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 2 

Abstract 24 

Age of onset contains information on the timing of events relevant to disease etiology, but there 25 

has not been a systematic investigation of its heritability from GWAS data. Here, we characterize 26 

the genetic architecture of age of first occurrence and its genomic relationship with disease 27 

susceptibility for a wide range of complex disorders in the UK Biobank. For diseases with a 28 

sufficient sample size, we discover that age of first occurrence has non-trivial genetic contributions, 29 

some with specific genetic risk factors not associated with susceptibility to the disease. Through 30 

genetic correlation analysis, we show that an earlier health-event occurrence is correlated with a 31 

higher polygenic risk of disease susceptibility. An independent genetic investigation of the 32 

FinnGen cohort replicates the pattern of heritability and genetic correlation estimates. We then 33 

demonstrate that incorporating disease onset age with susceptibility may improve genetic risk 34 

prediction and stratification. 35 

  36 
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 3 

Introduction 37 

Genome-wide association studies (GWAS) have revealed that most complex traits and diseases 38 

have an underlying polygenic component1,2. To date, disease-based GWAS have predominantly 39 

examined the genetic risk associated with whether an individual has ever been affected with a 40 

disease of interest (i.e., disease susceptibility) using a case-control design. Such design, however, 41 

typically uses lifetime risk to model the association of phenotypic variation with genetic variation 42 

and ignores the time component of when a disease occurs for an individual.  43 

 Studies have shown that age of onset of a disease itself plays a pertinent role in 44 

understanding the genetic etiology of disease development. Using a genome-wide approach, 45 

efforts have been made to identify genetic modifiers of disease onset age3-5, as well as genetic 46 

risk factors distinctive to different age-of-onset groups6-8. As shown from twin and single-47 

nucleotide-polymorphism (SNP) heritability analyses, the phenotypic variance explained by 48 

genetic variation can change across the lifespan for many traits9-11. Furthermore, the polygenic 49 

model has suggested that there may exist a correlation between age of onset and susceptibility 50 

to a disease, such that individuals with a higher genetic loading might develop the disease at an 51 

earlier age12-14. Despite these efforts, however, there has been comparatively less investigation 52 

of the heritability of age of onset for disease phenotypes.  53 

 In recent years, large-scale biobank datasets that include broad phenotypic information 54 

(e.g., UK Biobank15,16, FinnGen17,18) have provided an unprecedented resource to study the 55 

causes of disease at scale with a linkage to genetic data. Related to age of onset, dates of health-56 

outcome events, such as diagnosis, treatment, and death, have been made available through 57 

questionnaire-based or hospital records within such biobanks. Collectively, this provides an 58 

opportunity to systematically characterize the genetic construct of disease onset age, the specific 59 

genetic risk factors that may alter it, and how these findings correlate or differ from the genetic 60 

basis of susceptibility. 61 
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 4 

Here, we present a deep investigation into the genetic architecture of age of first 62 

occurrence and its genetic overlap with susceptibility across a wide range of complex disorders 63 

in the UK Biobank (UKBB). We leveraged measurements from three different phenotypic datasets 64 

that either directly or approximately capture age of onset: self-reported age of diagnosis of a 65 

medical condition (SR), age of first in-patient ICD-10 diagnosis or hospitalization episode from 66 

hospital in-patient records (HIP), and age of the earliest event occurrence combining self-report, 67 

in-patient, primary care, and death records (COMB; Methods). We refer to these definitions more 68 

generally as “age of first occurrence” of a particular disease or medical condition. For diseases 69 

with a sufficient sample size, we show that age of first occurrence is moderately heritable, some 70 

with specific genetic risk factors not associated with susceptibility. Across disease domains, there 71 

is an overall inverse genetic correlation between age of first occurrence and susceptibility. 72 

Independent of the UKBB cohort, we then show that a similar pattern of heritability and genetic 73 

correlations exists in the FinnGen study, which has a longer follow-up. Finally, we demonstrate 74 

that information on age of first occurrence has the potential to improve polygenic risk prediction 75 

for disease susceptibility and patient stratification.  76 
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 5 

Results 77 

Characterizing age of first occurrence in the UK Biobank 78 

We estimated age of first occurrence for medical conditions aggregated from the SR, HIP, and 79 

COMB datasets in the UKBB White-British subset (N=361,140). We extracted every possible 80 

disease definition following hierarchical disease classifications where appropriate, resulting in 81 

over 3,000 clinical terms (Methods). Among them, 70 SR, 224 HIP, and 164 COMB terms had at 82 

least 5000 affected individuals (prevalence ~1.4%; Tables S1-3) and were retained for GWAS 83 

analysis.  84 

Age of first occurrence ranged from 0 to 70 years of age in the SR dataset (median: 17-85 

59), 30 to 80 in the HIP dataset (median: 36-66), and 0 to 80 in the COMB dataset (median: 6-68; 86 

Figures 1&S1; Tables S4-6). We then compared the distribution of age of first occurrence by data 87 

source for 26 disease phenotypes where definitions were comparable between SR and HIP, of 88 

which 15 mapped across all three datasets (Table S7). Among these diseases, SR age of first 89 

occurrence was consistently younger than that based on the HIP dataset. Some diseases had a 90 

higher prevalence in SR (e.g., hypertension, asthma, and arthrosis) while others (e.g., hernia, 91 

gallstones, and cancers) were more prevalent in the HIP dataset. Distribution of age of first 92 

occurrence in SR varied extensively by trait and exhibited a spiky behavior by quartiles (0.25, 0.5, 93 

0.75, or 1.00), reflecting that age of the reported diagnosis was recorded as integers in the 94 

questionnaire. Comparatively, age of first occurrence in HIP was estimated directly from the 95 

recorded dates and was smoothly and consistently distributed across diseases with a bell-like 96 

shape. The COMB dataset had the largest number of cases per definition among all three sources 97 

and showed an overall “merged” distribution of age of first occurrence in SR and HIP (Figures 98 

1B&S1). 99 

Considering diagnosis of the same medical condition from both SR and HIP, the 100 

distribution of age of first occurrence between the two datasets showed little (e.g, migraine, 101 

median difference mdiff = 31.6, phenotypic correlation rp = 0.12; asthma, mdiff = 27.2, rp = 0.35) to 102 
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 6 

moderate overlap (e.g, high cholesterol, mdiff = 6.4, rp = 0.64; gallstones, mdiff = 8.6, rp = 0,87), 103 

with values in HIP shifting toward the right (mdiff: 6-32; rp: 0.1-0.9; avg. rp = 0.46; Figures 1B&S2; 104 

Table S7). The extent of overlap generally increased with age of first occurrence of the condition 105 

(Figure S3) but overall suggested that the actual disease “onset” age for most diseases was left-106 

truncated in the hospitalization records, reflecting the fact that ICD-10 was implemented and 107 

integrated in the UK hospital episode statistics in the 1990s. As expected, age of first occurrences 108 

in the COMB dataset overlapped substantially with both the SR (avg. rp = 0.91) and the HIP (avg. 109 

rp = 0.69) datasets (Table S7). 110 

 111 

Figure 1. Distribution of age of first occurrence of disease phenotypes from three phenotypic datasets in UKBB 

A. An averaged distribution of age of first occurrence is shown across 70 SR (blue), 224 HIP (green), and 164 COMB (orange) 

disease definitions in each dataset. Dotted line indicates the outlying range of values. Age of first occurrence ranges from 0-70 

in the SR dataset, 30-80 in the HIP dataset, and 0-80 in the COMB dataset. Spikes in the SR phenotypes reflect that the values 

are recorded in quartiles (0.25, 0.5, 0.75, or 1.00). 

B. Distribution of age of first occurrence differs by trait and data source. Shown here are three selected disease phenotypes with 

matching definitions across datasets. SR and HIP conditions show little to moderate overlap in age of first occurrence, as 

measured by Pearson’s correlation coefficient (rp; top), while the COMB conditions exhibit a merged distribution of SR and HIP 

(bottom).   
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Common genetic associations with age of first occurrence 112 

We performed a GWAS of age of first occurrence for the 70 SR, 224 HIP, and 164 COMB disease 113 

definitions with >5000 affected individuals. For each condition, a case-control GWAS was also 114 

performed, treating non-diseased individuals as the control group and adjusting for the same sets 115 

of covariates (Methods). Univariate Linkage Disequilibrium Score Regression (LDSR) intercepts 116 

for all GWASes had a value close to 1, suggesting little or no signs of inflation in association 117 

statistics due to population stratification or other confounding factors (Figure S4; Tables S8-10).  118 

Genome-wide significant SNPs (P < 5×10-8) that may alter age of first occurrence were 119 

identified for 31 SR, 57 HIP, and 42 COMB disease definitions, ranging from 1 to 20 independently 120 

associated loci. Among the three data sources, age of first occurrence defined for hospitalization 121 

events in the HIP dataset had the least number of associated loci (max. 2 loci; Tables S8-10). 122 

While most of the identified signals were a subset of the significant associations in the 123 

corresponding susceptibility GWAS (Figures 2A&S5-7), some of these GWASes contained loci 124 

significantly associated with age of first occurrence but not with susceptibility, suggesting a role 125 

in modifying disease development that precedes disease onset (Tables S8-11).  126 

Disease phenotypes showing the largest number of independent associations with age of 127 

first occurrence included asthma (total number of significant hits, nsig = 19; total number of unique 128 

hits not seen in susceptibility GWAS, nuniq = 5), hypertension (nsig = 9), high cholesterol level (nsig 129 

= 6, nuniq = 1), and eczema (nsig =5, nuniq = 2) in the SR dataset. Top results in the HIP dataset  130 

included mental disorders (nsig = 2, nuniq = 2), monoarthritis (nsig = 2 nuniq = 2), substance-related 131 

disorders (nsig = 2, nuniq = 2), and type 2 diabetes (nsig = 2, nuniq = 1); in the COMB dataset those 132 

included asthma (nsig = 20, nuniq = 7), disorders of lipoprotein metabolism (nsig = 13), measles (nsig 133 

= 6, nuniq = 6), and dermatitis (nsig = 5, nuniq = 1) (Tables S8-10).  134 

Comparing the overlapping loci between age of first occurrence and susceptibility revealed 135 

that their effects were often in opposite directions and although in close proximity, the lead SNPs 136 

were mostly different. A few loci showed an even stronger association with age of first occurrence 137 
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than with susceptibility. For instance, the significant locus on chromosome 1 for SR asthma was 138 

associated with a reduced age of onset by 4.8 years (lead SNP 1:152285861:G:A, P = 4.6×10-29) 139 

but an increased risk of asthma by 1.2 fold (lead SNP 1:152179152:C:T, P = 7.4×10-24; Table 140 

S11).  141 

 142 

Figure 2. Genetic characterization of age of first occurrence and its relationship with susceptibility in the UKBB SR dataset 
A. A Miami plot of GWAS results reveal overlapping and distinct genetic associations between age of first occurrence (top) and 

case-control status (bottom) of SR asthma. Each dot represents a single SNP. P-values are shown on the −log10 scale on the y-

axis, plotted against chromosome positions on the x-axis. The red dashed lines denote the genome-wide significance threshold 

at P = 5×10-8. 

B. SNP-heritability estimates for age of first occurrence (ℎ!"#"$ ) across 70 SR disease definitions suggest non-trivial common genetic 

contributions. ℎ!"#"$  was estimated from univariate LDSR. Each dot represents an individual disease, colored by disease 

categories used in the SR dataset; a larger dot corresponds to a broader disease definition. Labeled are conditions with a 

significant ℎ!"#"$  at FDR < 0.05. Heritability analysis of HIP and COMB diseases reveal a similar pattern in Figure S9. 

C. Genetic correlation (rg) analysis suggests an inverse genomic relationship between age of first occurrence and susceptibility for 

diseases with a significant heritability for both traits. rg was estimated using bivariate LDSR. The dashed line denotes nominal 

significance at P = 0.05; labeled are conditions with a significant rg at FDR < 0.05. Analysis of HIP and COMB diseases show a 

similar pattern in Figure S13. 
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Moderate SNP-heritability of age of first occurrence 143 

Heritability analysis using LDSR showed that age of first occurrence for complex diseases was 144 

moderately heritable: 27/70 SR endpoints, 49/224 HIP endpoints, and 30/164 COMB endpoints 145 

had a significantly non-zero SNP-heritability for the age at which an individual first developed a 146 

given condition (ℎ!"#"$ ; nominal p-value < 0.05), ranging from 1 to 25% with an average of 7-9% 147 

(Figures 2B&S8-9; Tables S12-14). ℎ!"#"$  estimates in the HIP dataset were slightly lower than in 148 

the other two datasets. 149 

Diseases with a heritable age of first occurrence in the SR dataset included cardiovascular 150 

(e.g., hypertension, ℎ!"#"$  = 0.055), respiratory (e.g., asthma, ℎ!"#"$  = 0.141), dermatological (e.g., 151 

eczema/dermatitis, ℎ!"#"$  = 0.259) and immunological (e.g., allergy/hypersensitivity/anaphylaxis, 152 

ℎ!"#"$  = 0.067) related traits (Figure 2B; see p-values in Table S12). Top diseases in the HIP 153 

dataset were seen among circulatory system (e.g., hypertension, ℎ!"#"$  = 0.049), genitourinary 154 

(e.g., irregular menstrual cycle/bleeding, ℎ!"#"$  = 0.127), digestive (e.g., cholelithiasis and 155 

cholecystitis, ℎ!"#"$  = 0.096), mental disorders (e.g., psychological disorders, ℎ!"#"$  = 0.044), and 156 

neoplasms (e.g., benign or malignant skin cancer, ℎ!"#"$  > 0.10; Figure S9A; Table S13). 157 

Significant ℎ!"#"$  in the COMB dataset encompassed some of the top non-cancer conditions from 158 

SR and HIP, as well as other traits like myocardial infarction (ℎ!"#"$  = 0.114), non-insulin-159 

dependent diabetes (ℎ!"#"$  = 0.067), hypothyroidism (ℎ!"#"$  = 0.055), and diaphragmatic hernia 160 

(ℎ!"#"$  = 0.036) (Figure S9B; Table S14). 161 

 Among the 26 mapped disease definitions, ℎ!"#"$  estimates showed variability across 162 

datasets, particularly between SR and HIP, with some diseases more consistently estimated than 163 

others (e.g., hypertension, ℎ!"#"$ ~5%; Table S7; Figure S10A). Conditions with a significant ℎ!"#"$  164 

in SR but not in HIP—often also larger in magnitude—tended to be chronic that could start early 165 

in life or are mild in presentations (e.g., asthma, disc problem, high cholesterol, and 166 
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dermatological conditions). Conversely, a significant ℎ!"#"$  in HIP but not in SR was observed 167 

among conditions that appeared more likely to be acute or have an adult-onset that required in-168 

hospital treatments (e.g., gallstones, diabetes, and cancers; Figure S11). Cross-dataset genetic 169 

correlation estimates (rg) of the mapped age-of-first-occurrence endpoints differed widely and 170 

many did not reach statistical significance. On average, these rg’s were highest between SR and 171 

COMB, lowest between SR and HIP, which increased slightly with age of first occurrence, 172 

consistent with the pattern of phenotypic similarity (Table S7; Figure S12 vs. S3).  173 

In contrast, SNP-heritability estimates for the corresponding susceptibility endpoints (ℎ%&%'$ ) 174 

were all significant and showed a lesser degree of heterogeneity across datasets (Figure S10B), 175 

with most of the traits having a cross-dataset rg closer to 1 (Tables S7). 176 

 177 

Inverse genetic correlation between age of first occurrence and susceptibility 178 

For diseases with a significant ℎ!"#"$  and ℎ%&%'$ , we estimated rg between age of first occurrence 179 

and susceptibility using bivariate LDSR (Methods). Interestingly, more than half of the tested traits 180 

showed a significant, negative rg between the risk of developing the disease and the age of 181 

developing the disease, ranging from approximately -0.2 to -0.9 (Figures 2C&S13-14; Tables S12-182 

14). This inverse genomic relationship was observed across disease categories in all three 183 

phenotypic datasets. A few traits had a non-significant, positive rg that could result from a smaller 184 

sample size (Figure S13). 185 

  As with the pattern of ℎ!"#"$ , rg results showed a different profile in each dataset. 186 

Hypertension was consistently the most significant phenotype with an rg for age at first occurrence 187 

and susceptibility around -0.7 in all three datasets (P  < 10-28). Other top diseases in the SR dataset 188 

with an rg at FDR < 0.05 included asthma (rg = -0.55), high cholesterol (rg  = -0.86), hay 189 

fever/allergy (rg < -0.6), eczema (rg = -0.55), osteoarthritis (rg = -0.81), and migraine (rg = -0.43,) 190 

(Figure 2C; see p-values in Table S12). In the HIP dataset additional traits with the strongest rg 191 

included substance-related/psychological disorders (rg < -0.3), diseases of esophagus and 192 
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dysphagia (rg = -0.79), type 2 diabetes (rg = -0.51), COPD/bronchiectasis/asthma (rg = -0.40), non-193 

specific chest pain (rg = -0.58), and cholelithiasis and cholecystitis (rg = -0.37) (Figure S14A; Table 194 

S13). In the COMB dataset other top results were predominantly a combination of traits from SR 195 

and HIP, such as disorders of lipoprotein metabolism (rg = -0.99), asthma (rg = -0.56), diverticular 196 

disease of intestine (rg = -0.82), other arthrosis (rg = -0.72), other hypothyroidism (rg = -0.72),  and 197 

non-insulin-dependent diabetes mellitus (rg = -0.59) (Figure S14B; Table S14). Together, these 198 

observations are consistent with predictions of the polygenic model, in which an earlier onset or 199 

occurrence of a disease may correlate with a higher polygenic liability12. 200 

Across pairs of diseases, rg’s for susceptibility were similar to rg’s for age of first occurrence: 201 

that is, diseases with extensive sharing of genetic risk appeared to also have genetically 202 

correlated age of first occurrence, especially for phenotypes measured by SR. (Figure S15). 203 

 204 
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 205 

Similar genetic architecture of age of first occurrence in FinnGen 206 

Next, we sought replication for UKBB findings, specifically the pattern of heritability and genetic 207 

correlation, in FinnGen, based on its v4 release of 130,423 unrelated individuals. FinnGen is a 208 

Figure 3. Genetic analysis of age of first occurrence in FinnGen and its comparison with UKBB results 

A. Distribution of heritability estimates from FinnGen for 64 diseases that have a significant ℎ!"#"$ . Labeled are selected conditions 

with a significant ℎ!"#"$  at FDR < 0.05. 

B. ℎ!"#"$  estimates for 15 comparable disease definitions in UKBB and FinnGen show variable degree of similarity. Left axis denotes 

SNP-heritability shown in bar plots and the corresponding 95% confidence intervals (95% CI). Right axis shows the median age 

of first occurrence for each condition indicated in dotted lines. The full comparison of all 26 matched phenotypes is available in 

Table S18 and Figure S19. 

C. A negative rg between age of first occurrence and disease susceptibility is observed for many of the tested diseases, consistent 

with the findings in UKBB. Shown are rg estimates and its 95% C.I. for diseases with a significant heritability for both traits. 
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registry-based cohort that follows health events across a lifetime for an individual, including 209 

medication history (Figure S16; Supplementary Notes). A fraction of the FinnGen participants 210 

were ascertained in hospitals or disease-based cohorts14, making it a case-enriched cohort 211 

relative to UKBB (Table S15).  Because registers data were established since the 1960s, FinnGen 212 

has the advantage of a prospective cohort that contains a longer follow-up time and a wider age 213 

range (0.08 to 98.98 years old at recruitment) for participants compared to UKBB. We analyzed 214 

280 disease phenotypes with a sufficient sample size following the same analytical pipeline in 215 

UKBB where possible (Methods; Table S15). Age of first occurrence was defined as the earliest 216 

age of an event in the registries (range: 0-100; median: 9-72; Table S16; Figure S17). 217 

As in the UKBB, some diseases were found to have genetic risk factors associated with 218 

age of first occurrence but not with susceptibility (e.g., diabetes; Table S17). 63 of the 280 medical 219 

conditions had a significant heritability for age of first occurrence, ranging from 2 to 22%, many of 220 

which were among top results in UKBB (Figure 3A; Table S18). These included conditions 221 

identical to or close proxies for phenotypes in UKBB, particular those defined in the HIP dataset, 222 

such as hypertension (ℎ!"#"$  = 0.116), arthropathies (ℎ!"#"$  = 0.049), statin medication (ℎ!"#"$  = 223 

0.067), diabetes (ℎ!"#"$  = 0.093), cholelithiasis (ℎ!"#"$  = 0.128), and migraine (triptan purchase 224 

and/or ICD diagnosis; ℎ!"#"$  = 0.2168). Conditions with a significant ℎ!"#"$  in FinnGen but not in 225 

UKBB involved pregnancy and childbirth (ℎ!"#"$  = 0.077) and eye diseases (e.g., senile cataract, 226 

ℎ!"#"$  = 0.119; Figure 3A; see p-values in Table S18).  227 

 To make a closer comparison between UKBB and FinnGen, we focused on the 26 mapped 228 

disease definitions. Most of these conditions had a higher in-sample prevalence in FinnGen 229 

compared to UKBB, except for high cholesterol (Table S19). Median age of first occurrence of 230 

FinnGen endpoints generally fell between UKBB-SR and the other two UKBB datasets. Locus-231 

level comparison of age-of-first-occurrence GWAS revealed variable concordance between the 232 

two cohorts, with a few FinnGen traits showing a consistent direction of effects with UKBB with a 233 

sign-test p-value < 0.05 (e.g., hypertension, diabetes; Table S20; Figure S18). Heritability 234 
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estimates showed that several of these diseases had a higher ℎ!"#"$  in FinnGen than in UKBB 235 

(e.g., hypothyroidism, UKBB <5.5%, FinnGen 8.0%; musculoskeletal disorders, UKBB ~1.8%, 236 

FinnGen 4.7%; Figures 3B&S18; Table S19). Hypertension remained as the most significant trait 237 

with a non-zero ℎ!"#"$ , whereas angina and depression both showed little evidence of ℎ!"#"$  in 238 

either cohort. The significant ℎ!"#"$  for asthma and high cholesterol in UKBB (SR and COMB) was 239 

not seen in FinnGen. These heterogeneous results for individual diseases might result from 240 

differences in sample ascertainment, criteria to define event occurrence age, as well as the 241 

sample size limitation of a case-only analysis.  242 

Aside from these differences, genetic correlation analysis found that the majority of the 243 

heritable traits in FinnGen had a negative rg between age of first occurrence and susceptibility 244 

(Figure 3C; Table S18), corroborating the UKBB finding of an inverse genomic relationship 245 

between event onset age and polygenic burden of the disease. 246 

 247 

MTAG of susceptibility and age of first occurrence improved polygenic risk prediction 248 

Given the strong genetic overlap between susceptibility and age of first occurrence, we then 249 

performed Multi-trait Analysis of GWAS (MTAG)19 in UKBB to jointly analyze the two traits that 250 

shared a significant rg for each of the phenotypic datasets (Methods). For many of the tested 251 

disease endpoints, MTAG analysis identified additional significant loci not found in the original 252 

GWAS of susceptibility, showing an enhanced power for loci discovery equivalent to 0.5% to 30% 253 

increase in sample size. HIP endpoints had the least number of additional loci among the three 254 

datasets (Tables S21-23). The increase in association strength did not appear to occur uniformly 255 

across the genome, but rather, at loci associated with age of first occurrence or associated with 256 

specific life periods pertinent to a disease. For example, MTAG of asthma in the SR dataset re-257 

captured some of the previously reported childhood-onset-specific loci not seen in GWAS, 258 

including a damaging missense variant on TESPA17 (12:55368291:C:T, MTAG P = 4.4×10-10; 259 

Figure 4A). 260 
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 261 

 262 

To explore how age of first occurrence could aid in risk prediction, we constructed 263 

polygenic risk score (PRS) using GWAS and MTAG summary statistics in the left-out set of 91,436 264 

ancestry-matched individuals in UKBB. We calculated the relative change in prediction accuracy 265 
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Figure 4. MTAG and PRS analysis in the 
UKBB SR dataset 

A. A Manhattan plot of asthma MTAG 
that incorporates age of first 
occurrence information (blue 
triangle) compared to the original 
case-control GWAS (grey circle). The 
solid red line denotes P = 5×10-8. 

B. Improvement in disease risk 
prediction using MTAG-PRS versus 
GWAS-PRS. MTAG was performed 
for diseases with a significant rg 

between age of first occurrence and 
susceptibility. PRS and the 
proportion increase in prediction R2 
of MTAG relative to GWAS (y-axis) 
were computed in an independent 
sample of 91K EUR individuals. 
Results for the HIP and COMB 
datasets are shown in Figure S20. 

C. The application of MTAG-PRS and 
GWAS-PRS in risk stratification for 
two selected disease phenotypes. 
The left panel shows the adjusted 
odds ratio and its 95% CI (y-axis) 
comparing individuals in each of the 
top PRS percentiles (x-axis) to the 
rest of the population. Showing on 
the right is the corresponding 
disease prevalence in the top PRS 
percentiles computed using either 
GWAS or MTAG summary statistics. 
Full results for all three UKBB 
datasets can be found in Tables S24-
26.  
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of MTAG versus GWAS on top of a covariate-only model (Methods). For diseases with an 266 

adequate sample size (>2000 cases in the target sample), the MTAG model that incorporated 267 

age of first occurrence outperformed the susceptibility-only GWAS in predicting disease risk for 268 

many traits. For SR conditions the increase in predictive accuracy can be as high as 30% and on 269 

average around 10%, while the improvement was overall less obvious for HIP endpoints. (Figures 270 

4B&S20; Tables S24-26). Notably, diseases with a larger increase in prediction R2 seemed to 271 

involve several childhood-onset, allergy-related conditions (Figures 4B).  272 

  Finally, we evaluated the clinical utility of PRS in patient stratification using MTAG-PRS 273 

compared to GWAS-PRS (Methods). In both models, individuals in the top PRS percentiles (1%, 274 

2.5%, 5%, 10%, and 20%) had a significantly elevated disease risk versus those who were not. 275 

Furthermore, for many traits, MTAG-PRS consistently identified individuals at a higher risk than 276 

predicted by GWAS, corresponding to a larger proportion of cases across top PRS percentiles 277 

(e.g., eczema, high cholesterol; Figures 4C&S21; Tables S24-S26). For instance, individuals in 278 

the top 1% GWAS-PRS were at a 2.2-fold increased risk for SR eczema compared to the average 279 

PRS group (P = 4.0×10-7) and a 2.3-fold risk than the rest of the sample (P = 1.7×10-8), while 280 

those defined by the top 1% MTAG-PRS had an even higher risk of OR = 2.5 (P = 1.9×10-11) and 281 

OR = 2.9 (P = 1.2×10-15), respectively (Figures 4C&S21). Overall, risk prediction and stratification 282 

incorporating age of first occurrence information showed more gains for SR phenotypes than 283 

defined in the other two datasets, particularly for conditions that tend to have a pediatric population. 284 

  285 
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Discussion 286 

Age of onset has long been an important phenotype of interest in epidemiological studies due to 287 

its rich information on timing of events relevant to disease etiology, but a systematic 288 

characterization of its genetic underpinnings has been lacking. Here, we provide a deep 289 

investigation into the genetic architecture of age of first occurrence of a wide range of complex 290 

disorders among White-British individuals in UKBB using three different phenotypic criteria (SR, 291 

HIP, COMB). We discovered that age of first occurrence has non-trivial genetic contributions 292 

across many diseases, some with unique genetic risk factors not associated with simply disease 293 

susceptibility. Although the extent of sharing varies by disease, genetic correlation analysis 294 

suggests that an earlier health-event occurrence indexes a heavier polygenic burden of the 295 

disease. Independent of UKBB, genetic investigation of the FinnGen cohort yields a similar 296 

pattern of heritability and genetic correlation estimates. Further, we demonstrate that 297 

incorporating onset age with susceptibility could improve risk loci discovery and patient 298 

stratification based on genetic risk prediction. 299 

The scan of SNP-heritability of age of first occurrence (ℎ!"#"$ ) revealed a similar landscape 300 

of what has been observed with SNP-heritability of susceptibility to complex disorders (ℎ%&%'$ )20. 301 

We note that  ℎ!"#"$  estimates the degree to which genetic variation explains age at first event 302 

among affected individuals whereas ℎ%&%'$   is defined at the population level and estimates the 303 

genetic contribution to a continuous disease liability. Notably, our use of different criteria to define 304 

age of onset of a disease and the inherent variability in the manifestation or diagnosis of a disease 305 

led to heterogeneous ℎ!"#"$  estimates between datasets, more so than variability among ℎ%&%'$  306 

estimates (Figure S10). Aside from the sample size constraint, the extent to which ℎ!"#"$  varied 307 

by source of definition is disease-dependent and may relate to health-reporting and health-308 

seeking behaviors as well as the time span of each data type. The SR dataset serves as a good 309 

source for documenting the approximate age of onset for health events, including those starting 310 

early in life, but might suffer from recall bias, particularly for diseases with a mild manifestation. 311 
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On the other hand, for conditions that require in-patient stays, such as an acute onset (e.g., heart 312 

failure, diabetes complications), HIP phenotypes may be a more valid source. The downside of 313 

HIP-defined event occurrence is that it might not capture the exact age of onset for many diseases, 314 

including occurrences prior to when the ICD-10 system came into use and incorporated into the 315 

Health Episode Statistics database in the UK (1990s), and ICD codes can be given to patients for 316 

administrative purposes. The replication of our results in FinnGen, where registry data covers an 317 

older time period, partially addresses this limitation. Our analysis showed that SR and HIP 318 

endpoints often exhibit a differential pattern of prevalence and ℎ!"#"$  (Figure S11). The third 319 

approach of combining different sources to define the earliest event (e.g., UKBB-COMB and 320 

FinnGen) is most effective in increasing sample size, which is ideal for case-control GWAS but 321 

should be interpreted with caveats for age of onset GWAS. As different data sources can start at 322 

a different point in time and not all individuals are included in all datasets (e.g., Figure S16), this 323 

approach could result in a synthetic or multi-modal distribution of disease onset age not reflective 324 

of the actual timing of events. In short, there is unlikely to be one simple measure to define age 325 

of onset, and the heterogeneity in case ascertainment methods can affect the findings and 326 

interpretation of genetic analysis with respect to time.  327 

Our findings suggest that the genetic basis of age of first occurrence and susceptibility—328 

two seemingly orthogonal phenotypic components of a disease—have a correlated nature for 329 

many complex disorders. The shared and distinct loci between age of first occurrence and 330 

susceptibility indicate that some variants affect both disease risk and disease onset age while 331 

others are specifically associated with delaying or accelerating disease occurrence. The growth 332 

of biobank-scale datasets may reveal more genetic risk factors that can modify age of onset and 333 

may represent new therapeutic targets. On the genome-wide scale, our observation that earlier 334 

onset is associated with a greater polygenic loading for disease is consistent with what has long 335 

been hypothesized for polygenic disorders and has been increasingly observed in individual 336 

GWAS studies13,14,21. For Mendelian disorders, studies have also shown that its polygenic 337 
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background can modify the age of disease occurrence among those with rare monogenic 338 

mutations22,23. Through genetic correlation analysis in the UKBB and FinnGen cohorts, we 339 

demonstrated that such an inverse genomic relationship between when and whether a disease 340 

occurs is in fact widespread among complex disorders. While the interpretation will vary by 341 

disease, a negative rg might imply a heterogeneous genetic architecture at different ages of onset, 342 

suggesting age-related disease subtypes or a continuum whereby earlier onset of the disease is 343 

more genetically driven while later onset might reflect a greater contribution of non-genetic life 344 

events. 345 

As an alternative to our case-only approach, Cox proportional hazard modeling, a common 346 

method to study time-to-event endpoints that models both disease status (whether) and onset 347 

time (when) accounting for censoring events, can be a powerful approach for detecting SNP-348 

disease associations24,25. However, such models do not allow explicit assessment of genetic risk 349 

factors underlying age of first occurrence separately from disease susceptibility, and hence 350 

estimation of their genetic overlap. In addition, heritability from the Cox model is typically defined 351 

for cumulative hazards25,26 and does not have the same interpretation as ℎ!"#"$ . As more scalable 352 

survival models for GWAS are being developed25,27, a comparison of the two approaches will be 353 

informative for distinguishing their genetic findings and implications for the dissecting genetic 354 

architecture. 355 

Through PRS analysis, we showed that genetic variation underlying age of first occurrence 356 

of health events can improve disease risk prediction and patient stratification, especially for 357 

diseases that tend to have an early onset. This demonstrates how axes of information correlated 358 

with case-control status can be useful in planning prevention and intervention strategies tailored 359 

toward individual genetic predisposition. The rich spectrum of phenotypic information in large 360 

biobank cohorts provides an unparalleled opportunity for epidemiological and genetic research to 361 

study clinical features beyond simply disease susceptibility through longitudinal healthcare 362 

records. Genome-wide analysis of such quantitative disease dimensions is critical and will 363 
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continue to generate valuable insights into the genetic basis of disease development, severity, 364 

and progression.  365 

  366 
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Online Methods 367 

UK Biobank, genotyping, and quality control 368 

UK Biobank (UKBB) is a population-based cohort with extensive phenotype and genomic data on 369 

more than 500,000 individuals in the United Kingdom aged 40 to 69 years at recruitment15,16. The 370 

study started recruitment between 2006 and 2010 and has been followed up prospectively. The 371 

genetic data in the UK Biobank is available for a subset of 488,377 participants, with 49,950 372 

individuals genotyped using the UK BiLEVE Axiom Array and the other 438,427 participants 373 

genotyped using the UK Biobank Axiom Array in GRCh37 coordinates. The Haplotype Reference 374 

Consortium (HRC)28 data and the merged UK10K and 1000 Genomes phase 3 data29 were used 375 

as reference panels for imputation. 376 

We obtained the lists of post-QC samples and variants from the Neale Lab GWAS for 377 

analysis, which comprised 361,194 unrelated individuals of predominantly White-British descent 378 

and 13.7 million genetic markers. Quality control procedures of the genotype data were detailed 379 

in the Neale Lab blog posts and GitHub repository20,30. In brief, the initial UKBB cohort was filtered 380 

to those who were unrelated and did not have sex chromosome aneuploidy using the provided 381 

UKBB sample QC metrics. Among them, individuals who were self-reported “White-British”, “Irish”, 382 

or “White”, and fell within seven standard deviations of the first six principal components (PCs) 383 

were retained. Variants were filtered to those with an imputation INFO score > 0.8, a minor allele 384 

frequency (MAF) > 0.1% and a p-value for the Hardy-Weinberg equilibrium test > 1×10-10. 385 

Here, we further removed participants who have since withdrawn consent and variants 386 

that were located on the sex chromosomes or had a MAF < 1%. The final dataset consisted of 387 

361,140 individuals and 9.4 million autosomal, common variants. We then converted the data 388 

from .bgen to .pgen format using PLINK 2.031, which preserved dosage information for association 389 

analysis. 390 

 391 
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Age of first occurrence: phenotype definition and selection 392 

Age of first occurrence of a disease or medical condition was estimated from three different 393 

phenotypic datasets in the UKBB for the 360K White-British subset, including self-reported 394 

medical conditions (SR), hospital in-patient records (HIP), and the combined first occurrence data-395 

fields of diagnostic codes that mapped across different phenotypic datasets (COMB). Although 396 

the classification schemes are different, both SR and HIP datasets follow a tree-structure topology 397 

to define disease endpoints. 398 

For the SR dataset, we aggregated all parent nodes and their children nodes from medical 399 

conditions ascertained through touchscreen questionnaires and verbal interviews (data-fields 400 

20001 and 20002) into a total of 562 clinical terms across 11 non-cancer disease classes and 401 

106 terms across 9 cancer categories. For each SR medical condition, participants were given 402 

the option to report either year or age when first diagnosed by a doctor in integers and the value 403 

was rounded to the nearest quarter age (data-fields 20007 and 20009). We identified affected 404 

individuals for each term and extracted their interpolated age of diagnosis. The earliest age of 405 

diagnosis among all children nodes was considered when the trait of interest was a parent node. 406 

Individuals who had a missing age of diagnosis—either uncertain/unknown or preferred not to 407 

answer—were excluded from the analysis. 408 

The HIP dataset was based on the Health Episode Statistics database in the UK and 409 

contained hospitalization episodes for each participant in the form of International Classification 410 

of Diseases (ICD) classifications, predominantly in ICD-10. Each in-patient episode had a 411 

corresponding primary diagnosis and might be associated with one or more secondary diagnoses; 412 

dates of admission, episode-start, episode-end, and discharge were also recorded. The earliest 413 

dates in HIP can be traced back to 1990s, roughly when the ICD-10 system came into place 414 

(https://biobank.ctsu.ox.ac.uk/showcase/exinfo.cgi?src=Data_providers_and_dates). We 415 

mapped the available ICD-10 codes to PheWAS Codes (PheCodes)32,33 and defined all possible 416 

PheCode-based phenotypes based on its hierarchical structure, ranging from individual 417 
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PheCodes, comorbid medical conditions with related PheCodes, to the entire PheCode category. 418 

Together, this resulted in 1,843 cleanly defined clinical terms across 18 PheCode categories. For 419 

each term, individuals who had at least one associated ICD-10 codes in the primary or secondary 420 

diagnoses were considered a case, and their age of first hospitalization episode, or in-patient 421 

diagnosis, was calculated as the interval between the earliest episode-start date and the mid-422 

month of their birth year. Where episode-start date was missing, admission date was used instead.  423 

The COMB dataset is a special data type that contains the first-reported dates of a 424 

diagnostic code for a range of different non-cancer health outcomes, generated by mapping 425 

across SR, HIP, primary care, and death records. Note that the current release of primary care 426 

data includes only 45% of the UKBB cohort. For data types not based on the ICD-10 classification 427 

system, health outcomes were first mapped to a related 3-character ICD-10 code where 428 

appropriate by the UKBB team, and its date of first occurrence was recorded as the earliest among 429 

the four different datasets. The mapping mechanism however has not been externally validated 430 

and many of the SR endpoints did not have a corresponding ICD-10 code. We extracted all the 431 

available first occurrence fields, totaling 1,165 terms across 16 disease categories (data-fields 432 

2401-2417), set to missing any improbable dates for each term (e.g., an event date before birth, 433 

at birth, or in the future), and estimated the number of affected individuals as those with a non-434 

missing first occurrence date. Due to the composite nature of COMB endpoints, we did not map 435 

these 3-character ICD-10 codes to PheCodes. Age when a given condition was first reported was 436 

estimated as described for the HIP dataset. 437 

We noted that age first occurrence estimated in the SR and the COMB datasets could be 438 

as early as <1 year of age, and the small values seemed unlikely for some diseases. However, 439 

such instances only accounted for a tiny fraction of the total affected individuals, particularly 440 

among adult-onset conditions (Tables S4&S6). Imposing any threshold to truncate the distribution 441 

would seem arbitrary given that the biologically plausible age of onset differs widely across 442 
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diseases. We instead acknowledged that measurement error or misclassification may exist for 443 

these small values but their impact on analysis should be limited as a whole.   444 

To compare the distribution of age of first occurrence across data types, we selected 26 445 

phenotypes whose definitions could be well mapped between SR and HIP, 15 of which were 446 

comparable across all three datasets (hypertension, angina, myocardial infarction, heart 447 

arrhythmia, hypothyroidism, high cholesterol, diabetes, asthma, depression, migraine, 448 

osteoarthritis, disc problem, gastroesophageal reflux disease/GERD, hiatus hernia, 449 

cholelithiasis/gallstones, breast cancer, skin cancer, endocrine/metabolic disorders, psychiatric 450 

disorders, neurological diseases, cardiovascular diseases, respiratory diseases, 451 

gastrointestinal/digestive diseases, dermatologic diseases, musculoskeletal disorders, and 452 

neoplasms) (Table S7). 453 

 454 

Association analysis 455 

We performed a GWAS of age of first occurrence for diseases with at least 5000 affected 456 

individuals, a cutoff we considered sufficiently powered for genetic analysis. This led to a total of 457 

70 SR, 224 HIP, and 164 COMB medical conditions (Tables S1-3). Age of first occurrence was 458 

analyzed as a quantitative outcome in a linear regression to estimate its association with imputed 459 

SNP dosages in PLINK 2.0 (PLINK v2.00a2LM), adjusting for sex, genotyping array, and the first 460 

20 PCs. For comparison, a GWAS of susceptibility to the same disease definition was also 461 

performed, which treated “ever affected with the condition” as the endpoint and considered all 462 

non-case individuals as controls; the same sets of covariates were included in the regression 463 

model. We deliberately did not adjust for current age in the model to avoid double counting the 464 

age information. Nonetheless, when current age was included as an additional covariate, we 465 

observed comparable GWAS results and heritability estimates. 466 

To obtain independently associated loci, we performed linkage disequilibrium (LD) 467 

clumping on GWAS summary statistics. The clumping procedure started by identifying genome-468 
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wide significant SNPs (p-value < 5x10-8) and then selecting any other SNPs that had a r2 > 0.1 469 

with the index SNP within a 500kb window to form a clump (--clump-p1 5e-08 --clump-p2 0.05 --470 

clump-r2 0.1 --clump-kb 500). The procedure stopped when all genome-wide significant SNPs 471 

were assigned to a locus. Any overlapping associated loci were merged using 472 

BEDTools/bedtools34 (v2.27.1). A randomly selected sample of 10,000 White British individuals 473 

in UKBB was used as the reference panel to compute LD. Due to its strong and extensive LD 474 

structure, the major histocompatibility complex (MHC) region (chr6: 25Mb-35Mb) was treated as 475 

one genomic locus. Finally, associated genomic loci of age of first occurrence and susceptibility 476 

from their respective GWAS were compared using “bedtools intersect” to identify shared or 477 

distinct loci.  478 

  479 

Inflation evaluation, SNP-heritability, and genetic correlation 480 

We performed LD Score regression (LDSR)35 analysis on GWAS summary statistics to assess 481 

the extent of residual confounding and to estimate SNP-heritability. LDSR can distinguish inflation 482 

in GWAS association 𝜒$ statistics due to confounding such as population stratification from true 483 

polygenicity. An LDSR intercept close to one, or a ratio of (intercept-1)/(mean 𝜒$−1) close to zero, 484 

would indicate the contribution of confounding biases is well-controlled. The analysis was done 485 

using the pre-computed LD scores of 1.2 million high-quality HapMap3 SNPs (excluding the MHC 486 

region) from the European samples in the 1000 Genomes Project36 and GWAS summary-level 487 

results from the tested UKBB disease phenotypes. SNP-heritability for age of first occurrence was 488 

estimated based on the slope of LDSR to measure the degree to which the phenotypic variation 489 

is explained by common genetic variation. SNP-heritability for susceptibility was estimated on the 490 

liability-scale, assuming that population prevalence equals sample prevalence in the dataset. For 491 

conditions with a significant heritability of its age of first occurrence and susceptibility endpoints, 492 

we calculated a genetic correlation (rg) between the two traits using bivariate LDSR37. The genetic 493 

covariance is estimated using the slope from the regression of the product of z-scores from two 494 
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GWAS studies against the LD score. The estimate obtained from this method represents the 495 

genetic correlation between the two traits attributable to all polygenic effects captured by common 496 

SNPs. In addition, we estimated pairwise rg’s separately for age-of-first-occurrence and 497 

susceptibility phenotypes to examine the pattern of genetic sharing across diseases. 498 

 499 

Replication analysis in FinnGen  500 

To replicate the results of the heritability pattern of age of first occurrence and its genetic 501 

correlation with susceptibility, we analyzed the FinnGen cohort17 of 130,423 unrelated individuals. 502 

Age at recruitment of FinnGen participants ranged from 0.08 to 98.98 (median: 54.36, IQR: 25.45).  503 

FinnGen is a public-private partnership project combining genotype data from Finnish biobanks 504 

and digital health record data from Finnish health registries (https://www.finngen.fi/en). Six 505 

regional and three country-wide Finnish biobanks participate in FinnGen, which also includes data 506 

from previously established populations and disease-based cohorts. 507 

FinnGen disease endpoints are defined using nationwide registries. Data are harmonized 508 

over the ICD revisions 8, 9 and 10, cancer-specific ICD-O-3, (NOMESCO) procedure codes, 509 

Finnish-specific Social Insurance Institute (KELA) drug reimbursement codes, and ATC-codes for 510 

medications. These registries span decades (Figure S16) and are electronically linked to the 511 

cohort baseline data using the unique national personal identification numbers assigned to all 512 

Finnish citizens and residents. We used genotype and phenotype data from FinnGen release v4 513 

of 130,423 unrelated Finnish participants, excluding population outliers via PCA and related 514 

individuals (<3rd degree) using the KING software38 (Supplementary Notes).  515 

We analyzed diseases with at least 5000 cases and a few additional ones with slightly 516 

fewer than 5000 cases that we considered relevant for comparison with UKBB, leading to a total 517 

of 280 medical conditions. For each condition, age of first occurrence was defined as the earliest 518 

age of an event in the registries. Age of first occurrence across the analyzed diseases ranged 519 

from 0 to 105.65 (median: 52.04, IQR: 28.22). fastGWA39 linear regression model was used for 520 
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GWAS analysis. Sex, 10 PCs, and genotyping batch were used as covariates. Low quality 521 

variants with missingness rate > 0.1 and variants with MAF < 0.0001 were excluded from the 522 

analysis. Following the same procedures in the UKBB analysis, we identified loci uniquely 523 

associated with age of first occurrence, estimated the SNP-heritability of age of first occurrence 524 

and susceptibility using LDSR, and computed a genetic correlation between them for each 525 

analyzed disease definition. Standard LD scores were used based on the 1000 genomes 526 

reference set, restricting to European populations. 527 

In addition to the phenome-wide analysis, we focused on the 26 mapped phenotypes to 528 

compare the results in UKBB and FinnGen (Table S19). To evaluate how the estimated effect 529 

sizes of age of first occurrence in UKBB replicate in FinnGen, we first identified the SNPs present 530 

both in UKBB and FinnGen. For the common SNPs, we then obtained the independently 531 

associated loci in the UKBB performing LD clumping with a p-value threshold of 0.0001. We finally 532 

looked at the correlation of the effect sizes in UKBB and FinnGen for the index SNPs of each 533 

clump and evaluated the concordance of the direction of the effects with a one-sample binomial 534 

test. 535 

 536 

MTAG analysis of susceptibility and age of first occurrence 537 

For UKBB diseases where age of first occurrence and susceptibility shared a significant genetic 538 

correlation, we meta-analyzed the two traits using Multi-Trait Analysis of GWAS (MTAG)19. Built 539 

upon the LDSR framework, MTAG boosts power for loci discovery for a trait by factoring in its 540 

shared genetic architecture with other traits while accounting for sample overlap. MTAG by default 541 

imposes additional SNP filters, which resulted in ~7.8 million SNPs, fewer than included in the 542 

GWAS. All the comparisons of MTAG and GWAS were based on this subset of SNPs. The 543 

number of significant loci in MTAG of susceptibility—now with the information on age of first 544 

occurrence incorporated—was calculated based on the same clumping and merging procedure 545 
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described previously and were compared against the original susceptibility GWAS to identify any 546 

additional loci. 547 

 548 

Polygenic risk prediction of disease susceptibility 549 

To evaluate if genetic sharing with age of first occurrence can improve risk prediction of disease 550 

susceptibility, we constructed polygenic risk scores (PRS) from MTAG association statistics and 551 

compared its performance to that based on the susceptibility GWAS. We used PRS-CS40, a 552 

Bayesian polygenic prediction method that imposes a continuous shrinkage prior on SNP effect 553 

sizes and is robust to diverse genetic architectures, to obtain the posterior effect size of each SNP, 554 

using 1000 Genomes European samples as the LD reference panel.  PRS was calculated as the 555 

sum of allele dosages weighted by the posterior effect sizes of each SNP in an independent, 556 

ancestry-matched sample of 91,436 UKBB Individuals using PLINK 2.0 (--score). The target 557 

sample was selected as follows: starting with 1000 Genomes variants that overlapped with UKBB 558 

genotyped variants, we filtered to high-quality autosomal SNPs (no strand-ambiguous alleles, not 559 

in long-range LD regions, with a call rate > 0.98 and a MAF > 0.05), and pruned for LD (r2 < 0.2) 560 

down to 149,501 nearly independent SNPs. Using the pruned SNPs, we performed PCA on the 561 

2,504 individuals in 1000 Genomes data and then projected the 488,377 UKBB individuals onto 562 

the computed PC space. With the first 6 PCs in 1000 Genomes as the training data, we used the 563 

Random Forest classifier to assign a “super population” label with a prediction probability ≥ 0.9 564 

for each UKBB participant (AFR, AMR, EAS, EUR, or SAS). This resulted in 91,436 individuals 565 

who were classified as EUR and were not included in the discovery GWAS. We focused on 566 

diseases with >2,000 cases in the target sample for PRS analysis. 567 

To estimate the predictive power of PRS, we calculated an incremental McFadden’s 568 

pseudo-R2 (𝑝𝑅$), comparing a logistic regression model that included PRS and a set of covariates 569 

(age, sex, genotyping array, and the top 10 PCs) to a covariate-only model. The percentage 570 

improvement in the predictive power of MTAG-PRS over GWAS-PRS was computed as 571 
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(𝑝𝑅()*+$ /𝑝𝑅+,*-$ − 1) ∙ 100%. Next, we evaluated the performance of risk stratification of MTAG-572 

PRS and GWAS-PRS; both PRS were standardized to have a mean of 0 and a standard deviation 573 

of 1. We dichotomized individuals into those who belonged to the top PRS percentile (1%, 2.5%, 574 

5%, 10%, and 20%) versus those who did not, or those among the average percentiles (20-80%). 575 

We then modeled disease risk as a function of the binary PRS indicator as well as age, sex, 576 

genotyping array, and the top 10 PCs as covariates. The proportion of cases (prevalence) was 577 

also identified in each top PRS percentile.  578 

    579 
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Figure 1. Distribution of age of first occurrence of disease phenotypes from three phenotypic datasets in UKBB 

A. An averaged distribution of age of first occurrence is shown across 70 SR (blue), 224 HIP (green), and 164 COMB (orange) disease definitions in each 
dataset. Dotted line indicates the outlying range of values. Age of first occurrence ranges from 0-70 in the SR dataset, 30-80 in the HIP dataset, and 0-
80 in the COMB dataset. Spikes in the SR phenotypes reflect that the values are recorded in quartiles (0.25, 0.5, 0.75, or 1.00). 

B. Distribution of age of first occurrence differs by trait and data source. Shown here are three selected disease phenotypes with matching definitions 
across datasets. SR and HIP conditions show little to moderate overlap in age of first occurrence, as measured by Pearson’s correlation coefficient (rp; 
top), while the COMB conditions exhibit a merged distribution of SR and HIP (bottom).   
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Figure 2. Genetic characterization of age of first occurrence and its relationship with susceptibility in the UKBB SR dataset 

A. A Miami plot of GWAS results reveal overlapping and distinct genetic associations between age of first occurrence (top) and case-control status (bottom) of SR 

asthma. Each dot represents a single SNP. P-values are shown on the −log10 scale on the y-axis, plotted against chromosome positions on the x-axis. The red 

dashed lines denote the genome-wide significance threshold at P = 5×10-8. 

B. SNP-heritability estimates for age of first occurrence (ℎ!"#"$ ) across 70 SR disease definitions suggest non-trivial common genetic contributions. ℎ!"#"$  was 

estimated from univariate LDSR. Each dot represents an individual disease, colored by disease categories used in the SR dataset; a larger dot corresponds to a 

broader disease definition. Labeled are conditions with a significant ℎ!"#"$  at FDR < 0.05. Heritability analysis of HIP and COMB diseases reveal a similar pattern 

in Figure S9. 

C. Genetic correlation (rg) analysis suggests an inverse genomic relationship between age of first occurrence and susceptibility for diseases with a significant 

heritability for both traits. rg was estimated using bivariate LDSR. The dashed line denotes nominal significance at P = 0.05; labeled are conditions with a significant 

rg at FDR < 0.05. Analysis of HIP and COMB diseases show a similar pattern in Figure S13. 
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Figure 3. Genetic analysis of age of first occurrence in FinnGen and its comparison with UKBB results 
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A. Distribution of heritability estimates from FinnGen for 64 diseases that have a significant ℎ!"#"$ . Labeled are selected conditions with a significant ℎ!"#"$  
at FDR < 0.05. 

B. ℎ!"#"$  estimates for 15 comparable disease definitions in UKBB and FinnGen show variable degree of similarity. Left axis denotes SNP-heritability shown 
in bar plots and the corresponding 95% confidence intervals (95% CI). Right axis shows the median age of first occurrence for each condition indicated 
in dotted lines. The full comparison of all 26 matched phenotypes is available in Table S18 and Figure S19. 

C. A negative rg between age of first occurrence and disease susceptibility is observed for many of the tested diseases, consistent with the findings in 
UKBB. Shown are rg estimates and its 95% C.I. for diseases with a significant heritability for both traits. 
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Figure 4. MTAG and PRS analysis in 
the UKBB SR dataset 

A. A Manhattan plot of asthma 
MTAG that incorporates age of 
first occurrence information (blue 
triangle) compared to the original 
case-control GWAS (grey circle). 
The solid red line denotes P = 
5×10-8. 

B. Improvement in disease risk 
prediction using MTAG-PRS 
versus GWAS-PRS. MTAG was 
performed for diseases with a 
significant rg between age of first 
occurrence and susceptibility. 
PRS and the proportion increase 
in prediction R2 of MTAG relative 
to GWAS (y-axis) were computed 
in an independent sample of 91K 
EUR individuals. Results for the 
HIP and COMB datasets are 
shown in Figure S20. 

C. The application of MTAG-PRS 
and GWAS-PRS in risk 
stratification for two selected 
disease phenotypes. The left 
panel shows the adjusted odds 
ratio and its 95% CI (y-axis) 
comparing individuals in each of 
the top PRS percentiles (x-axis) 
to the rest of the population. 
Showing on the right is the 
corresponding disease 
prevalence in the top PRS 
percentiles computed using either 
GWAS or MTAG summary 
statistics. Full results for all three 
UKBB datasets can be found in 
Tables S24-26.  
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