local 0.90
Household transmission 0 Local 2.00
School closures 0 Local 1.00

24th Feb 8 Reduce importationsb 12 National 1.00

27th Feb 11 Tracing probabilitya 7 National 0.00

1st Mar Household transmission 0 Province 2.00
School closures 0 Province 1.00

4th Mar 17 School closures 0 National 1.00
Household transmission 0 National 2.00

23rd Feb 7 Social distancing 0 Local 0.80
Stay at home work/other 0 Local 0.80

24th Feb 8 Social distancing 0 Province 0.15
Stay at home work 0 Province 0.10
Stay at home other 0 Province 0.15

1st Mar 14 Social distancing 14 National 0.85
1st Mar Stay at home work 14 National 0.65
1st Mar Stay at home other 14 National 0.85

4th Mar 17 Social distancing 5 National 0.20
Stay at home work/young/old 5 National 0.20

Table 3: Detail of interventions implemented in simulations for Italy. “Day” measures the number
of days from the 16th of February 2020, the day when the first case detected attended hospital.
“Delay” is the time interval during which the intervention increases linearly to the “Target” value:
a value of zero means the intervention applies immediately. “Extent” refers to the application of
the intervention on the Italian territory: “Local” interventions apply to the first 11 municipalties
put in lockdown: these are within an area corresponding to two grid elements around Codogno.
“Province” refers to the provinces of Lombardia, Veneto and Emilia-Romagna that were declared
yellow zones on the 1st of March. “National” interventions are valid over the whole of Italy.
Values for social distancing and stay-at-home policies are derived by Google data.

a We assume contact tracing was active during the initial stages of the outbreak after the first detected cases. Strict
lockdown measures were imposed on the first municipalities. On the 26th of March it was announced that swab would
be taken only from symptomatic cases: we assume an interval of about 1 week to bridge with the results from Ref. [22].
Testing of non-symptomatics resumed after the 29th [22], but not because of contact tracing.
b We assume a reduction of international travels to Italy, coinciding to travel bans from Italy: we assume that the bulk of
transmission afterwards is internal to the country.

due to the typical delay in admission to critical care being just a few days, we assume these
crude estimate to be a good approximation of the true estimates. Similarly we get the crude
death rates for hospitalized patients irrespective of critical care, and assume them to be a good
approximation of the true rates.

To estimate death rates for critical care, we use a study on 1951 patients in Intensive Care
Units in Lombardy, Italy [3]. The study provides, age stratified, the number of patients recov-
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Timeline Day Intervention Delay Extent Target

2nd Mar -3 Reduce Importations 35 National 0.00
12th Mar 7 Tracing probability 0 National 0.00
21st Mar 16 School closure 0 National 1.00

16 Household transmission 0 National 2.00

10th Mar 5 Social distancing 14 National 0.77
5 Stay at home work 14 National 0.62
5 Stay at home other 14 National 0.77

24th Mar 19 Stay at home work 14 National 0.69

7th Apr 33 Stay at home work 14 National 0.60

Table 4: Detail of interventions implemented in simulations for the United Kingdom. “Day”
measures the number of days from the 5th of March 2020, the day when the death occurred.
“Delay” is the time interval during which the intervention increases linearly to the “Target” value:
a value of zero means the intervention applies immediately. “Extent” refers to the application of
the intervention on the UK territory: all interventions for the UK are “National” i.e. they apply
to the whole UK territory. Values for social distancing and stay-at-home policies are derived by
Google data.

ered, dead and still in intensive care. Admission to intensive care occurred between the 20 of
February and the 18th of March (for a total of 28 days), and the study reports on the situation
on the 25th or March. To estimate death rates we take into account that the average length
of stay in ICU for patients who died was 7 days [3] and that R0 in Lombardy was estimated to
decrease from 3.0 around the 20th of February down to 1 in the middle of March [23]. Using a
linear approximation for the decrease, the epidemic growth rate may be written as:

I(t) = I(0) exp(R0−1)t(1− t
2∆t )γ

where ∆t corresponds to the 28 days interval above. We use this expression to extract critical
care admission times for patients in each age group, and we assign a permanence in critical
care before death extracted from a Poisson distribution with rate 7 days. We then look at the
sum of the two to get all potential deaths before the 25th of March: these would be the number of
deaths corresponding to a death rate 1 in each age group. To estimate the age dependent death
probability, we tune the fraction of recovered individuals who are expected to die, matching the
estimated deaths by the 25th of March in each age group with those observed.

Armed with these death rates one can calculate the estimated number of deaths per age
group based on the number of critical cases in Spain, and by subtracting these from the total
number of deaths in each age group, one gets the number of deaths of severe (non critical)
cases and relative death rates.

A recent serological survey in Spain provides estimates by age group of the fraction of
individuals who have been infected by the SARS-CoV-2 virus. The survey gives us an additional
key piece of information that we use in these simulations. Combining the data with the number
of cases detected one gets the age stratified ascertainment rate of COVID-19. Thus, multiplying
the ascertainment rate by the rate of hospitalization (which is relative to detected cases), one
get the rate of hospitalization per infected individual, independent on the ascertainment rate. In
the Supplementary Material SM-2, we provide the full R notebook that perform the calculations
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Timeline Day Intervention Delay Extent Target

5th Mar 0 Tracing probability 0 National 0.00

10th Mar 5 Reduce importations 6 National 0.14

12th Mar 7 School closure 0 National 1.00
7 Household transmission 0 National 2.00

16th Mar 11 Reduce importations 7 National 0.74

23th Mar 18 Reduce importations 14 National 0.92

5th Mar 0 Social distancing 7 National 0.64
0 Stay at home work 7 National 0.64
0 Stay at home other 7 National 0.64

12th Mar 7 Social distancing 7 National 0.90
7 Stay at home work 7 National 0.66
7 Stay at home other 7 National 0.90

19th Mar 14 Stay at home work 14 National 0.72

Table 5: Detail of interventions implemented in simulations for Spain. “Day” measures the
number of days from the 5th of March 2020. “Delay” is the time interval during which the
intervention increases linearly to the “Target” value: a value of zero means the intervention
applies immediately. “Extent” refers to the application of the intervention on the Spanish territory:
all interventions for Spain are“National” i.e. they apply to the whole Spanish territory. Values for
social distancing and stay-at-home policies are derived by Google data.

of the rates as well as a discussion of their reliability and a projection of worldwide deaths for
an unrestricted epidemic.

A.6 Fitting procedure

We use two approximate Bayesian computation fitting procedures to estimate model parame-
ters. The first is based on Sequential Monte Carlo, while the second is based on a description
via Gaussian Processes. The second method has the advantage of being particularly efficient,
and is thus useful to our modelling approach.

A.6.1 Sequential Monte Carlo

In approximate Bayesian computation based on Sequential Monte Carlo [24], a number of sam-
pled parameter values (called particles) are propagated through a sequence of intermediate
distributions that increasingly approach a target distribution. This is achieved by associating to
each intermediate distribution an error εj which is reduced for increasing j. The algorithm gen-
erates particles at each iteration: each particle is a set of parameters for which Bt simulations
of disease transmission are executed. At the end of each simulation the resulting set of disease
incidence estimates is compared with the original dataset of incidence of the disease, while
0 ≤ bt ≤ Bt counts the number of simulations that ended at distance less than εj . Each particle
gets an associated weight measuring its relevance. Each generation, the set of accepted par-
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ticles is sampled according to weights wj , and perturbed by a perturbation kernel K in order to
produce a new set of N particles.

The weights are defined as [24]:

wj =


1,

btπ(qt)∑N
j=1 wt−1Kj(qt−1, qt)

The case Bt = 1 is used when transmission is obtained from deterministic models, while for
stochastic models a value Bt > 1 is expected. Consequently, the fitting of stochastic models is
lengthy as several runs are required for each set of parameters in order to estabilish the relative
goodness of different sets of parameters.

The fitting algorithm however requires knowledge of the distance of the time series produced
by the simulation to the original data. Since this information is richer than a simple acceptance
status, we include this information in the weights and limit the number of simulations for each
parameter to Bt = 1. Our weights are thus defined as:

wtj =


εt
δtj
,

εtπ(qt)

δt
∑N
j=1 wt−1Kj(qt−1, qt)

When particles produce time series very close to the data, then the ratio δtj/εt is small and
the weights get amplified. We use an adaptive sequence of tolerances where εt+1 is the η0

quantile of the distances dt0, . . . , dtN of accepted particles at generation time t, and η0 is a tunable
parameter that we set to η0 = 0.4.

The distance from a simulated time series {ej} and the corresponding data set {dj} is eval-
uated using the following function:

δ =


0 for ej = dj = 0∑
j

|ej − dj |2

ej + dj
otherwise (5)

The above expression can be used when both data and estimates are close to zero in the early
stage of the outbreak: the expression avoids divergence when either ej or dj are zero. Also, (5)
is continuous when both ej and dj are zero.

A.6.2 Parallel implementation

The fitting procedure runs several simulations (each using parallel computation) in parallel, thus
creating a multi-level parallel simulation. The simulations run independently so that if one takes
longer it will not delay the others, and they only synchronize when enough simulation succeed
to produce a new generation of particles. In order to achieve this, one of the parallel processes
uses an extra thread to control the independent parallel simulations during the fitting proce-
dure and to keep track of how many were successful. When the target number of successful
simulations is achieved, it synchronizes them so that the main process can collect all informa-
tion, produce a full new set of particles and distribute it back. Each simulation has a dedicated
communication channel where information is exchanged, whilst communication between simu-
lations and the control thread is handled by a separate channel. Both the thread and the main
process may communicate with other processes depending on the kind of messages, and a
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synchronization mechanism between the thread and the main process, which activates when a
new generation of particles is produced, ensures that the two do not end up in deadlock and
that the thread can be safely terminated upon completion.

A.6.3 Bayesian Optimization for Likelihood Free Inference

Bayesian Optimization for Likelihood Free Inference is an approach (detailed in Gutmann and
Corander [25] and in Järvenpää [26]) for estimating the posterior distribution of a model pa-
rameters usable with expensive simulations as it reduces the number of executions required
for parameter estimation. The method is based on a description of the relation between model
parameters and the summary statistics, in our case defined by (5), with a Gaussian Process.
Given a set of parameter values {θ1, . . . ,θt} and a set of distances {f1, . . . , ft}, the posterior
distribution is a Gaussian distribution with mean µ(θ) and variance v(θ) + σ2

n, with

µ(θ) = m(θ) + kt(θ)
ᵀ
K−1
t (ft −mt).

The covariance matrix Kt has the form:

Kt,ij = k(θ(i),θ(j)) + δijσ
2
n

where δij is the Kronecker delta, and k(θ,θ′) describes a squared exponential covariance func-
tion

k(θ,θ′) = σ2
f exp

(
−1

2

∑
q

(θq − θ′q)2

λ2
q

)
and

kt(θ) = {k(θ,θ(1)), . . . , k(θ,θ(t))}ᵀ

We observe that in our work, the distance is a non-symmetric function of parameters: figure 3
shows the dependency of the distance from the parameter in a simplified case were we fit one
parameter on a set of data produced by our simulations. The stochastic fluctuations around the
mean are small: in order to reproduce the correct dependency of m(θ) on the parameters, we
assume a polynomial form of order higher than two. As shown in figure 3, a quartic function fits
the data extremely well. In multiple dimensions, cross term parameters are expected due to the
influence of some parameters (in particular those describing the initial condition) on the others.
A full quartic function in multiple dimensions would require a large number of parameters: we
simplify its form as:

m(θ) = a+
∑
p

bpθp +
∑
p

∑
q≥p

cpqθpθq +
∑
p

∑
q

dpqθ
2
pθq +

∑
p

∑
q≥p

epqθ
2
pθ

2
q

where we are essentially neglecting ternary terms. The optimal set of hyperparameters {a, bq, cpq, dpq, epq}
describing the mean functionm(θ) that minimizes St = |mt−ft|2 can be found using a minimiza-
tion or a least squares algorithm, and the remaining hyperparameters are found by maximizing
the log marginal likelihood:

logP (y|θ) = −1

2
y
ᵀ
K−1
t y − 1

2
log |Kt| −

n

2
log 2π

with y = ft −mt.
The threshold for acceptance is selected as the εt-quantile of the distribution of distances

{δj}t. The acquisition rule used to extend the set of observations in the Gaussian Process
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Figure 3: The relation between distance and parameters in the simplified case of one parameter.
Data were obtained by fitting a synthetic output from a simulation produced with R0 = 2.7.
The simulation uses a map of Italy with a population homogeneously reduced to one tenth for
speed. The blue circles are raw distances between simulation outputs generated during the
fitting process and the synthetic data set. The red triangles correspond to the values of the
mean function m(θ) fitted to the data, assuming a quartic form for the dependence.

selects the next point by extracting it from the distribution π2(θ)V(θ) (method “rand maxvar” in
Ref. [26]) using a Metropolis-Hastings algorithm, where V(θ) is the variance of the posterior (ε
dependent) probability distribution that has the form of eq. 10 in Ref. [26], taking into account
that m1:t(θ) should be replaced by µ(θ). The posterior distributions for each parameter as well
as the corresponding time series are obtained by sampling the expected probability distribution
in eq. 9 of Ref. [26] (substituting m1:t(θ) with µ(θ)) using a Metropolis-Hastings algorithm.
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A.6.4 Initial condition during fitting

All simulations show that an initial detected infection produces a large number of undetected
cases, whereas a new detected infection only occurs after a considerable delay. It would be
unable thus to explain the rapid increase in cases observed in Italy and in Kenya. In order to
approximate the initial growth of the number of detected cases, we assume that a continuous
import of cases is active before day zero. During this “burn-in” phase, a non-zero importation
rate grants new imported cases in the country. To take into account the possibility that unde-
tected cases may have entered the country, we assume that imported cases enter the exposed
class and may thus become either detected or undetected cases. The importation rate is tuned
according to the local data available.

To implement a spatially dependent importation rate, we use the following method. Let ωjk
be the importation rate in age group j and county k, we may write it down as:

ωjk = fjk ω
0 (6)

were fjk is the estimated ratio of cases in age group j and location k. This may be obtained, for
instance, by dividing the number of cases in a given area by the corresponding population size.
If the number of cases is not age stratified, then cases occur in all age groups proportionally to
the group age size. Potential importation thus occur at rate ω0, however each importation events
is accepted only with a probability fjk. To maximize the efficiency, we define ωi = maxjk fjk so
that the expression may be rewritten as

ωjk = f̃jk ω
iω0

Now, potential importation may occur at rate ω̃ = ωiω0, which may be estimated through fitting,
however the acceptance probability is maximized to f̃jk = fjk/ω

i, and takes value 1 in at least
one age group and county.

We assume that importations start flowing in the country a number of days τ before day
zero, with τ a fittable parameter. This “burn-in” phase does not stop at day zero, but contin-
ues throughout the simulation and may be modulated and eventually reduced to zero by using
the appropriate interventions. We tuned the importation rate according to governamental inter-
ventions and to flight data reported in Ref. [27]. Further data on passenger reduction during
the COVID pandemic is available on a number of newspapers and news outlets, for instance
[28, 29, 30, 31, 32, 33].

A.6.5 Estimated parameters and priors

The simulations uses information available from the literature on various parameters as detailed
in Table 1, whilst a few more are estimated by the fitting procedure. Table 6 shows the parame-
ters estimated, their priors and the corresponding range of values.

A.7 Susceptibilities

Estimation of susceptibilities via the simulation model is exceptionally time consuming and hard,
given that we need to fit a total of 12 parameters (if we fix the susceptibility of one of the age
groups, the 80+, to 1 and fit concurrently R0, γ, t0 and ω). We thus follow an approximated
approach. Let Kij be the age-mixing matrix, the force of infection is given by

R0γ

λK̃CH

∑
j

K̃ij
Ij + Uj
Nj

(7)
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Parameter Symbol Prior

Basic reproductive number R0 Uniform[1 , 8]
Recovery rate (inverse) 1/γ Uniform[0.2, 8]

Duration of “burn-in” phase τ Uniform[0, 60]
Importation rate (logarithm) logω Uniform[log(10−5), log(1)] + logωp

Table 6: Fitted parameters and priors. All priors are uniformly distributed: the factor ωp appear-
ing in the prior for ω is a parameter which shifts the range of the uniform distribution to adapt
it to a specific country. This modulating term may be tuned to adapt the prior to the specific
temporal duration and the size of the area that each fjk term in 6 refers to.

where K̃ij = σiKij is an age-mixing transmission matrix that takes into account the age de-
pendent susceptibilities. The term λK̃CH

is the maximum eigenvalue of the Chinese age-mixing
transmission matrix calculated using the same set of susceptibilities {σi}. In this formulation,
the susceptibilities do not affect R0, and we can thus use them to modulate the age-distribution
of the expected number of cases.

The age distribution of the infectives is given by the components of the eigenvector corre-
sponding to the maximum eigenvalue of the matrix K̃ijNi/Nj . However, the contact matrix Kij ,
and thus the transmission matrix K̃ij , is modified during the dynamics in a nontrivial way: we
can express the fact that it changes during the simulation by explicitly stating its time depen-
dence K̃(t). We may however find an approximated matrix C̃ ' 1

T

∫
T
K̃(t) dt that would act

as an effective transmission matrix during the time interval T . Since the major modification of
the contact patterns comes from the selective alterations of the contribution of the four com-
ponents, we can estimate C̃ for a reference simulation with σi = 1 ∀i, by finding the linear
combination of the four components (home, work, school, other) that, combined with ad-hoc
hyper-susceptibilities, reproduces its age distribution of cases:

C̃ = σ0
i

(
Khome
ij + α1K

work
ij + α2K

school
ij + α3K

other
ij

)
where σ0

9 = 1 and the remaining hyper-parameters {α1, α2, α3, σ
0
1 , · · · , σ0

8} can be fitted using
a standard ABC-SMC algorithm. The optimal value of hyper-parameters defines a transmis-
sion matrix C̃ where the eigenvector corresponding to its largest eigenvalue, describes the age
distribution of cases produced by the reference simulation.

We then use the resulting matrix C̃ to find the best set of σi that solves the eigenvalue
equation

σiC̃ijvj = λvi

producing a set of vi such that aivi is close to the distribution of cases observed in data, with ai
being the ascertainment rate in the main text.

A.8 Data sources

The model accepts as input daily cases or cumulative daily cases, daily deaths or cumulative
daily deaths: the fitting procedure can be instructed to fit cumulative or non cumulative daily
cases and/or deaths. This work fits simulations to daily deaths. In addition to the COVID-19 Data
Repository by the Center for Systems Science and Engineering at Johns Hopkins University
(JHCSSE) [34, 35], data is available through national surveillance data bases. Italian data is
available from the Italian Protezione Civile [36], Spanish data is available through daily reports
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from the Gobierno de España [37]. UK data is available through a dedicated UK government
website [38]. It is worth noting that a few countries (Spain and the UK among those discussed in
this work) have modified the definition of case and/or death at some point during the pandemic:
for the UK, data has been modified retroactively, whilst for Spain it has not. Despite such
changes would hardly modify the overall framework and results, we limited our fitting procedure
to time span that excludes major changes, and committed to JHCSSE data set.

For the initial condition, we used the goegraphical detailed reported number of cases. This
kind of local data is available in different formats for different countries. For Italy, the daily num-
ber of cases per province is available from the Protezione civile [36]: there are 110 provinces
in Italy, providing a spatially detailed description, but no information on the age distribution of
cases is available. Spain reported the daily number of cases per Autonomous Community: there
are 16 Autonomous Communities in Spain if we exclude the Autonomous Communities located
in Africa (Ceuta, Melilla and the Canary Islands): no information on the age distribution of cases
is available. For the UK, the situation is more complex as the four constituting nations have
separate databases for local cases. England and Wales provide data on daily incidence by Lo-
cal Authority [38]: there are 380 Local Authorities, providing a detailed spatial description. Age
distribution of cases is also available, but at the level of NHS board, which are extended areas
covering large parts of the two nations: there are 9 NHS areas. For Wales, the daily number of
cases per Local Government is available from the Welsh Government [39]. Northern Ireland is
handled as a single entity and not partitioned in its component constituencies, thus we use data
from the main UK website [38]. For Scotland, we used data per Scottish NHS board [40]. This
data however was incomplete as the exact number of cases in each board was unknown if it was
less than five cases, which occurred during the initial phases of the Scottish outbreaks. We thus
ended up assigning cases based on population size. Note however that, currently, historical
daily data is available at the level of Local Authorities on the Scottish Government website [41].
In all countries we selected a date representative of the initial distribution of cases and used the
spatial case distribution to tune the importation rate: this was typically close to the date that the
first deaths were reported.

A.9 Implementation structure

The main simulation code, stored in the Master directory, uses a simulation engine wrote by one
of the authors to simulate the spatio-temporal dynamics of the disease. The engine takes a file
specifying the compartmental model structure, general simulation parameters and other general
details and produces an executable that can be submitted to a computer cluster to perform the
simulation. Due to the complexity of the model, this file is generated by a python script called
generate.py. This script imports country-specific parameters described in the config.py file.
Code implementing features beyond the compartmental model are detailed in a C++ file called
lse-userdefined.cpp. This file is also in part generated by the generate.py script by adding
code to a base lse-userdefined-base.cpp file. This code is responsible for the handling of all
model specific features like contact tracing, interventions, etc. This file imports country specific
code from coutry specific files Country -setup.cpp, that detail what intervention a country has
implemented and how they were implemented.

In addition to the main simulation code, additional programs perform the data reshaping of
the WorldPop maps. Code stored in the Master/Setup directory is responsible for producing
coarse-grained maps with a given resolution in km from the original WorldPop age stratified
maps. Some utilities of the simulation engine are used in the Map directories to build gridded
maps of county identifiers based on shapefiles describing the geometry of administrative divi-
sions for the country, and to produce partition maps that are used by the engine to distribute the
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workload evenly among computing nodes. Code within the Map/Mobility directories is used
to estimate parameters for the human mobility model based on the data available on move-
ments between areas of the country: these may or may not coincide with the administrative
subdivisions of the country and are stored in specific shapefiles.

An installation file install.sh in the root directory is responsible to automatically prepare
for simulating a specified country: it automatically downloads data from the WorldPop database,
runs the code that builds the age stratified coarse grained maps, produces partition files and
sets up the simulation code for estimating human mobility parameters and running the main
simulation code. Human mobility parameters are not estimated automatically after installation
as this may be lengthy: estimated values are already pre-stored in the configuration files. The
code is available on github at https://github.com/andreaparisi-science/SpatialCOVID19
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