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Overview

This Online Appendix provides supplementary materials to what is presented in the main

text. Section A presents the detailed summary statistics of the sample used in the main anal-

ysis. Section B presents additional results on the effect of downwind frequency on air quality.

Section C.1 presents additional results on the effect of downwind frequency on COVID-19

mortality, C.2 presents evidence from the series of the robustness checks, C.3 presents results

from the falsification tests, C.4 presents the heterogeneities in the effects, and C.5 presents

the effect of short-term exposure to air pollution from power plants on COVID-19 mortality.

A. Data

1. Summary Statistics

Table A.1 presents the summary statistics for key variables in the analysis. Because the wind

data are available only in the contiguous US, our sample in the analysis excludes Alaska

and Hawaii. Our main sample is further restricted to counties whose population-weighted

centroids are located within a 20-mile radius of power plants (for the reason explained below).

These exclusions narrow the sample down to 1,604 counties, or 58.8% of all counties in the

contiguous US with the COVID-19 mortality data. Panel A presents the COVID-19 data on

April 20, 2020, when the daily death toll was at or near the peak. In total, 25,261 people

died from COVID-19 in our sample counties on just one day. New York City (NYC) had by

far the largest death toll (14,604) by itself, and for this reason our sample excludes NYC

as an extreme outlier.1 Overall, our sample accounts for 94.1% of total COVID-19 deaths

in the contiguous US excluding NYC. The average mortality rate is 9.32 deaths per 100,000

population, and the average confirmed case rate is 217.6 per 100,000 population.

Panel B presents information related to fossil fuel power plants. The average fraction of

days for counties spent downwind within 45 degrees is 14.7% with a standard deviation of

0.092, whereas the corresponding figures within 90 degrees and 180 degrees increase to 26.9%

and 51.3%, respectively.2 The average distance to the nearest power plant from the county’s

population-weighted centroid is about 6.4 miles, and on average there are 5.6 fossil fuel power

plants within a 20-miles radius of county’s population-weighted centroid. Figure 1 Panel B in

1The second largest death toll is 1,329, less than 10% of the value in NYC. In terms of mortality rates,
it is 896.7 per 100,000 people in NYC, and the second largest value is 122.7 per 100,000 people.

2Note that these sample means are not simply inferred from the angle fraction of a circle because the
sample excludes even contiguous counties of plants when their centroids are located beyond 20 miles of
plants.
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the main text illustrates the locations of fossil fuel power plants and the downwind frequency

for counties whose population-weighted centroid fall within a 20-mile radius of power plants.

Clearly, the wind direction varies substantially even across spatially proximate counties.

Panel C presents county characteristics. The average population of counties is around

169,000. About 14.6% of the population are aged 65 and above, those most vulnerable to

COVID-19. The sample locations are reasonably uniformly distributed across the US (Figure

1 Panel A in the main text).

Panel D presents information on air quality at the level of daily monitoring stations.

Notably, the average concentrations of PM2.5 in the ambient air is 8.730 microgram per

cubic meter (µg/m3), which is substantially lower than the 24-hour standard of 35 µg/m3

mandated by the National Ambient Air Quality Standards. Although these standards set

the maximum allowable limits on pollution concentrations to protect public health, studies

have found that pollution concentrations even below these EPA mandates are harmful to

human health (Schlenker and Walker 2015; Currie et al. 2015).

B. Estimating the effect of downwind frequency on air

quality

Table A.2 presents the results based on Equation (1) in the main text. Column (1) reports

the bivariate association between PM2.5 concentrations and being downwind. The estimated

coefficient implies that PM2.5 concentrations are higher by 0.307 µg/m3 on the days when

monitors are downwind of power plants. This corresponds to an approximate 3.5% increase

from the mean value.

Column (2) includes the time fixed effects, and Column (3) adds weather variables. In

all models, the estimated effects remain statistically significant at the 1% level. Column (4)

compares downwind monitors at various angles with those beyond these angles, e.g., upwind

monitors. As expected, monitors situated closer to directly downwind of power plants are

more exposed to pollutants emitted from power plants, whereas monitors situated 90–180

degrees from directly downwind still detect pollution.

Column (5) considers monitors situated 20–50 miles away from power plants. Note that

the number of monitors is substantially lower in these areas although they cover more than

5 times the land area. Since the EPA typically places monitors near pollution sources, e.g.

power plants, the number of monitors by itself reflects recognition that the population within

20 miles of power plants is at substantially greater risk. Our estimated effect confirms no

significant downwind effect on pollution concentrations at monitors 20 to 50 miles away.
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Note that the analysis above is conducted at the daily level. Pollutants can travel over

days, and areas farther downwind may or may not experience a lag in exposure to pollution

emissions. One potential way of accounting for this variation in time exposure is to aggregate

the data and conduct a cross-sectional analysis as in the main analysis for mortality. However,

a limitation is that pollution concentrations are not recorded every day, making inference

based on the aggregated data prone to recording frequency. With this proviso noted, our

analysis based on Equation (2) in the main text found statistically significant effects on

pollution concentrations at monitors only within 20 miles (Columns (6) and (7) in Table

A.2).

The analysis so far uses dichotomous distinctions to define the treatment status. Instead,

we now plot the marginal impacts based on the continuous measures in differences in angles

between the wind direction and monitor orientation, distance from the nearest power plants,

and the interactions of these angles and distance.3

Figure 2 in the main text plots adjusted predictions within a 20-mile radius of a plant

located at the center based on Equation (3) in the main text. The color indicates the predicted

PM2.5 concentrations in ambient air with the color intensity ranging from blue (the best air

quality) to red (the worst air quality), when the wind blows from north to south. The figure

illustrates that there are significant spatial heterogeneities in the effects of pollution emissions

from power plants depending on the monitor orientation to the wind direction, distance to a

plant, and interactions of these two. The figure makes clear that PM2.5 concentrations are

the highest in close proximity to a plant, degrade more slowly over distance in downwind

than upwind, yet decay substantially at 20 miles even in downwind. These findings reinforce

the regression results.

In sum, we find stronger effects on pollution concentrations downwind than upwind up

to 20 miles. Again, these pieces of evidence provide useful guidance when we analyze the

mortality effects, with the caveat that they may not be directly aligned with the county-level

analysis in the absence of more disaggregated mortality data. Ultimately, this leads to an

empirical question that we investigate in the next subsection of whether areas at wider angles

from directly downwind and farther away in distance have any associations with COVID-19

mortality.

3Naturally, we need to limit this analysis to the pair of monitors and the nearest power plants, and
thereby having a disadvantage over the main analysis of confounding effects from other power plants in the
neighborhood.
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C. Effects on COVID-19 Mortality

1. Main results

The primary goal of this paper is to characterize the associations between the downwind

frequency with respect to power plants and COVID-19 mortality. Table A.3 presents the

regression results using the specification outlined in Equation (4) in the main text. Column

(1) presents the bivariate relationship between downwind frequency and mortality rates.

Because downwind frequency is exogenous to county characteristics, this bivariate model

represents an unbiased estimate of the mortality of being downwind. In contrast, the ex-

planatory power of downwind frequency itself is low, explaining only about 1% of variation

in mortality across counties. This enlarges the standard error, making the estimated coeffi-

cient statistically significant at the 9.0% percent level. Including control variables not only

helps refine the precision of the estimates, but also tests the validity of our identification

assumption by attesting stability in the effect of downwind frequency.

Column (2) includes distance to the nearest power plants as a control. The estimated

coefficient of distance suggests that COVID-19 mortality decreases by 0.643 (p = 0.001)

per 100,000 population for each one mile a county centroid is located farther from a power

plant. However, because proximity to power plants is likely to be correlated with unobserved

heterogeneities across counties, caution is required with respect to this interpretation.

Column (3) includes a full set of county characteristics. The stability in the estimated

impact of being downwind reinforces our assumption of unconditional exogeneity in that

downwind frequency is orthogonal to these characteristics. Further, whereas these control

variables add great explanatory power to the regression, the statistical power to estimate

the effects of downwind frequency is enhanced, assuring substantial residual variation in

downwind exposure even after controlling for such an extensive set of other factors. These

findings confirm that our estimates are not driven by unobserved differences in county char-

acteristics and meteorological conditions that are correlated with both wind direction and

mortality.

Last, Column (4) includes the state fixed effects, which help address a number of het-

erogeneities in state-level responses to COVID-19 by effectively comparing counties within

the same state in proximity to power plants that differ only in downwind frequency. These

state fixed effects also have strong explanatory power as indicated in the substantial in-

crease in the R2 value. In this preferred model, the point estimate suggests that COVID-19

mortality increases by 17.5 (p = 0.003) per 100,000 population as counties move from no

exposure to full exposure to air pollution from power plants. At the mean level, counties
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45-degree downwind of power plants experienced 2.57 more deaths per 100,000 population

than those outside of these areas, which represents an approximate 27.6% increase in the

mortality rates. A one-standard deviation (or 0.092 unit) increase in downwind frequency

leads to an additional 1.61 deaths per 100,000 population, which represents an approximate

17.3% increase in the mortality rates.

To put this into context, a back-of-the-envelope calculation indicates that such an increase

in the mortality rates are associated with a 0.287 µg/m3 increase in the average PM2.5

concentration level over the last 10 years whose mean is 8.730 and standard deviation is

1.948 (p = 0.059, n = 1,051). We must sound a cautionary note that the air quality analysis

is based on sparse distributions of selected monitors, which may not be directly comparable

to rather comprehensive mortality analysis. For this reason, the conventional two stage least

square estimates are also not feasible. These calculations confirm the large effects of pollution

exposure that are manifested during a pandemic.

2. Robustness

We test the robustness of the main results above to various alternative specifications. The

results are presented in Table A.4. First, we consider alternative dependent variables. The

first four rows consider the mortality rates for the most recent four days prior to April 20,

2020. The fifth row uses a log of death counts plus one as an alternative dependent variable.

These estimated effects are quantitatively similar.

The sixth considers confirmed cases per 100,000 population on April 20, 2020 as the

dependent variable. The estimated effect suggests that downwind counties experienced an

additional 58.8 confirmed cases per 100,000 population at the mean downwind frequency

level, which represents a 27.0% increase from the mean. A one standard deviation increase

in the downwind frequency leads to an additional 36.8 confirmed cases, which represents a

16.9% increase from the mean.

Next, we consider alternative angles to define downwind. In particular we consider 90

degrees, or 45 degrees on both the eastward and westward sides of a ray from power plants

to wind direction, and 180 degrees, or the south semicircle when the wind blows south, to

construct downwind frequency. We find that the estimated effects are slightly lower within

90-degree angles (β = 12.482, p = 0.004), and the effects are even lower within 180-degree

angles (β = 7.273, p = 0.025), suggesting that the effects decrease as differences in angle

between the wind direction and county centroid increase. While these findings underscore

the robustness of the main findings to alternative measures of downwind, they also suggest

that the mortality analysis at the county level is likely to introduce greater measurement
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errors in the pollution exposure measure than the air quality analysis above, attenuating the

effects of being downwind.

Next, we control for the number of power plants within 20 miles. This variable is not

included in the main analysis because downwind frequency is a function not only of wind

direction but also of the number of power plants in the neighborhood. Yet the inclusion of

this variable helps illustrate an effect of downwind exposure independent of the number of

power plants. The estimated effect is robust to such inclusion.

Next, we control for the number of industrial plants that emit toxic pollutants to con-

trol for other pollution emission sources. These data are obtained from the Toxic Release

Inventory (TRI), which reports the locations of these plants as well as their types and vol-

umes of emissions. Although plants that meet certain requirements are mandated to report

their emissions, the amounts are self-reported without formal verification processes, making

these values subject to substantial errors (de Marchi and Ham 2006; Koehler and Spengler

2007). We follow Currie et al. (2015) by including all facilities that have emitted any toxic

pollutants in the study period from 2010 up to 2018, the most recent year when the data

are available and counting the number of such facilities at the county level. The estimated

effect of downwind frequency is unchanged.

Last, we control for the short-term downwind frequency to disentangle the effect of short-

term exposure from those of long-term exposure. In particular, we include downwind fre-

quency from April 1 to April 20, 2020. The estimated effect of the long-term downwind

frequency remains similar. In Section 4 below, we further examine the effect of short-term

exposure on COVID-19 mortality based on the panel data. The finding consistently suggests

that the long-term exposure has significant impacts on COVID-19 mortality, whereas the

effect of the short-term exposure is negligible.

3. Falsification tests

The causal interpretation of the results so far hinges on the assumption that the wind

direction creates “as good as random” variation in the extent to which counties are exposed

to pollution from power plants. A simple comparison of counties near and far from power

plants to proxy pollution exposure would not approximate our analysis due to unobserved

heterogeneities across counties. Such assumption is violated under two potential scenarios

where the downwind exposure is correlated with any other unobservable determinants of

COVID-19 mortality rates.

First, county characteristics may differ proportional to downwind exposure in a system-

atic way that is correlated with other elevated health risks. Second, individuals may have

7



sorted into locations in consideration of whether they were upwind or downwind of power

plants. Both scenarios would require an assumption that the wind direction is prevailing and

predictable. Ultimately, either scenario, if it is true, should lead to significant associations

between downwind frequency and county characteristics. This subsection attests the valid-

ity of the identification assumption by conducting several falsification tests. The results are

presented in Table A.5.

First, we test the effects on COVID-19 mortality of downwind frequency of nuclear power

plants.4 Unlike fossil fuel power plants, nuclear power plants do not produce air pollution

hazardous to public health. The estimated coefficient is negative and not statistically signif-

icantly different from zero.

Second, we consider counties 20–50 miles away from power plants. Although there is

likely to be a wide variation, the literature has typically considered those within a 20-mile

radius of power plants at risk of high pollution exposure. Further, our analysis of air pollution

also finds that monitors within 20 miles detected greater pollution concentrations on a day

spent downwind and on the average number of days spent downwind over the past 10 years.

We find that the estimated effect is quantitatively negligible for counties 20–50 miles away

from power plants, suggesting that the associations between the downwind frequency and

COVID-19 mortality decay substantially after 20 miles.

The remaining rows explore bivariate associations between each characteristic of the

counties in the analysis with downwind frequency. The lack of associations between the

two supports our assumption that downwind frequency is plausibly orthogonal to county

characteristics. We find that only 3 of 17 variables is significantly associated with downwind

frequency at the 5% percent level. The lack of significant associations with almost all variables

is partly reflected in the stability of the effects of downwind even when conditioning on

these characteristics in the main analysis. This finding supports the prediction that the

unconditional exogeneity assumption is likely to hold.

Importantly, downwind frequency is unrelated to key economic variables, such as poverty

rate, unemployment rate, and median income. Further, downwind frequency is also unre-

lated to some of the key demographic variables that are related to COVID-19 mortality,

such as gender and race (Jin et al. 2020) and educational attainment, which is likely to be

related to employment types. Further, the four variables that are statistically significantly

correlated with downwind frequency suggest that the bias in the estimates, if anything, goes

against finding the effects of downwind exposure on mortality. For instance, we find a lower

percent of the population aged 65 and above in counties with a high frequency of downwind

4The analysis controls for downwind frequency of fossil fuel power plants in order to account for spatial
correlations between nuclear power plants and fossil fuel power plants.
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exposure, making them less vulnerable to the effect of COVID-19. The percent of people

receiving Medicare aged 65 and above is “positively” correlated with COVID-19 mortal-

ity rates, making the negative correlation between downwind frequency and the percent of

people on Medicare go against finding the effects of downwind exposure on mortality. Last,

median house value is negatively correlated with downwind fraction. This may reflect an

outcome of air pollution itself (Chay and Greenstone 2005), yet the variable is found to be

“positively” correlated with COVID-19 mortality, which goes against finding the effects of

downwind exposure on mortality.

Overall, these pieces of evidence together confirm that greater downwind frequency is

by no means correlated with heterogeneities other than pollution exposure that would ex-

plain greater COVID-19 mortality rates. Rather, downwind frequency is associated with the

COVID-19 mortality rates only within a certain distance of fossil fuel power plants in which

pollution exposure can be heightened by the winds.

4. Heterogeneities in the effects

Table A.6 explores heterogeneities in the effects of downwind frequency on COVID-19 mor-

tality across various subsample of counties determined by being above or below the median

of several county characteristics. The analysis is analogous to Column (4) of Table A.3, which

includes the set of county characteristics and state fixed effects. We find that the effects are

pronounced in counties with a greater share of men, a greater percent of Blacks, the greater

population density, the greater poverty rate, a greater percent of aged population above 65

without health insurance, and a greater percent of population with less than a high school

degree. These findings highlight that the greater burden of a pandemic is borne by already

high-risk subjects.

5. Estimating the effect of short-term downwind frequency on

COVID-19 mortality

The results based on Equation (6) in the main text are presented in Table A.7. Column (1)

shows that downwind frequency in the past 2 weeks is significantly associated with COVID-

19 mortality. Column (2) adds distance to a plant as a control. The downwind frequency

remains significantly associated with COVID-19 mortality. Column (3) includes the same set

of controls that are included in the main analysis, and Column (4) additionally controls for

the state fixed effects. While these coefficients are statistically insignificant (p = 0.129 and

0.152, respectively), the point estimates are within the range of those in Columns (1) and

(2). In contrast, Column (5) includes the county fixed effects, which control for any time
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invariant heterogeneities that explain differences in COVID-19 mortality across counties.

The point estimate becomes negative and statistically insignificant. This suggests that other

time invariant factors related to downwind frequency in the past 2 weeks explain COVID-

19 mortality. Column (6) additionally includes downwind frequency in the last 10 years to

Column (4), and we find that the long-term downwind frequency has significant effects on

daily COVID-19 mortality, whereas the point estimate of downwind frequency in the last 2

weeks substantially becomes statistically indistinguishable from zero (p = 0.850).

Overall, these findings suggest that the long-term exposure to pollution emissions from

power plants is an important determinant to explain across-county variation in COVID-19

mortality, whereas the short-term exposure appears to have negligible effects.
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Figures

Figure A.1: The Distribution of County Clusters

Notes: This figure illustrates the distribution of 90 county clusters con-
structed by k-means cluster algorithm using county centroids. Each
color represents a group, but because making 90 different color schemes
is practically not meaningful, groups with a similar color should be con-
sidered as separate groups unless they are spatially adjacent with each
other. The thick lines indicate state borders, and the thin lines indicate
county borders.
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Figure A.2: Downwind

Panel A

Panel B
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Panel C

Panel D

Notes: All panels illustrate the cases when the county whose centroid is illustrated by

the green circles is considered to be downwind. In particular, the county is considered

to be downwind of power plants on the day when the county’s centroid is located

within 45 degrees of a ray from the power plants to wind direction, i.e., 22.5 degrees

both eastward and westward. We consider all power plants within 20 miles of county

centroids in constructing the dummy variable for being downwind on the daily basis.

Each circle around a power plant represents the radius of 20 miles.
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Table A.1: Summary Statistics

Variables Mean Std. Dev.

Share of counties in the sample 0.588
Panel A: COVID-19 as of April 20
Total deaths in sample 25,261
Total deaths in NYC 14,604
Total deaths in outside sample 1,574
Mortality rates 9.318 16.782
Confirmed rates 217.6 360.6
Panel B: Power plants
Downwind < 45 degree 0.147 0.092
Downwind < 90 degree 0.269 0.134
Downwind < 180 degree 0.513 0.159
Distance to plant (mile) 6.402 4.704
No. of plants 5.551 3.468
Panel C: County characteristics
Median age 37.901 3.934
Gender (No. of women per 100 men) 96.888 4.290
Percent white 68.784 15.758
Percent black 13.230 12.634
Percent of aged 65+ 14.609 3.525
Population density (people/sq miles) 1,433.1 2,131.8
Percent poverty 12.683 4.620
Unemployment rate 3.919 1.121
Median income 67,186.5 18,185.0
Percent without health insurance aged 65+ 0.124 0.094
Percent Medicare aged 65+ 4.063 1.256
Percent Medicaid aged 65+ 1.181 0.660
Percent less than a high school degree 12.034 5.150
Percent with a high school degree 26.181 6.885
Percent with a bachelor’s degree + 32.793 10.748
Median house value 260,449.3 160,831.0
ICU beds 368.4 552.0
Daily precipitation (mm) 2.837 1.157
Average humidity (%) 62.414 9.066
Average temperature (C) 14.611 4.494
Average latitude 37.395 4.913
Average longitude -92.521 16.012
Total population 169,017.2 438,058.4
Panel D: Air quality monitors
PM2.5 8.730 5.881
Downwind < 45 degree 0.148 0.355
Downwind < 90 degree 0.269 0.443
Downwind < 180 degree 0.511 0.500
Distance to plant (mile) 5.784 4.920

Notes: This table resents the summary statistics of key variables in
the analysis. All sample means, except total population, are computed
using the total population as the weight. The share of counties in the
sample represents the number of counties in our sample (1,604) out of
all counties with the COVID-19 mortality data.
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Table A.2: Effect of Downwind on PM2.5

(1) (2) (3) (4) (5) (6) (7)

Downwind ≤ 45◦ 0.307*** 0.279*** 0.258*** 0.387*** -0.150 1.946* 0.972
(0.088) (0.087) (0.081) (0.096) (0.161) (1.029) (1.729)

Downwind 45◦–90◦ 0.333***
(0.067)

Downwind 90◦–180◦ 0.211***
(0.053)

N 1,476,800 1,476,800 1,476,800 1,476,800 195,616 1,051 173
Dist. to plants ≤ 20 miles ≤20 miles ≤20 miles ≤20 miles 20–50 miles ≤20 miles 20–50 miles
Monitor FE Yes Yes Yes Yes Yes No No
Time FE No Yes Yes Yes Yes No No
Weather No No Yes Yes Yes Yes Yes
N. of monitors 1,051 1,051 1,051 1,051 173 1,051 173

Notes: This table presents the effects of being downwind on the PM2.5 concentration level in ambient air.
Columns (1)–(5) are based on Equation (1), for which the level of observations is the monitor-date level,
whereas Columns (6) and (7) are based on Equation (2), for which the level of observations is the monitor
level. Time fixed effects are month-of-year fixed effects and day-of-week fixed effects, and weather variables
include daily precipitation, daily average humidity, and daily average temperature in every 5-degree Celsius
bin. All standard errors are clustered at the monitor level.
***p < 0.01

17



Table A.3: Effect of Downwind Frequency on COVID-19 Mortality

(1) (2) (3) (4)

Downwind ≤ 45◦ 15.324* 15.955* 17.817** 17.518***
(9.022) (9.421) (7.566) (5.939)

Distance to plant -0.643*** -0.400*** -0.223***
(0.195) (0.137) (0.086)

Median age -0.129 -0.037
(0.672) (0.461)

Gender -0.224** -0.188**
(0.095) (0.075)

Percent white 0.103 0.029
(0.131) (0.098)

Percent black 0.245 0.219*
(0.185) (0.132)

Percent of aged 65+ 0.239 0.375
(0.809) (0.647)

Population density 0.001 0.001
(0.001) (0.001)

Percent poverty 1.740*** 1.002***
(0.626) (0.382)

Unemployment rate 0.017 -0.042
(0.647) (0.501)

Median income (log) 57.448*** 29.982**
(19.410) (13.855)

Percent without health insurance aged 65+ 10.755 9.298
(10.096) (6.001)

Percent Medicare aged 65+ 2.072* 1.476*
(1.092) (0.775)

Percent Medicaid aged 65+ 2.769* 1.318
(1.652) (1.459)

Percent less than a high school degree 0.102 0.070
(0.258) (0.171)

Percent with a high school degree -0.142 -0.538***
(0.268) (0.205)

Percent with a bachelor’s degree+ -0.524* -0.668***
(0.282) (0.153)

Median house value 0.000 0.000***
(0.000) (0.000)

ICU beds -0.002 -0.003**
(0.002) (0.001)

Daily precipitation 1.965 2.330***
(1.241) (0.840)

Average humidity -0.472*** -0.746***
(0.136) (0.179)

Average temperature < 5C 0.000 -9.985*
(.) (5.530)

Average temperature 5-10C 0.250 -12.417***
(4.132) (4.574)

Average temperature 10-15C 3.077 -3.058
(4.850) (3.252)

Average temperature 10-15C 2.951 -3.525
(5.142) (2.329)

Average temperature 15-20C 10.060 0.000
(7.008) (.)

County latitude 1.620*** 0.809*
(0.383) (0.476)

County longitude 0.492*** 1.177***
(0.093) (0.247)

Controls N N Y Y
State FE N N N Y
R2 0.010 0.043 0.433 0.714
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Notes: This table presents the effects of downwind frequency on COVID-19 mortality rates based on Equation (1). The sample

size is 1,604 counties. The level of observations is at the county level. Controls include demographic variables (median age,

gender composition, the percentage of population aged 65 and above, population density, the percent of whites and blacks),

economic variables (the log of median household income, unemployment rate, the percent of population under the federal

poverty line, median housing value), education (the percent without a high school degree, with a high school degree, and with

a bachelor’s degree and above), health insurance (the percentage without health insurance, with Medicare, and with Medicaid,

among population aged 65 and above), geographic variables (latitude and longitudes of population-weighted centroid), the health

facility capacity (the number of ICU beds), and meteorological factors (daily average precipitation, humidity, and temperature

in every 5-degree Celsius bin). The heteroskedasticity-adjusted standard errors are reported in the parentheses.

***p < 0.01 **p < 0.05 *p < 0.1
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Table A.4: Robustness Checks

Specification

Mortality rates on April 16, 2020 15.239***
(5.054)

Mortality rates on April 17, 2020 14.975***
(5.112)

Mortality rates on April 18, 2020 14.924***
(5.101)

Mortality rates on April 19, 2020 15.299***
(5.090)

log(Death) 1.262***
(0.469)

Confirmed case rates 399.883***
(121.237)

Consider 90 degrees downwind 12.482***
(4.322)

Consider 180 degrees downwind 7.273**
(3.244)

Control for number of power plants 16.946***
(5.964)

Control for number of TRI firms 17.517***
(5.933)

Control for short-term downwind frequency 14.913**
(5.827)

Notes: This table tests the robustness of the main analysis to various
alternative specifications. All regressions include the state fixed effects
and all controls from the main analysis. The fifth row uses a log of
death counts, as of April 20, 2020, plus one as an alternative depen-
dent variable. The sixth row uses the number of confirmed cases per
100,000 population as the dependent variable. The next two rows con-
sider alternative angles to define downwind. The next row controls for
the number of power plants within 20 miles. And the last row con-
trols for the number of industrial plants, reported in the Toxic Release
Inventory, which emit toxic pollutants to control for other pollution
emission sources.
***p < 0.01 **p < 0.05
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Table A.5: Falsification Tests

Specification

Downwind nuclear -3.427
(23.255)

Counties in 20-50 miles -2.561
(2.620)

Median age -3.735*
(2.092)

Gender composition -1.261
(2.031)

Percent of white 11.206
(11.426)

Percent of black 2.216
(6.165)

Percent of population aged 65+ -4.301**
(1.871)

Population density 339.724
(1372.742)

Poverty rate 0.024
(2.541)

Unemployment rate 0.972
(0.799)

Log of median income -0.118
(0.162)

Percent of no health insurance among 65+ -0.053
(0.057)

Percent of Medicare aged 65+ -1.794***
(0.577)

Percent of Medicaid aged 65+ -1.080
(0.840)

Percent with less than a high school degree -4.416
(5.371)

Percent with high school degree 1.222
(4.425)

Percent with a bachelor’s degree + -0.731
(6.868)

Median house value -341070.053**
(168716.276)

ICU beds -942.396
(881.279)

Notes: This table presents the results from the falsification
tests. The first row tests the effects on COVID-19 mortality
of downwind frequency of nuclear power plants. The second
row considers counties 20–50 miles away from power plants.
The sample sizes in the first and second rows are 132 and 951
counties, respectively. The remaining rows explore bivariate
associations between each characteristic of the counties in the
analysis and downwind frequency.
***p < 0.01 *p < 0.1
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Table A.6: Heterogeneities in the effects of downwind frequency on COVID-19 mortality

Relative to median
Characteristics Below Above

Gender (No. of women per 100 men) 24.926*** 4.037
(9.460) (3.095)

Percent of black 3.176 24.108**
(2.042) (9.700)

Population density 2.408 18.699***
(4.337) (6.717)

Poverty rate 10.105 15.552***
(6.906) (5.767)

Percent of no health insurance among 65+ -1.334 19.570***
(6.866) (6.078)

Percent with less than a high school degree 11.232* 13.024**
(6.381) (5.588)

Notes: This table reports the estimated effects of downwind frequency on COVID-19 mortal-
ity for various subsample of counties determined by being above or below median of several
county characteristics. The analysis is analogous to Column (4) of Table S3, which includes
the set of county characteristics and state fixed effects. The heteroskedasticity-adjusted stan-
dard errors are reported in the parentheses.
***p < 0.01, **p < 0.05, *p < 0.1
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Table A.7: Effect of recent downwind frequency on COVID-19 mortality

(1) (2) (3) (4) (5) (6)

Downwind frequency < 2 weeks 7.344* 7.898** 5.577 4.386 -1.406 0.592
(3.903) (3.990) (3.669) (3.061) (5.643) (3.128)

Downwind frequency 10-year 10.045***
(2.663)

Controls N N Y Y Y Y
State FE N N N Y N Y
County FE N N N N Y N
R2 0.009 0.029 0.248 0.449 0.000 0.453

Notes: This table presents the effects of downwind frequency in the past 2 weeks on COVID-19 mortality
rates. The level of observations is at the county-date level. The sample covers days from April 1, 2020, when
the spatial coverage is nearly complete, to April 20, 2020, whose mortality rate is used in the main analysis.
Column (2) adds distance to a plant as a control. The standard errors clustered at the county level are
reported in the parentheses.
***p < 0.01 *p < 0.1
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