
Page 1 of 30 

 

 

Supplementary information for 

During outbreak periods, fever rates are lower in the morning, raising concerns 

about only conducting fever screenings at that time 

 

Charles Harding, Francesco Pompei, Samantha F Bordonaro, Daniel C McGillicuddy, Dmitriy 

Burmistrov, Leon D Sanchez 

 

Contents Page 

 

Supplementary Table S1. Morning-evening comparisons.................................................................... 2 

Supplementary Figure S1. Continuous time analysis............................................................................ 3 

Supplementary Figure S2. Year-by-year analysis................................................................................. 4 

Appendix, Berkson’s Bias and Residual Confounding......................................................................... 6 

Figure A. Weekdays vs. weekends analysis............................................................................ 9 

Figure B. Fever rates in the general population analysis........................................................ 13 

Appendix, COVID-19 Fevers.............................................................................................................. 16 

Appendix, Screening and Transmission.............................................................................................. 21 

Appendix Methods.............................................................................................................................. 24 

References........................................................................................................................................... 27 

 

  



Page 2 of 30 

 

Supplementary Table S1. Fever rates in the Boston and national studies, showing consistent increases from mornings (6 AM to noon) to evenings (6 

PM to midnight), with risk ratios for the morning-evening comparison ranging from 0.43 to 0.66. When evaluated on an absolute scale, morning-

evening increases were largest during high influenza activity. 

RR, risk ratio comparing mornings to evenings. CI, confidence interval. 

 

 

Fever definition Period 
Boston study National study, observed National study, case-mix adjusted 

Morning Evening RR (95% CI) Morning Evening RR (95% CI) Morning Evening RR (95% CI) 

≥100.4°F, ≥38.0°C High influenza 2.5% 5.9% 0.43 (0.29-0.61) 3.1% 5.5% 0.56 (0.47-0.66) 3.2% 5.4% 0.59 (0.50-0.70) 

 Other 1.7% 3.7% 0.47 (0.42-0.53) 2.3% 3.7% 0.63 (0.57-0.69) 2.3% 3.7% 0.63 (0.57-0.70) 

≥100.0°F, ≥37.8°C High influenza 3.6% 7.8% 0.45 (0.32-0.61) 4.1% 7.2% 0.58 (0.50-0.67) 4.2% 7.0% 0.61 (0.53-0.71) 

 Other 2.7% 5.7% 0.48 (0.43-0.52) 3.4% 5.2% 0.65 (0.60-0.71) 3.4% 5.2% 0.66 (0.60-0.72) 

≥99.5°F, ≥37.5°C High influenza 5.5% 12.7% 0.44 (0.34-0.55) 6.4% 10.4% 0.61 (0.54-0.69) 6.5% 10.2% 0.64 (0.56-0.72) 

 Other 5.5% 10.2% 0.54 (0.50-0.58) 5.4% 8.3% 0.65 (0.61-0.70) 5.5% 8.3% 0.66 (0.62-0.71) 
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Supplementary Figure S1. Time-of-day variation in the rate of fever (temperature 

≥100.4°F, ≥38.0°C), with time analyzed as a continuous variable. Results are similar 

to the binned analysis in the main paper (Figure 1), but show the cycle of fever rates over 

the day with more detail. Curves are from logistic regressions using a cyclic cubic spline 

term with knots placed at quintiles of the recorded times of day and midnight. To 

illustrate the correspondence between the data and the curves, points are also shown with 

the average time and fever rate for every 10% segment of the recorded times of day. As 

in the previous figures, national study results are nationally representative of adult visits 

to US emergency departments. Confidence bands are 95% (pointwise). 
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Supplementary Figure S2. Time-of-day variation in the rate of fever (temperature ≥100.4°F, ≥38.0°C) during each year 

of the Boston and National studies. In each year, morning temperatures were less likely to reach the fever range than evening 

temperatures, with especially large morning-evening differences usually occurring during high influenza activity. Fever rates 

in non-influenza periods were consistent across years of the studies. However, there were substantial year-to-year differences 
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in overall fever rates during high influenza activity, which may be due to both year-to-year differences in the extent of 

influenza’s spread and differences between each influenza virus’s ability to cause fever. The high influenza activity period of 

2009-2010 includes the influenza A(H1N1) pdm09 (swine flu) pandemic. In the figure, years are counted from July of one year 

through June of the next in order to keep temperatures recorded during the same flu seasons together. (Flu seasons occur in 

winter, so would be mixed across multiple plots if standard calendar years had been used instead.) In some years, no months of 

the study periods met our definition of high influenza activity due to unusually mild flu seasons (occurring in 2011-2012) or 

due to a flu season beginning too late (occurring in 2010-2010 of the national data). Curves are from logistic regressions using 

a cyclic cubic spline term with knots placed at tertiles of time of day and midnight. To illustrate correspondence between the 

data and the curves, points are also shown with the average time and fever rate for every 20% segment of the recorded times of 

day. The Boston study lasted from September 2009 to March 2012, while the national study lasted from December 2002 to 

December 2010. All confidence bands are 95% (pointwise). 
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Appendix, Berkson’s Bias and Residual Confounding 

This appendix addresses topics of Berkson’s bias and residual confounding. To do so, it includes 

analyses of weekday vs. weekend fever rates and fever rates in a large U.S. study of the general 

(non-medical) population (n=6,535), which may be of independent interest to some readers.  

Background 

In this study, the analyzed body temperatures were taken from patients presenting to emergency 

departments. Consequently, the morning and evening temperatures come from different groups 

of patients—namely, from patients who went to emergency departments in the morning and from 

those who went to emergency departments in the evening. This raises the possibility that the 

differences between the observed morning and evening fever rates do not result from differences 

in the actual rates of fever at these times, but instead result from other differences between the 

patients seen during mornings and evenings. 

In the main text, we used a multivariable logistic regression approach to control for time-of-day 

differences in 12 variables. This controlling produced almost no change in the fever rates, which 

substantially raises our confidence that the findings do not result from time-of-day differences in 

the case mix of patients seen at emergency departments. However, it remains possible that the 

controlling was not sufficient to address confounding or that the findings are affected by 

selection bias in the form of Berkson’s bias—possibilities addressed in this appendix. 

There are several names for Berkson’s bias, including Berkson’s fallacy, Berkson’s paradox, 

Berksonian bias, collider selection bias, and collider stratification bias.1,2 Berkson’s bias may 

alter the estimated relationship between an exposure and outcome when a study is limited to a 
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patient group, and when the exposure and outcome affect membership in that group.2 For the 

current study, the bias could apply because the study is limited to patients presenting to 

emergency departments (patient group), and because both time of day (exposure) and body 

temperature (outcome) can affect the decision to go to an emergency department. Explained in 

common language, Berkson’s bias could be expected to arise in the following way: If it is harder 

to go to the emergency department at some times of day than others, a more substantial 

collection of symptoms may be necessary to induce an emergency department visit at these 

times. Since the presence of fever may make an individual’s overall extent of symptoms more 

substantial, this could result in an inverse association between convenient times of day and fever 

rates, unrelated to the rhythms of body temperature in disease.  

For technical discussion of Berkson’s bias, we refer the reader to articles by Westreich2 and 

Snoep et al.1 As these show, an important feature of Berkson’s bias is that it is not eliminated by 

using multivariable regression to control for confounders. Instead, it can be addressed by 

considering the underlying logic of the situation, through sensitivity analyses, and by analyzing a 

general population (nonmedical) dataset, and by referring to previous research. These points are 

also relevant to residual confounding. We address them below. 

Underlying logic 

In our study, fever rates are higher at the more convenient times of day (after work and during 

the evening; Figure 1, Supplementary Figure S1). This is contrary to the effect we generally 

expect from Berkson’s bias, but is consistent with the circadian rhythm of body temperature.3 

Considering the underlying logic in this way suggests that, if present, Berkson’s bias would be 

likely to dampen the size of the morning-evening difference, rather than inflate it. 



Page 8 of 30 

 

Sensitivity analyses 

We compared fever rates during weekdays and weekends as a check on the potential effects of 

Berkson’s bias and, more generally, the effects of differences between weekday and weekend 

schedules on the observed fever rates. Such effects could arise, for example, since the decision to 

go to the emergency department can be affected by work and schooling hours, and by the hours 

and days that alternative sources of care are open (such as primary care physicians’ offices). 

Work shifts, school times, and alternative care availability are the main mechanisms through 

which we anticipate Berkson’s bias and residual confounding could occur during daytime hours, 

and we therefore think the weekday vs. weekend comparison should be a revealing assessment 

for both. 

We found that the time of day variation in fever rates was similar on weekdays and weekends, as 

shown in Figure A below. The similarity between weekday and weekend results is contrary to 

the anticipated mechanisms of Berkson’s bias and residual confounding, but matches with the 

physiological consistency that is expected for the circadian rhythm of body temperature.  

Our previous research also includes comparisons of weekend and weekday fever rates for other 

fever definitions, also with similar results.3  
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Appendix on Berkson’s bias, Figure A. Time-of-day variation in the rate of fever 

(temperature ≥100.4°F, ≥38.0°C), comparing weekdays and weekends. The time-of-

day cycle of fever rates is similar during weekdays and weekends, suggesting that the 

cycle of fever rates is not a consequence of daily schedule changes or the availability of 

alternative sources of care. Curves are from logistic regressions using a cyclic cubic 

spline term with knots placed at quintiles of the recorded times of day and midnight. To 

illustrate the correspondence between the data and the curves, points are also shown with 

the average time and fever rate for every 20% segment of the recorded times of day. As 

in the previous figures, national study results are nationally representative of adult visits 

to US emergency departments. Confidence bands are 95% (pointwise). 
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Analysis of a general population (nonmedical) dataset 

As a further check for Berkson’s bias, we analyzed body temperatures from a large general 

population (non-medical) study of the United States, the National Health and Nutrition 

Examination Survey (NHANES) I. Analyzing general population body temperatures is also 

useful to examine the generalizability of our emergency department findings.  

Methods: NHANES I was performed in 1971-1975 to evaluate the health of the general US 

population. Despite the age of this study, it appears to be the largest collection of general 

population body temperatures that is currently available. Perhaps because of this, NHANES I 

body temperatures have been the subject of renewed interest, including in a prominent study by 

Protsiv et al.4 Clinical examination data are available from 23,808 persons age ≤75. Time of day 

was recorded during clinician-performed blood pressure assessments that were given to 6,877 

adults, all of whom were age 25-75. Of the adults with time of day records, 339 were missing 

body temperature measurements, 2 had unrealistically low body temperatures indicating 

measurement error (<95.0°F, <35.0°C), and 1 was missing information on obesity status. We 

excluded these individuals and analyzed body temperatures for the remaining 6,535 persons.  

Analyses of NHANES I can provide nationally representative findings by accounting for the 

survey’s design. However, because temperatures and times were only available for a subset of 

individuals, we chose not to account for the survey design in the analyses, meaning that the 

results are not nationally representative estimates, but should instead be interpreted as coming 

from a cohort study of 6,535 persons. 



Page 11 of 30 

 

Body temperatures were measured by a clinician using oral mercury thermometers. Because of 

the non-medical population under study, high temperatures were much rarer than in the 

emergency department data. Of the 6,535 analyzed individuals, 1 had a temperature ≥100.4°F 

(≥38.0°C), 6 had a body temperature ≥100.0°F (≥37.8°C) and 30 had a body temperature 

≥99.5°F (≥37.5°C). The lack of temperatures ≥100.4°F (≥38.0°C) prevented analyses of this 

fever threshold, and analyses were therefore restricted to ≥100.0°F (≥37.8°C) and ≥99.5°F 

(≥37.5°C).  

The examinations were performed from morning to evening, with 95% of all times of day falling 

between 9:05 AM and 9:20 PM. Older individuals were somewhat less common at evening 

examinations, and multivariate adjustment was therefore performed, following the same 

approach used for the NHAMCS national study of emergency department data.5 The following 

covariates were included in the multivariate adjustment: gender (coded as male or female in 

NHANES I), age (analyzed a continuous variable using a spline with knots at ages 35, 45, 55, 

and 65), race (coded as black, white, or other in NHANES I), and obesity (coded as present or 

absent in NHANES I).  

Results: As shown in Figure B, fever rates increased from morning (before noon) to evening 

(after 6 PM) for both investigated fever definitions. Multivariate-adjusted analyses continued to 

show increased fever rates from the morning to the evening. For the ≥99.5°F (≥37.5°C) fever 

definition, the morning-to-evening fever risk ratio was 0.23 (95% CI 0.09-0.64) in the unadjusted 

analysis and 0.24 (95% CI 0.09-0.67 in the adjusted analysis). For the ≥100.0°F (≥37.8°C) fever 

definition, the morning-to-evening fever risk ratio was 0.00 (95% CI 0.00-0.86 ) in the 
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unadjusted analysis and was statistically undefined in the adjusted analysis because no fevers in 

this range occurred during mornings. 

Discussion: Analysis of body temperatures from the general population continued to show 

increased fever rates from morning to evening, providing further support for a physiological 

origin of this morning-evening difference, rather than the alternative that it results from 

Berkson’s bias.  

However, there are several limitations to the general population results, including the rarity of 

fever-range temperatures in the studied cohort and the lack of overnight temperatures. 

Additionally, it is not clear whether NHANES I fever rates accurately estimate fever rates in the 

general population, or if individuals with fever were predisposed to not show up to their 

NHANES I examinations because they were sick. Yet, even if the latter possibility is true, it 

would be expected to lead to a reverse of the effects of Berkson’s bias for emergency 

departments (where fever increases the chance of presentation, rather than decreasing it), 

meaning that the observation of morning-evening fever rate increases in both the general 

population and emergency department studies continues to support a physiological origin to this 

pattern. 

In summary, findings from a general population cohort are consistent with morning-evening 

increases in fever rates that are physiological, rather than an artifact of Berkson’s bias. Results 

also show that the morning-evening increases in fever rates occur outside of medical populations. 
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Appendix on Berkson’s bias, Figure B. Increasing fever rates by time of day in the 

general population study. When analyzing a large (n=6,535) general (non-medical) 

population sample, the rate of fever-range temperatures continued to rise from morning to 

evening. This supports a physiological origin for the morning-evening difference in 

fever-range temperatures, rather than the alternative that Berkson’s bias explains the 

morning-evening difference. However, there were too few fevers ≥100.4°F (≥38.0°C; 

n=1) to be analyzed by time of day in the general population study, and the general 

population study also did not include post-midnight temperature measurements. 

Confidence intervals are 95%. The multivariable analysis adjusts for age, sex, race, and 

obesity status, but does not differ meaningfully from the unadjusted results. 
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Previous research 

In previous studies of the relationship between the circadian rhythm and fever, longitudinal data 

were collected on groups of hospital inpatients6–8 and healthy young men with experimentally 

induced fevers.9 Because of the longitudinal data collection in these studies, their results are not 

subject to Berkson’s bias or confounding for morning-evening comparisons. Each study also 

showed a rise in fever-range temperatures from morning to evening, consistent with a 

physiological effect, though the sample sizes were not large enough to reliably evaluate the 

degree of morning-evening differences in those studies.   

Drawing on previous research, numeric estimation also suggests that circadian physiology can 

cause fever-range temperatures (≥100.4°F, ≥38.0°C) to be half as common in the morning as in 

the evening—consistent with the morning-evening change observed in our study, without 

involving any Berkson’s bias or residual confounding. The estimation proceeds as follows: 

Healthy body temperatures reportedly change an average of 0.9°F (0.5°C) from the morning low 

to the evening high as part of the physiology of the circadian rhythm.10 Additionally, the 

morning-evening temperature change in febrile disease is usually at least as large or larger than 

observed in health.11–14 In our Boston study, of all the body temperatures that were in the fever 

range in the evening (6 PM−midnight), 44% were at least 0.9°F above the fever threshold, and 

therefore would stay in the fever range in the morning if they reduced the average circadian 

amount. Similarly, in the national emergency department study, 48% of evening fever-range 

temperatures were at least 0.9°F above the fever threshold, and therefore would stay in the fever 

range in the morning if they reduced the average amount. So in both cases, estimation suggests 
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that fever-range temperatures can be half as common in the morning as in the evening owing to 

circadian physiology alone, without any biases. 

To examine the dependence of these estimates on the circadian temperature change, we also 

investigated average circadian changes of 0.5°F and 1.5°F, instead of 0.9°F. These alternative 

circadian changes produced morning-vs-evening fever rate ratios in the range of 0.34-0.72, 

which continue to be consistent with the morning-evening fever rate changes observed in our 

results, without involving potential biases.  

Summary 

In this appendix, the potential consequences of Berkson’s bias and residual confounding were 

examined through sensitivity analyses, analyses of a general population dataset, and 

consideration of previous research. Overall, the results are consistent with large morning-evening 

increases in fever rates that are physiological and not artifacts of Berkson’s bias or residual 

confounding.  



Page 16 of 30 

 

 

Appendix, COVID-19 Fevers 

This appendix provides an overview of fevers in COVID-19, including sections on the 

occurrence of fever, thresholds used for fever, and time-of-day variation in fever. The included 

summaries of the literature were last updated on September 21, 2020. 

Occurrence of fever in COVID-19 

Fever is thought to be the most common COVID-19 symptom,15 and first symptoms often 

include fever.16,17 Currently, the amount of evidence on COVID-19 fever rates differs 

substantially by patient group. 

The most evidence on COVID-19 fever rates is available for hospitalized patients, who generally 

have high rates of fever: 88.7%, including 43.8% on admission;15 94.3%, including 87.1% at 

illness onset;18 98.6% at onset;19 30.7% on triage or admission;20 83%, including 26% on 

admission;21 about 89% of symptomatic adult cases;22 80.4% of severe and 82.4% of non-

severe/common cases at onset;23 and 85.0% with fever or chills on admission.24 Fevers in 

hospitalized patients also present on many days (median fever days per patient: 9 in inpatients 

without ICU stays,18 31 in inpatients with ICU stays,18 and 12 in surviving inpatients25), which 

would allow multiple opportunities for screening detection if observations are similar outside the 

hospital setting (which is unknown). Examining the temperatures attained by febrile patients 

hospitalized with COVID-1915 suggests that overall they are not unusually high, and do not stand 

out relative to the temperatures attained in common diseases like seasonal influenza. 
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Less evidence is available for residents of skilled nursing and assisted living facilities. In studies 

of skilled nursing facilities, fevers were noted in 39% of residents with confirmed COVID-19,26 

43% of residents with confirmed COVID-19,27 and 53% of those under investigation for 

COVID-19.27 The lower fever rates may result from older individuals’ diminished ability to 

mount febrile responses.28  

Limited evidence is also available for the general population of patients with COVID-19 who 

have not been hospitalized and are not nursing facility residents. However, studies that have 

tracked new cases suggest fairly high rates of fever in this group, including reports of fever in 

71% of contact-traced cases;29 75.0% of healthcare personnel, including 41.7% at first onset;17 

55.4% of healthcare workers according to self-report and 85.0% of healthcare workers defined 

by temperature ≥37.5°C;30 at onset, 53.3% of index cases and 56.3% of household members they 

infected;31 self-reported by 57.5% of patients at times of positive COVID-19 tests;32 and self-

reported by 48.7% of healthcare workers and 43.7% of others at times of positive COVID-19 

tests.33 Additionally, in CDC analyses, fever was reported for 68% of healthcare personnel with 

COVID-1934 and about 73% of symptomatic non-hospitalized adults.22  

Overall, reports to date show fever rates that are high during COVID-19’s clinical course and 

intermediate at first onset. Our results on the daily cycle of fever rates suggest that some onset 

research could underestimate fever rates by using morning temperatures, but we cannot tell 

which studies are affected because none report temperature measurement times.  
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An added complication is that, in populations with sufficiently low COVID-19 prevalence,* the 

number of false-positive test results can approach or exceed the number of true-positive test 

results, leaving open the possibility that false-positive cases may be confused for asymptomatic 

cases.35 If this is occurring, it would artificially increase the proportions of COVID-19 cases 

believed to be asymptomatic (and afebrile) in data from low-prevalence settings. On the other 

hand, asymptomatic cases are especially likely to go untested in many contexts, creating a 

contravening bias that could lead to underestimation of the proportion of COVID-19 cases that 

are afebrile. The competing biases make the overall fever rate in COVID-19 somewhat unclear, 

despite substantial study.    

 Temperature thresholds used for COVID-19 

Several temperature thresholds have been used to define fever for COVID-19, such as ≥100.4°F 

(≥38.0°C), ≥100.0°F (≥37.8°C), and ≥99.5°F (≥37.5°C). The large range of fever rates reported 

by previous studies of COVID-19 may be partially attributable to the choice of different fever 

thresholds in different studies. However, an added complication is that different thermometer 

sites (e.g., oral, temporal, tympanic, axillary, or rectal) have also been used by different studies, 

and that some of these sites generally attain lower temperatures in fever than do others.36 In 

particular, several studies using low fever thresholds have used axillary thermometers,25 which 

tend to show the lowest temperatures during fever. This complication leaves the overall 

relationship between temperature thresholds and COVID-19 fever rates unclear.  

 
* Or very high rates of testing, such as the frequent retesting that is sometimes given to healthcare workers. 
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No information is currently available on an optimal fever threshold for COVID-19, overall or by 

thermometer site.  

Time-of-day variation of fever in COVID-19 

To our knowledge, no study has examined the time-of-day variation of fever in COVID-19. 

Further, we were unable to find any study of the time-of-day variation of fever in the related 

disease Severe Acute Respiratory Syndrome (SARS). However, in most febrile diseases, body 

temperature follows an exaggerated version of the healthy circadian rhythm,11–13 which reaches 

its minimum in the morning and its maximum in the late afternoon or evening. (In our study, this 

pattern of fever rates occurred during both the periods of high influenza activity and the 

remaining periods.) It remains to be seen whether body temperatures follow this usual pattern in 

COVID-19, or whether COVID-19 is an exceptional case.  

If COVID-19 is an exceptional case, it is possible that its temperature low point may not occur 

during mornings. In this case, the solutions outlined in our main text may not be useful for 

COVID-19 prevention, though twice-daily screening could still mitigate the detection problems 

that are posed by time-of-day variation in fever rates, so long as at least one screening does not 

occur at the time of temperature low points. 

Recommendations for future research 

Overall, we hope that our research encourages study of fever’s course in COVID-19, which 

could help improve screening practices, such as by identifying optimum times of day for 

screening. For reasons of practicality, an advantageous time for morning measurements may be 

directly before leaving for work or school. Based on the physiology of the circadian cycle, an 
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advantageous time for evening temperature measurements could be directly before dinner, which 

is both near the circadian highpoint and precedes the small metabolism-associated increases in 

body temperature that follow dinner (and do not result from fever). Before-dinner measurement 

is also generally consistent with the fever rate highpoints in our analyses of general and 

influenza-caused fevers.   

When planning future COVID-19 fever research, we recommend that investigators keep the 

following potential obstacles in mind: (1) Inpatients with COVID-19 may not show a daily cycle 

of fever rates, or may show a distorted cycle. This is because circadian rhythms can be severely 

disrupted by poor sleep and other stressors of being an inpatient.37,38 Similarly, night workers 

may show a distorted or reversed cycle. (2) Observed fever rates can be affected by Berkson’s 

biases (Appendix, Berskson’s bias). (3) In populations with low COVID-19 prevalence or very 

high testing rates, many or most of the apparently asymptomatic and afebrile cases may be false 

positives, as discussed above. (4) Lowering the fever threshold in the morning may help to 

compensate for the daily cycle of fever rates, but could adversely affect screenings for 

individuals whose circadian rhythms do not follow the usual pattern of a morning low and 

evening high, such as some inpatients and night workers. 
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Appendix, Screening and Transmission 

This appendix uses simple examples to explain how fever and other symptom screenings can 

confer benefits if they can modestly reduce disease transmission rates during outbreaks, 

following similar arguments that have been applied for public use of face masks.39,40 

Temperature screenings are used for COVID-19 because measurements are simple enough to be 

performed by non-clinicians, because fever is among the most common and earliest 

symptoms,15,16 because many or most symptomatic people appear not to self isolate until they 

receive positive test results,41,42 because symptomatic health care personnel have often kept 

working,17 and because false-negative test results are common,43 potentially resulting in 

individuals with symptomatic COVID-19 who continue to participate in work and daily activities 

because they think they do not have COVID-19. Temperature screenings have also been 

considered for future pandemic influenza events because fever is a common and early symptom 

of influenza.44 However, an important limitation to fever and other symptom screenings is that 

they cannot detect nonfebrile, asymptomatic, or presymptomatic cases, which are thought to 

occur substantially for both COVID-1945 and influenza.46,47  

Despite symptom screenings’ inability to detect some cases, they can still confer benefits that 

grow considerably in time if they are able to reduce disease transmission rates. For example, 

suppose that screening only modestly improves case detection and isolation, resulting in an 

average reduction of 15% in the number of people that each infected individual transmits their 
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disease to.† Then, on average, an infected individual would infect 15% fewer others, the people 

who are nevertheless infected by this individual would infect 15% fewer others, the people who 

are nevertheless infected by these individuals would infect 15% fewer others, and so on, with the 

benefits of screening compounding at each generation of disease transmission. The consequence 

is that at the first, second, third, and fourth generations of transmission in a new outbreak, there 

would be roughly 85%, 72.3%, 61.4%, and 52.2% as many new cases as would otherwise occur 

(=85%n). In this way, over the span of only a handful of disease transmission generations, the 

modest 15% reduction in disease transmission translates into the large benefit of having only 

52.2% as many new cases as would occur without screening. 

The growth of benefits is also why addressing screening failure points, like low morning fever 

rates, can be more beneficial than intuition may suggest: For example, if addressing this issue 

were to change the effect on transmission from a 15% reduction to a 25% reduction, then at the 

fourth generation of a new outbreak, there would be roughly 31.6% as many new case as would 

occur without screening, rather than 52.2%. 

Importantly, the growth of benefits eventually stops following this exponential pattern as the 

growth of the outbreak stops being exponential itself. However, the benefits slow outbreaks, 

allowing more time to try case tracking and other limited countermeasures before closures and 

lockdowns become the only options for stopping extensive disease spread.  

 
† In other words, this is a reduction of 15% in the disease’s R effective. 
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In previous studies, similar reasoning has been pursued with greater thoroughness to explain how 

large benefits can accompany other imperfect, partial measures of blocking disease transmission, 

in particular including public use of cloth and procedure face masks to reduce the spread of 

COVID-19.39,40 However, we caution that no similar analyses of workplace and school fever 

screening have been published to date. 
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Appendix Methods 

This appendix describes additional methods.  

Datasets and measurements 

We performed the Boston study at the Beth Israel Deaconess Medical Center Emergency 

Department (September 2009–March 2012) using temporal artery thermometers connected to 

automatic data-loggers that recorded the measured temperatures and times.3,48 The national study 

was performed by the US Centers for Disease Control and Prevention as the emergency 

department components of the year 2003–2010 National Hospital Ambulatory Medical Care 

Surveys (NHAMCS), which are multi-stage probability sample surveys that provide nationally 

representative data on hospital emergency and outpatient visits, including visit records from 

December 2002 to December 2010.49 NHAMCS collected case records for every nth visit 

following a random start, with the mode of thermometry left to the discretion of participating 

clinicians and institutions.   

For analyses of the Boston study, sample sizes were determined by the study duration. For 

analyses of the national study, sample sizes were determined by the years chosen for 

investigation. Years were selected to include a long period during which the survey design and 

the recorded variables of interest remained consistent enough to analyze together. Years were 

also chosen to provide some results predating the widespread use of temporal artery 

thermometers, to demonstrate that time-of-day variations in fever rates were also present 

beforehand (see original publication3). 
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Please see the original publication3 that this research letter builds on for further details on patient 

demographics, dataset characteristics, measurement methods, and inclusion and exclusion 

choices. The original publication also includes sensitivity analyses that demonstrate robustness 

of study findings to changes in the exclusion criteria, and to the use of arrival times as substitutes 

for measurement times in the national study.  

Statistical analyses of the national study 

We accounted for the national study’s multistage design to obtain nationally representative 

findings.50 For the national study, time-of-day case mix differences in age (years, analyzed with 

spline), urgency/immediacy of case (4 levels and unknown), pain (4 levels and unknown), sex 

(male or female), race (black, white, or other), Hispanic or Latino ancestry (yes or no), hospital 

admission (yes or no), test ordering (yes, no, or unknown), procedure administration (yes, no, or 

unknown), medication ordering (yes, no, or unknown), ambulance arrival (yes, no, or unknown), 

and expected payment source (7 categories and unknown) were excluded as responsible factors 

for the time-of-day fever rate differences using multivariable logistic regression and average 

marginal predictions.5,49 Additional variables and categories for gender, race, and ethnicity were 

not available for some or all study years, and were therefore not analyzed. Additionally, for 

variables such as urgency/immediacy to be seen and degree of pain, some levels with more detail 

were merged to obtain consistent categories across study years. 

As discussed in the original study,3 time-of-day variation in the studied characteristics was 

modest, which helps to explain why the adjusted and unadjusted results were broadly similar.  
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Cardiovascular events are known to vary by time of day, generally peaking in morning hours.51 

However, the incidence of cardiovascular events was too small to meaningfully affect the time-

of-day variation in fever rates (for example, cardiac arrest accounts for 0.17% of emergency 

department presentations51). We therefore decided it was not necessary to control for 

cardiovascular events in the multivariate analyses. 

Anonymity requirements prevented linkage of the Boston temperatures to patient characteristics, 

thereby preventing multivariate-adjusted analyses of the Boston data.3,48 

Statistical analyses with time of day as a continuous variable 

In some appendix figures, time of day was evaluated as a continuous variable instead of being 

binned (Supplementary Figures S1, S2, A). These analyses were performed using logistic 

regressions with cyclic cubic splines. They account for the national study’s multistage design,50 

though national representativeness may not be present in some results from the year-stratified 

analyses (Supplementary Figure S2) because some year-by-outbreak period strata include case 

records sampled from relatively few hospitals.  

Evaluating time as a continuous variable helps to address the arbitrariness of choosing bin 

boundaries in binned analyses, as well as the possible sensitivity of results to choices of bin 

boundaries. However, spline results can still be somewhat sensitive to the choices of spline types 

and parameters, such as knot locations. Additionally, we caution that it is difficult to make 

inferences about the exact times of the daily minimum and maximum fever rates from the spline 

fits, owing to statistical uncertainties in these quantities and their potential sensitivity to choices 

of spline types and parameters, even in large datasets such as used for this study.  
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