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Human Challenge Trials (HCTs) are a potential method to accelerate de-
velopment of vaccines and therapeutics. However, HCTs for COVID-19
pose ethical and practical challenges, in part due to the unclear and devel-
oping risks. In this paper, we introduce an interactive model for exploring
some risks of a SARS-COV-2 dosing study, a prerequisite for any COVID-
19 challenge trials. The risk estimates we use are based on a Bayesian
evidence synthesis model which can incorporate new data on infection
fatality rates (IFRs) to patients, and infer rates of hospitalization. We have
also created a web tool to explore risk under different study design pa-
rameters and participant scenarios. Finally, we use our model to estimate
individual risk, as well as the overall mortality and hospitalization risk in
a dosing study.

Based on the Bayesian model we expect IFR for someone between
20 and 30 years of age to be 17.5 in 100,000, with 95% uncertainty
interval from 12.8 to 23.6. Using this estimate, we find that a simple
50-person dosing trial using younger individuals has a 99.1% (95% CI:
98.8% to 99.4%) probability of no fatalities, and a 92.8% (95% CI: 90.3%
to 94.6%) probability of no cases requiring hospitalization. However, this
IFR will be reduced in an HCT via screening for comorbidities, as well as
providing medical care and aggressive treatment for any cases which oc-
cur, so that with stronger assumptions, we project the risk to be as low as
3.1 per 100,000, with a 99.85% (95% CI: 99.7% to 99.9%) chance of no
fatalities, and a 98.7% (95% CI: 97.4% to 99.3%) probability of no cases
requiring hospitalization.
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1 | INTRODUCTION

As of November 15, 2020, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to over 54 million
confirmed infections worldwide and over 1.3 million deaths. Currently, there are no clinically-approved vaccines
against COVID-19. McKinsey estimates that global vaccine production will reach one billion doses by the end of
2020, and eight billion by 2021 assuming the most advanced vaccine candidates pass clinical trials on time[2]–a thin
margin of error.

Timely development of new pharmacological therapeutics and vaccines will be necessary to manage disease
burden and impact of COVID-19. Different paths to vaccines can exist, and more traditional clinical trials are slow and
require large subject populations to discern therapeutic effects[18]. In order to accelerate testing, several authors and
institutions have proposed intentionally exposing human subjects to SARS-CoV-2 to test novel interventions; to this
date, nearly forty thousands of people have expressed interest in volunteering for this task[1]. Such human challenge
trials (HCTs) have been useful in the past[19] to develop vaccines and treatments for other infectious diseases such
as Malaria, cholera, respiratory syncytial virus (RSV) [35, 13], influenza [41], and Dengue fever [20]. However, two
major problems currently stand in the way of conducting HCTs for SARS-CoV-2 infection. First, given lack of rescue
therapies and our limited understanding of COVID-19’s risks, it is difficult to weigh the likely impacts of these studies
on volunteers against the benefit to society, or to obtain informed consent from volunteers[33]. Second, we do not
know what viral dose of SARS-CoV-2 should be given to volunteers.

To help address both concerns, we developed a model to help assess the risks participants will face in a hypo-
thetical dosing study for COVID-19. This model uses data from a non-systematic review of data on COVID-19 risks
(mortality and infection rates) and describes risks for individuals as well as the overall study risk. As both clarification
on viral dose and viral risk are essential before starting HCTs, this work can help inform policymakers and potential
volunteers about some risks concerning the process of using HCTs to accelerate vaccine and therapeutic development.

2 | METHODOLOGY

We developed a three-component tool to understand and explain the relevant risks. The first component quantifies
risk of COVID-19 mortality by using a Bayesian evidence synthesis model; the second uses that estimate, along with
other data on gender-specific mortality and hospitalization risks to simulate the risk of a study with given character-
istics; the third is a front end tool for allowing interactive exploration of risks from a study or to an individual.

2.1 | Bayesian evidence synthesis model

We use a Bayesian meta-analysis approach to obtain an estimate of mortality risk. This form of modelling combines
different sources of evidence with varying statistical power to obtain posterior distribution for mortality risk in differ-
ent populations. In our case, we use age-specific, location-specific death and prevalence data to generate an estimate
of the infection fatality rate (IFR), and estimates of relative risk in healthy individuals (vs the general population) to
understand risk reduction in individuals who would participate in an HCT.

We use Bayesian methods because they allow us to best account for heterogeneity in IFRs across different pop-
ulations (age groups, different countries and regions). Characterising this heterogeneity is important when assessing
possible reductions in IFRs. For example, it can be argued that an HCT can use screening and provide medical care to
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achieve a rate of IFRs which is at least as low1 as the region or country with the lowest IFRs in our data.
Although existing statistical packages for meta-analysis (both Bayesian and frequentist) could easily be used to

model event rates such as IFR[44, 8], thesemodels may not work when no deaths are observed, as is often the case for
COVID-19 in younger populations. To address this, we use death data and estimates of prevalence as inputs instead
of IFRs. We then construct a new, reproducible model for IFRs.

Methodological details of the model are described in the Appendix. 2 We assume that the fixed effect of age and
random effects of location on IFR are on logit scale, as is typical for meta-analysis models of binary data.

However, while our IFR estimates capture average risks within different age groups and even heterogeneity across
regions or countries, they still refer to the general population (of a given age, in a given location). A prospective HCT
participant would be screened for health issues and comorbidities, further reducing the risk in comparison to the
members of general population. To account for this, we perform an additional analysis using OpenSAFELY[43], a
large observational dataset on COVID-19 mortality factors that includes comorbidity and age information, as well as
data on gender, comparing the risk in general population to lower-risk subpopulation3. Similarly to adjustment for
heterogeneity across general populations, the adjustment for screening can be turned on or off in our tool.

Input data for the Bayesian IFR model is based on a non-systematic review of the literature and earlier meta-
analyses, particularly by Levin et al [21], but we have also opportunistically included other studies, and data from other
official sources as detailed in the appendix. However, the list of studies is not fixed, since new and better characterized
datasets are becoming available over time. For this reason, we havemade sure that incorporating additional prevalence
and death data from newer studies and/or updated data sets is straightforward. We will continually update the model
to assure that any estimates provided to participants or used for decisions include all relevant data, rather than only
using data that was available when the analysis was first performed.

We use the age- and gender-specific data from Salje et al. [36] for the rate of death of hospitalized patients to
impute the relative risk of hospitalization based on our meta-analysis for mortality risk.

Our model is available publicly, together with input data and source code for the tool and under an open license,
at https://github.com/1DaySooner/RiskModel.

1This is an assumption, and we allow users of the tool to choose to use the overall estimate across studies, or the expected lower risk.
2Briefly, let k index populations and lock their locations (countries, regions). Let dk be observed deaths for data point k ; µ (p )

k
the reported

mean prevalence and σ (p )
k

its standard error, on logit scale; nk the total population; X is a vector of median ages, expressed in decades and
centered at 25 years. The hierarchical model is as follows:

dk ∼ Binomial(nk , pk I F Rk ) (1)

logit(pk ) ∼ N(µ (p )k , (σ
(p )
k
)2) (2)

logit(I F Rk ) = θlock + Xβ , (3)

θj ∼ N(τ,σ2),where j = 1, . . . ,K l oc . (4)

The parameters of the model are pk , the true prevalence; θ, location-specific (random) effects on IFR; β , (fixed) effect of age; τ and σ , the
hyper-mean and hyper-scale parameters for IFR. We implement our model in Stan[9], with weakly informative priors on all parameters. The
prior for τ is centered at 1 death per 10,000 cases.

3The lower-risk group is defined as non-obese, non-smoking, and without the following risk factors (same as used by [43]): asthma, other
chronic respiratory disease, chronic heart disease, diabetes mellitus, chronic liver disease, chronic neurological diseases, common autoim-
mune diseases (Rheumatoid Arthritis (RA), Systemic Lupus Erythematosus (SLE) or psoriasis), solid organ transplant, asplenia, other immuno-
suppressive conditions, cancer, evidence of reduced kidney function, and raised blood pressure or a diagnosis of hypertension.
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2.2 | Transforming individual risk into study risk

Once a suitable challenge virus is manufactured, itself a complex process [10], the risk of the individual from a chal-
lenge trial depends on the dose of virus given. The uncertainties about dose-response lead to a number of additional
uncertainties about overall study risk. For other viruses, such as H1N1 and H3N2 influenza, a dose-response rela-
tionship has been found[26, 15]. The specific dose-response relationship, and its functional form must be determined
experimentally, which is an outcome rather than an input of a dosing study like the one we are considering4. This un-
certainty is a key issue, so, as suggested byMorgan and Henrion[28], we advise that this structural uncertainty should
not be treated as a probabilistic variable, and instead sensitivity analysis should be used to enable the consideration
of a range of plausible outcomes.

Given the specifics of a study design, the relationship between individual risk and the risks in the overall study is
straightforward, assuming independence of risk between individuals in the study5. The risk to an individual of severe
disease in the study given dose d is indicated Sd , and the risk of mortality is correspondingly Md , so the probability
that someone in a group of size N experiences the corresponding outcome is 1 − (1 − Sd )N and 1 − (1 − Md )N . By
simulating the probability of impact for each dosed group and, in the case of more complex studies, conditioning the
trial of later groups on the results of earlier ones, we can find the overall risk in more complex studies.

In the current version we have restricted the tool to consider to a simple N -person study. This means the tool pro-
vides an upper bound for risk of mortality and hospitalisation, higher than in a more complex dose-escalation study6

However, the underlying model structure allows simulation of dose-dependent and/or conditional study designs, as
necessary, to accommodate dose response information and allow for the simulation of more complex trials.

2.3 | Interface

The web tool we built allows exploration of two related types of risk. The first allows individuals to explore their
personal risk, for example, by gender and age, if they volunteer to participate in a study, while the second displays
overall risk of a single round dosing study with a given number of participants. Assumptions on study design and the
underlying risk can be adjusted to allow interactive exploration by policymakers and participants.

In considering personal risk, the tool uses pre-calculated outputs from the risk model to calculate and display
predictions for hospitalization rate and death rate for individuals as a function of age and sex.

Deaths are further translated into micromorts–the expected number of deaths per million events, a standard
method of showing mortality risk[16] often used for patient consent [3]. Quantities which cannot be transformed
into micromorts, are presented as probabilities7.

The tool allows both the public and policymakers alike to explore how overall risks change depending on differ-
ences in study design. This also helpsmaintain transparency into clinical trial design concerns, thereby better informing
potential challenge trial volunteers. We also note that for trial designers and ethicists, the relationship between risk
of different impacts and compensation is critical[14, 33, 5].

The importance of transparency and public engagement has been widely noted in the literature on challenge
trials[17]. For this reason, the tool is available for public use, and is already being used to inform people who have

4There is an assumption implicit in the model that the trial uses dose escalation or other data to ensure that the dose given does not greatly
exceed the typical natural dose, or that a larger-than natural dose does not increase disease severity.

5The assumed independence is conditional on the age and health status of participants, and for dose-response studies, also infection severity
by dose.

6This is equivalent to assuming that the risk of infection at each dose is above the threshold for infection to replace a dose-response curve.
7See discussion below about incorporating other risks in the model as more data becomes available.
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volunteered to be contacted to potentially participate in a challenge trial[1].

3 | RESULTS

The analysis dataset for age-specific IFRs contains 114 data points from 23 studies, with each containing between
3 and 11 different age groups; all data are presented in Table 2 in Appendix and are included in the code repository
accompanying this paper. A glance at available data also confirms the necessity of using a more complicated modelling
approach: out of 114 age-specific estimates, only 24 contain individuals aged between 20 and 30. However, out of
these 24, only 2 have median age that falls between 20 and 30.

The basic evidence synthesis model, which includes all data, but does not adjust for health status, finds that
average IFR in 20-29 age group for the studies included in this analysis is 17.5 per 100,000 cases (95% uncertainty
interval8 12.7 to 23.3). Extending the HCT population to also include 30-39 year olds would lead to mean IFR of 29.9
per 100,000 (95% interval 21.9 to 39.9)9.

Based on OpenSAFELY data, we estimate that in healthy population (defined as lack of any co-morbidities listed
above), the average mortality risk in 20-29 year olds10 is 1.9 times lower than in the general population, with 95%
interval from 1.3 to 2.8.

We also note that there is large heterogeneity across the studies, due to treatment availability and other factors11.
Because the HCT volunteer population will receive the best available care, including the most up-to-date treatment
options, we can consider our population akin to a best-case scenario. In Belgium, the estimated risk for 20-29 year
olds is 5.74×10−5, approximately 1

3 the estimated risk across all populations. Expanding the study population to 20-39
year olds would result in mean IFR of 9.88 per 100,000 cases.

Additionally, in the meta-analysis we estimate a population-level IFR by age, which does not account for the
health status of screened volunteers. Looking at the OpenSAFELY dataset for the UK, we find a mean risk reduction
factor in healthy populations aged 20-29 equal to 1.9, although our estimate is uncertain, with 95% interval from 1.3
to 2.8. This adjustment can be used to modify the risk estimate for the general population across studies.

It is unclear how much double-counting occurs when adjusting for both available medical care and for screening
out comorbidities. However, using this estimate, we use our estimate that a simple 50-person challenge trial has
a 99.85% probability of having no induced fatalities, and a 98.6% probability of having no cases serious enough to
require hospitalization.

Due to lack of reliable data, the current model does not include estimates of longer term impacts, and instead
includes a more qualitative discussion of these risks[38], but the model and interface will be updated with such esti-
mates as they become available.

The model interface can be used to explore how these uncertain factors can interact, as shown below in Figure
2.

The overall study risk for a simple 50 person study is 0.15% probability of any deaths, and 1.4% probability of at
least 1 hospitalization. This represents an upper bound of risk for 3 groups 10 of volunteers given different doses of
COVID-19, and an additional 20 person cohort to ensure sufficient sample size.

8All intervals reported here are Bayesian posterior intervals. For brevity we just refer to them as "x% interval".
9See estimates in the appendix for how relative risk was estimated between age groups.

10Expanding to 20-39 year olds only slightly increases the risk reduction factor, from 1.9 to 2.
11Denoting by σ the hyper-scale parameter in the hierarchical model, 2σ impact corresponds to 3.96-fold mean decrease in IFR. That means
we expect 2.5% of studies to have IFR more than 4 times lower than the average IFR.
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F IGURE 1 IFR as a function of age. Panel A is untransformed data. Panel B shows the same data on log 10 scale.
Red points are data, i.e. model estimates of mean IFRs in particular studies, with bars representing 95% posterior
intervals. Black and gray are modelled IFRs: lines are means, ribbons are 95% posteriors intervals: the narrower is
average across all included studies, the wider takes into account heterogeneity between studies. Details and input
values are given in Appendix.
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F IGURE 2 Interactive Model Interface

While the estimate is specific to a dosing study, it can also be useful for understanding the risk of later vaccine
trials, though in that case other factors, including the possibility of vaccine-enhanced infection, would need to be
assessed.

4 | DISCUSSION

We have demonstrated that we can model certain risks associated with human challenge trials. However, our model
is incomplete, and considerable concerns remain about the risks of human challenge trials. While a full accounting of
challenge trial ethics is beyond the scope of this paper, we consider several factors below that inform our work on
human challenge trial design, especially unmodeled risks. For a more complete perspective on the ethics of COVID-
19 HCTs, we direct the reader to the World Health Organizations’ (WHO) key considerations [31] and the recent
discussion in Lancet Infectious Disease [17, 24] on how these issues are being addressed.

In our modal case, it is clear that the risk of our dosage-response study is not higher (and indeed likely far lower)
than the risk from comparable clinical infections in the general population, and are far lower than other risks that are
typically widely viewed as acceptable. Further, human challenge trials have had historical precedent, showing promise
for both less lethal human coronaviruses, and for yellow fever[37]. They also provided early indications regarding the
possible efficacy of a leading malaria vaccine candidate[30]. The discussions about earlier trials shows that the ethical
challenges of HCTs should not be seen as unique, but rather as lying along a natural continuum of clinical studies
[12]. That said, the initial human challenge trials should be held to high ethical standards, both for individual risks and
to preserve public trust in scientific and medical progress. That includes emphasis on fully informed consent of the
participants, and as noted by the WHO, higher than typical ethical standards[31].
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4.1 | Opportunity Cost

When evaluating clinical trial design, it is not sufficient to evaluate whether the proposed model is good ex nihilo. One
must consider whether the alternatives are better. The key benefit of a dosing study is to allow further research with
challenge trials, and alternative clinical trial models have major practical difficulties and far higher costs in a variety of
ways. While this is not relevant for the initial set of vaccines that are close to approval, the challenge of large scale
trials is magnified for later vaccines.

For example, “standard” phase 3 efficacy trials for an ongoing novel pandemic rely on high numbers of trial partic-
ipants, and require this large sample for each vaccine or treatment that is trialled. Such trials are relatively expensive,
and expose more trial participants to negative side effects of a given treatment, so that in many scenarios HCTs have
been shown to be superior [4]. Standard trials are also difficult to pursue after an initial vaccine is available, and in the
likely and hoped-for case that there will soon be at least one vaccine, finding willing participants for later and perhaps
more effective vaccines, or ones with fewer side effects, is harder, and the burden of proof for benefit is far higher, or
not achievable given plausible sample sizes, without an HCT.

Assuming a log-linear relationship between age and IFR, we estimated that IFR increases on average 2.93-fold
per each additional decade of age. We also estimate IFR of 1.75 per 10,000 among individuals aged 20-30, with
considerable heterogeneity in IFR across locations, ranging from 6.29 per 10,000 to 5.7 per 100,000. These results
align with two recent meta-analyses of IFRs by O’Driscoll et al and by Brazeau et al [32] [6]. Both studies also show
log-linear relationships between age and IFR, as well as considerable variation in IFR by context. O’Driscoll et al report
median IFRs of 0.6 and 1.3 per 10,000 among those aged 20-24 and 25-29, respectively, while Brazeau et al report 3
and 4 per 10,000 respectively.

4.2 | Limitations

Finally, it is important to note that our model does have limitations. Hospitalization rates and death for 20-30 year
olds are rare; our prior knowledge on fatalities for this group are more uncertain due to limited data. Information on
long-term damage caused by COVID-19 is similarly incomplete, and though this is discussed further below, our model
does not currently account for that risk. Also note that although our model uses hospitalization as a proxy for the
upper bound of serious nonfatal COVID-19 cases, more data is required to see if this is an accurate assumption.

Finally, our model may not accurately capture changes in COVID-19 risks over time. It also does not estimate any
indirect risks of the study. We stress that our model is not a comprehensive analysis of all available risks, but rather a
tool quantifying certain known risks that can be used by trial participants and policymakers.

4.3 | Non-modeled Risks

We also note that there are several impacts we do not model in the study, most notably the concern about so-called
Long-COVID, which is a catch-all term referring to a combination of persistent symptoms, i.e. slow recovery, and new
post-recovery symptoms[7]. It is understood that for some cases, especially severe ones, recovery from COVID-19
can take months. In others, there are longer-term symptoms differing from those experienced during the infection,
perhaps similar to Post-SARS syndrome[34, 27]. At the same time, COVID-19 recovery has been found to be faster in
younger, healthier patients[40], which may mean the risk is lower in this group. It seems clear that the risk is a subject
of continuing scientific investigation, and as it becomes better understood and quantified, it will be incorporated into
both the risk model, and the web tool. Until then, the model contains an embedded overview of what is currently
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understood and known or unknown about longer term risks[38].

We also note that vaccine-induced disease enhancement is a critical concern for vaccine challenge trials, but is
not relevant to dosing studies. Still, this risk must be considered in analyses of risks for later trials, and the model
would need to be adapted or supplemented to consider this.

5 | CONCLUSION

Human challenge trials are not risk free, but the balance of risk and benefits seems to clearly favor allowing them,
as a large group of experts has argued[39]. This conclusion is disputed by some, but all decisions are made despite
uncertainties and debate - whether empirical or moral[22, 23]. The question is whether the both empirical and moral
balance of factors lead to the indicated conclusion. The alternative is a failure to act due to misguided risk-aversion,
or worse, using uncertainty and disputed moral claims as a positive stance to shut down further work, as has occurred
in the debate about HCTs[25].

It seems likely that Challenge trials are a viable way to rapidly test vaccine efficacy, which is particularly critical
now for testing second-generation vaccines, which may prove superior to first generation vaccines, or at least help fill
the demand unmet by first-generation candidates. A dosing study is an urgent first step, and the risk estimates and
tools developed for this paper can assist in planning such studies and informing volunteers.

Our model provides insight into the overall risk of a trial of a given size, and can better inform HCT participants
about the dangers they face. Given that an HCT may help select the multiple vaccines necessary for global immu-
nization while also assisting with therapeutic testing, the risk of an initial study into SARS-CoV-2 pathogenesis seems
justified. If the dosing study is successful, future HCTs of COVID-19 may provide a rapid and systematic way of
screening vaccine candidates for efficacy and safety, which is a significant benefit.

The results presented here are a useful static estimate of risk. The model is already being used to inform potential
volunteers [1], and can be adapted and expanded in the future. Given the evolving understanding of the disease, the
model should be continually updated with additional data on mortality and hospitalisations risks or other long-term
risks. This will contribute to the discussion of whether or not to pursue challenge trials, which can help with response
to COVID-19 in a variety of ways[29]. Challenge trials may be an important tool for fighting COVID-19, and our model
is a step towards that goal.

Acknowledgements: Thanks to Chris Choe, Troy Yamaguchi, and Linchuan Zhang for help preparing and editing the manuscript.
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Appendix: Bayesian model of COVID-19 mortality risk in HCT volunteers

A-1 | INTRODUCTION

This short document is a technical appendix to the paper discussing COVID-19 risks in human challenge trial. Here, we
show how a Bayesian model can synthesise information on many infection fatality rates (IFRs) into a single estimate.
This estimate is specific to certain age groups and can be further adjusted by e.g. co-morbidity status. The analysis
presented here is a form of Bayesian meta-analysis, and our primary objective is to weigh sources of evidence in a
way that captures both variability (here, heterogeneity in real IFRs across different settings) and uncertainty (here, the
fact that we do not know the IFRs in each setting precisely).

The ultimate objective of this model is to characterise risk in a way that is useful for design of HCTs. Therefore,
as a minimum, we want to incorporate variability across different populations into our prediction. Even better would
be to understand how different factors can drive heterogeneity: a priori we hypothesise that the three main drivers
of differences in IFRs are time-specific, population-specific and otherwise country-specific1.

To characterise differences in observed IFRs we first develop a Bayesian model and apply it to publicly available
summary data on IFRs frommultiple countries and contexts, with particular focus on the impact of age. This is covered
by Section A-2. We then use a simple model to hypothesise reduction in risk that may be achieved by screening
individuals for comorbidities; this is Section A-2.2. We summarise all results in Section A-2.3.

A-2 | AGE-SPECIFIC RISK OF COVID-19 MORTALITY

A-2.1 | Bayesian evidence synthesis model

What follows is an adaptation of typical methods of Bayesian evidence synthesis to analysis of IFRs. IFR is the ratio of
deaths to infections in a given population. Early estimates of Covid-19 mortality risk, e.g. by Verity et al. [42], placed
it at over 0.6%; however, it was also evident from data that IFR could be orders of magnitude higher in particular high
risk groups, especially in the elderly, than in the general population2.

By definition, our data on IFRs is a combination of data on deaths with data on infections. Typically, these are
disjoint samples, in that numbers of infections are estimated (typically very imprecisely) on select subpopulation, while
deaths are recorded in the general population (at a level of country, administrative region etc.). There are clear reasons
to believe that IFRs will differ across studies (e.g. due to age, comorbidity status, time, genetic factors, quality of
healthcare etc.). To address this, we will use a Bayesian hierarchical modelling framework to assume that the setting-
specific estimates of I F Rk can differ from each other but are linked through some common parameters. (By k ’s we
denote different populations; note that sometimes we may have multiple I F R ’s from different age groups in the same
location.)

The most straight-forward and “canonical” way to implement such a Bayesian model is by modelling log odds of
the event3. Deeks [11] present a general treatment of such approach in medical statistics. Note, that for very rare

1The role of time may be due to new treatments, improvements over time in our ability to treat COVID-19 or selection pressures which
may lead to more benign versions of the virus. Country-specific or location-specific factors in IFR data may be driven by under-reporting,
health care factors (including access to health care services) or underlying distributions of known risk factors. Additionally, some unknown
risk factors (e.g. genetic) may also be operating, in which case controlling for age and co-morbidities will be not sufficient to account for
cross-location differences.

2Various estimates published since suggested that the relationship of mortality risk to age is consistent across different countries.
3It is also possible to work with I F Rk parameters and treat them as derived from Beta distribution with some “hyperparameters” α and β
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events the odds of mortality are very similar to probability of mortality, but we model events on odds scale as a good
“generic” approach to modelling binary data (in this case death following infections)4.

Basicmodels for this type of analysis of binary data can be implemented using existing statistical analysis packages
(see, for example, metafor package in R or baggr by Więcek and Meager [44]), by treating IFR as a logit-normal param-
eter to meta-analyse. However, note that when no deaths are observed, analysis of IFR (equal to observed deaths
divided by modelled infections) is problematic. Therefore we propose a “custom” model that built in Stan which treats
deaths and prevalences (rather than the IFRs) as data.

Let dk denote observed deaths for data point k and assume that logit of corresponding prevalence estimate is
pk is a parameter (typically obtained from a statistical modelling papers, government reports etc.). Total population in
k -th setting is nk . Total number of estimates is K . Then the model likelihood is as follows:

dk ∼ Binomial(nk , pk I F Rk ) (5)

logit(pk ) ∼ N(µ (p )k , (σ
(p )
k
)2) (6)

where σ (p )
k

and µ (p )
k

are parameters obtained from the literature (or converted from these parameters – see next
section). The k data points collected can span many locations (studies); we denote them by lock and the total number
of locations by K l oc (with K l oc < K ).

In this model we can also account for various covariates impacting the IFRs (let’s denote their total number by
Np ), such as age groups (which we identify with median age of the population being studied, MedianAgek ). We code
them in a design matrix X . To center our X at the value of interest in our model (risk in 20-30 year olds), we use
a transformation MedianAge/10 - 2.5 to construct our matrix X . We denote all of the covariates using a design
matrix X and denote by Np the number of columns in X . We assume the impact on IFR is on logit scale, same as in
the “canonical” logistic models of binary data that we mentioned above:

logit(I F Rk ) = θlock + Xβ , (7)

θj ∼ N(τ,σ2),where j = 1, . . . ,K l oc . (8)

This means θ spans location-specific (random) effects on IFR while β is Np dimensional vector of (fixed) covariate
effects.

We implement ourmodel in Stan and assumeweakly informative priors on all parameters, with prior for τ centered
at 1 death per 10,000 cases.

model {

//Uncertain prevalence estimates (mu^p and sigma^p above):

logit_prevalence ~ normal(mean_prevalence, sd_prevalence);

//Likelihood of mortality (d_k = obs_deaths, p_k = prevalence):

of Beta distribution, as done by e.g. Carpenter[8]. That approach, however, does not offer an easy way of modelling impact of covariates
(e.g. age and co-morbidities) on the rates.

4Another advantage of such a model is that it can use either individual-level or summary data and work with covariates (such as gender, age,
time of the study, co-morbidities), captured as odds ratios or risk ratios. If only summary data are available, covariates can be defined as study
level distributions (e.g. % male).
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obs_deaths ~ binomial(population, prevalence .* ifr);

//Hierarchical component of the model (location-specific theta):

//logit_ifr = theta_k[loc] + to_vector(X*beta);

theta_k ~ normal(tau, sigma);

//Priors:

tau ~ normal(logit(.0001), 5);

sigma ~ normal(0, 10);

beta ~ normal(0, 10);

}

A-2.2 | Data

We used estimates originally collected by Levin, Cochran, and Walsh (2020) to construct the first version of analysis
dataset, which we then supplemented with more values extracted from other studies. The input data into our model
consists of deaths (treated as known) and prevalences (treated as logit-distributed parameter with known mean and
SD) in all reported age groups in all studies5.

All of input data are given in Table 2. The analysis dataset contains 114 data points from 23 studies, each con-
taining between 3 and 11 different age groups. We made only minimal modifications to source data, by 1) imputing
the values in the Italian fatality data based on a seroprevalence survey, 2) imputing population size in Maranhao (as
ratio of the reported number of infections and the mean infection rate) which were not reported and 3) assuming that
uncertainty in prevalence 0-29 age group in Iceland is same as in the 30-39 age group since data were missing.

As mentioned, our model treats number of COVID-attributable deaths as measured without error (due to lack of
data) but accounts for uncertainty in infection rates, which are always model-based estimates extracted from various
available data sources. In preparing data, we assumed that logits of prevalence estimates from available studies are
normally distributed, which seems to reproduce majority of data very well, see Figure 7 in the Supplement. There are
some discrepancies with studies that allowed for prevalence estimates to be 0, something that our logit model does
not allow.

For each studywe construct a median age scalar defined by the average of the endpoints of each age range, rather
than attmepting to calculate a population-weighted mean.

Our approach of regressing on themedian age and use of all available data (rather than the subset of data available
in younger adults only) is necessitated by data limitations: out of 114 data points comprising age-specific estimates
of prevalence (or IFR) and counts of deaths, 24 contain individuals aged 20-30 who are of primary interest to us.
However, the populations are mixed with regards to age, with typical age groupings such as 19-49, 20-49, 20-39, 0-
49 used instead. In fact, we find only one estimate out of 24 that is entirely specific to the 20-29 age group (Brazilian
state of Maranhao), while one more has median age falling between 20 and 30 but is not specific to that age group.

A-2.3 | Results

There were no issues with convergence of the Bayesian model. We set number of iterations to 5,000 and used 4
chains, with max_treedepth option set to 15. There were no divergent transitions and effective sample size was

5This basic approach exaggerates uncertainty, as we treat different 95% intervals reported in the study as uncorrelated.
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greater than 3190 for all of 368 modeled parameters (this number includes fitted prevalences, IFRs, θ’s and their
transformations into/from logit scales). For the three main parameters in the model we obtained the following:

## Inference for Stan model: ifr_with0.

## 4 chains, each with iter=5000; warmup=2500; thin=1;

## post-warmup draws per chain=2500, total post-warmup draws=10000.

##

## mean se_mean sd 2.5% 25% 50% 75% 98% n_eff Rhat

## tau -8.66 0 0.15 -8.97 -8.76 -8.66 -8.56 -8.35 10140 1

## sigma 0.67 0 0.12 0.48 0.59 0.66 0.74 0.96 9711 1

## beta[1] 1.07 0 0.01 1.05 1.07 1.07 1.08 1.10 4217 1

##

## Samples were drawn using NUTS(diag_e) at Mon Nov 02 09:51:57 2020.

## For each parameter, n_eff is a crude measure of effective sample size,

## and Rhat is the potential scale reduction factor on split chains (at

## convergence, Rhat=1).

The mean coefficient of beta 1.07 corresponds to 2.93-fold increase in mortality risk following an infection per
each extra decade of age (95% uncertainty interval is 2.87-2.99).

From these parameters we can predict average risks for subjects of any given age x , by using the posterior distri-
bution of τ + (10x + 2.5)β (where 2.5 and 10 refer to the transformation that we applied to MedianAge inputs).

A-2.4 | Average infection fatality risk in young subjects

Since we centered our MedianAge at 25 years in constructing our matrix X , we can now obtain model-estimated risk
for a typical HCT population (aged 20 to 30, with median 25) by ignoring the β coefficient and examining τ and σ
only. We find that the average IFR for this group (equal to exp (τ )

exp (1+τ ) ) is 1.75 × 10
−4 (with 95% interval from 1.28 × 10−4

to 2.36 × 10−4). That means, on average, slightly under 2 deaths per 10,000 infections in the studied datasets.

A-2.4.1 | Heterogeneity in IFRs

However, there is a considerable variability in IFRs across different locations/dataset that we should consider. To take
into account parameter σ , we can generate draws from the N(τ,σ2) distribution, corresponding to a hypothetical IFR
in a new source of data. 95% interval for such model runs from 4.39 × 10−5 to 6.94 × 10−4. Since the model works a
logistic scale, another way of interpreting the across-dataset variability is reporting the fold-impact of σ on the mean
IFR; here, we obtain on average a 3.96-fold increase (decrease) in IFR per 2σ increase (decrease).

The lower end of the 95% interval, 4.39 × 10−5, is not extreme given input data, where the “crude” mean IFR
(based on mean prevalence only) is below 7 per 10,000 for all data except for South Florida, and as low as 0 for some
countries that did not record deaths (Belgium, New Zealand, Korea, Iceland) in various age groups including 20-29
year olds or 1.4 per 10,000 in Utah, in the population aged 19-44. (Please refer to Table 2 for complete list of inputs.)

We can assess this heterogeneity by inspecting the distribution of random effects in the model transformed into
IFRs, i.e. the inverse logit transformation θ parameters. The largest (posterior mean) IFR value of θ is 6.3 × 10−4 in
Castiglione d’Adda. The smallest posterior mean for 20-29 year olds is 5.73 × 10−5 in Utah.
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A-2.4.2 | Predictive checks for the model

We constructed posterior predictive distributions for number of deaths in each of the inputs by using the generated
quantities functionality of Stan. Figure 3 compares the posterior means and 95% intervals with observed deaths.
Out of 114 observations that were used to fit the model, 109 were within 95% intervals of the posterior predictive
distributions. We observed the largest discrepancies occurred in Spanish data. Overall, we conclude that the simple
binomial model we used here is flexible enough to capture both age-specific risk increases and heterogeneity in IFRs
across settings/countries.

A-2.5 | Sensitivity analyses

Planned sensitivity analyses include:

• Exclusion of small studies and test & trace data
• Median age: exclusion of 80+ population (non-linear behaviour on logit IFR?)

– Could also check exclusion of children and teenagers, due to imprecise prevalence numbers
• Median age: different method of age imputation
• Model including time
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F IGURE 3 Comparison of model estimates (black) with data on observed fatality rate (FR, red), compared on
logarithmic scale. FR is number of deaths divided by overall population size. Bars are 95% posterior interval; point is
the mean. For better clarity, we grouped the plot into four panels according to observed FR X axes on each panel
differ. For many low-risk populations (upper-left quadrant) no deaths were reported: we indicate this by plotting a
red point on the left-hand side of the panel plot.
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F IGURE 4 IFR as a function of age. Narrower ribbon corresponds to the 95% posterior interval of average
across all included studies (tau parameter in the meta-analysis model), while the wider band takes into account
heterogeneity (tau and sigma). Lines are means. Red points are model estimates of mean IFRs in partciular studies,
with bars representing 95% posterior intervals. Panel A is untransformed data. Panel B shows the same data on log
10 scale.
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F IGURE 5 Fatality rates as a function of age in OpenSAFELY data. Fatality rate is zero in the 0-10 and 10-20 age
groups.

A-3 | RISK REDUCTION IN HEALTHY INDIVIDUALS

We now turn our attention to the question of how much a human challenge trial designer could reduce the mortality
risk by using simple screening methods, as discussed in the main paper.

Data for this section has been provided byOpenSAFELY (https://opensafely.org/) andwas used byWilliamson
et al. [43] to characterise COVID-19mortality risk factors for 10,926 COVID-19 deaths in England. We group the total
of 21,444,863 individuals into a total population and a lower-risk sub-population, defined as non-smoker, non-obese
and without the comoribidities reported in the OpenSAFELY study6, most notably respiratory and cardiovascular dis-
eases and type I diabetes. For brevity we refer to the population without one of the pre-defined comorbidities as
“healthy”. In contrast to the cited publication, we include records of individuals under 18 in our assessment. Counts
grouped by age are presented in Table 1.

As shown in Table 1, for the age group of 20-29 the crude risk ratio (of general population vs the healthy subset
only) is 1.53, but, due to low number of events in both healthy and general population, with a very wide 95% interval
from 0.6 to 5.657. As data on relative risks in other age groups is clearly related to the relative risk in 20-29 age group,
we use another meta-analysis model to improve our estimate. Additionally, relative risks are higher in women than in
men – something that we can account for in our model too.

In our modelling we make a strong assumption that infection rates in population with comorbidities are the same
as in the general population. In other words, we assume that denominator for IFR is same in both populations. We

6"asthma, other chronic respiratory disease, chronic heart disease, diabetes mellitus, chronic liver disease, chronic neurological diseases, com-
mon autoimmune diseases (Rheumatoid Arthritis (RA), Systemic Lupus Erythematosus (SLE) or psoriasis), solid organ transplant, asplenia,
other immunosuppressive conditions, cancer, evidence of reduced kidney function, and raised blood pressure or a diagnosis of hypertension"

7We obtain the interval using a simulation approach. Using normal approximation of log(RR) statistic we obtain a narrower 0.57 to 4.1, perhaps
due to poor quality of approximation for rare events.
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TABLE 1 Data from the OpenSAFELY database grouped by age.

Population Fatalities FR per 100k

Age group All Healthy All Healthy All Healthy RR

0 to 9 2,160,958 2,007,997 0 0 0.00 0.00 NaN

10 to 19 2,428,494 2,000,761 0 0 0.00 0.00 NaN

20 to 29 2,530,792 1,788,907 13 6 0.51 0.34 1.5

30 to 39 2,960,611 1,909,227 41 12 1.38 0.63 2.2

40 to 49 2,849,984 1,565,935 140 25 4.91 1.60 3.1

50 to 59 3,051,110 1,243,728 522 56 17.11 4.50 3.8

60 to 69 2,392,392 622,357 1,101 92 46.02 14.78 3.1

70 to Inf 3,070,522 317,238 9,109 318 296.66 100.24 3.0

then specify a generic partial pooling model of fatality rates (FR, defined as number of deaths in the entire population,
without regards to infection status) such that

logit(FRk ) ∼ N(αagek comorbk + βmalek + γagek ), (9)

αi ∼ N(µ,σ) for all i , (10)

where, for k -th observation, agek is the age group, and comorbk and malek are indicator variables. This means
that each age group is assigned different “baseline” fatality rates.

Note that the assumption of FRs varying across age groups that we just mentioned differs from the model of
age-specific IFRs in Section 2. This is because we hypothesised that infection rates (which are used as denominators
in the IFR model of Section 2) will vary across age groups. This is borne out by Figure 6.

Summary of the main model parameters is as follows:

## mean se_mean sd 2.5% 25% 50% 75% 98% n_eff Rhat

## mu 1.43 0.00277 0.192 1.07 1.33 1.43 1.54 1.83 4810 1

## sigma 0.36 0.00596 0.226 0.12 0.22 0.31 0.44 0.93 1443 1

## alpha[3] 1.32 0.00429 0.328 0.61 1.14 1.34 1.53 1.94 5859 1

## beta 0.40 0.00019 0.019 0.37 0.39 0.40 0.41 0.44 9969 1

## gamma[3] -13.06 0.00404 0.344 -13.77 -13.28 -13.04 -12.82 -12.42 7227 1

We find that the mean risk ratio between population with comorbidities and healthy sub-population in 20-29 age
group (exponent of α3 above) is 3.96, with wide 95% uncertainty interval of 1.85 to 6.968.

8Using simplemodels that assumed identical risk ratios in all age groupswould lead to amean RR of similar magnitude but amuch less uncertain
estimate, due tomore rigid model assumptions; similarly, assuming some linear age structure on risks, such as in themainmeta-analysis model
above, would may lead to a different RR, but we do not think such an assumption is justified here. We do not include outputs of these models
in this short write-up.
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F IGURE 6 Comparison of posterior predictive numbers of deaths from the fitted Bayesian model (mean and
95% uncertainty intervals) with data inputs (circles). For each age grouping we have 4 estimates: male/female and
healthy vs general population

Next, using the posterior samples we calculate the event rate in total population (i.e. θ∗ = (θ1n1 +θ2n2)/(n1 +n2) ,
where subscripts 1 and 2 are healthy and comorbid sub-populations) and then divide it by ratio in healthy population
to obtain an estimate of risk reduction possible by selecting healthy volunteers only. The mean posterior value is 1.88,
with 95% uncertainty interval from 1.25 to 2.76. Due to use of Bayesian hierarchical model over many age groups,
the uncertainty interval is much narrower than on the risk reduction factor calculated on 20-29 age group only.

To validate the model, we conducted a simple posterior predictive check for numbers of deaths in different age
groups and genders. The graphical check is presented in Figure 6. Overall we find that the simple model has no
problem with reproducing observed data.

A-4 | CONCLUSION AND SUMMARY OF RESULTS

In conclusion, the implications of the model for the risk in healthy young subjects are as follows:
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• We find that average IFR in 20-29 age group for the studies included in this analysis is 1.75 × 10−4 with 95%
interval from 1.28 × 10−4 to 2.36 × 10−4.
– It is feasible that the mean IFR can be decreased as much as 3.96-fold (2σ impact on the IFR according to

hyper-SD parameter in the meta-analysis model).
– It is easy to argue that a HCT designer would be able to achieve IFR at least as low as within any of the

large-scale studies included in our sample of populations. The smallest posterior mean for 20-29 year olds is
5.73 × 10−5, fitted to data from Utah.

– Extending the HCT population to also include 30-39 year olds would lead to mean IFR of 2.99×10−4 with 95%
interval from 2.19 × 10−4 to 4.02 × 10−4. Lowest mean IFR would then be 1.02 × 10−4 (also in Utah).

• In healthy population (defined as lack of co-morbidities listed above), the average mortality risk in 20-29 year olds
is 1.88 times lower than in the general population, with 95% uncertainty interval from 1.25 to 2.76.
– Our 1.88 estimate is a bit higher than themean “crude” risk ratio of 1.53 becausewe use a Bayesian hierarchical

model that synthesises evidence across all age groups.
– Expanding to 20-39 year olds, the risk in healthy sub-population would be 2.04 times lower than in the general

population (95% interval from 1.25 to 2.76).
• Combining the smallest posterior IFR for 20-29 year olds with our estimated fold-reduction due to excluding

individuals with co-morbidities from the population would lead to a mean infection fatality risk of 3.31×10−5 with
95% Bayesian interval from 1.53 × 10−5 to 6.13 × 10−5.
– In 20-39 year old subjects the risk would be 5.11 × 10−5 (2.54 × 10−5 to 9.04 × 10−5).
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F IGURE 7 Comparison of model-estimated prevalences (95% CI’s reported by modelling studies) collected by
Levin, Cochran, and Walsh (2020) and our distributional assumptions: additional circles show 95% CIs recreated by
assuming logit-normal distribution of prevalence. We group studies into 4 bands of mortality to mirror earlier figures.
Please note that this approach produces discrepancies in a number of US estimates where the confidence intervals
were skewed toward including 0. However, since we do not have access to source data, we decided to use the
logit-normal assumption for all estimates. This assumption may have an effect of overestimating mortality risk in
settings where prevalence was very low.
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