
Appendix A. Methods

To model the number of cases, we use the simplest time-since-infection model which is
also known as the “Kermack-McKendrick” model [1]. Following similar setup from
Fraser [2] and Cori et al. [3], we define a function β(t, τ) which is the transmission
probability at a calendar time t, after being infected τ time ago. Therefore, between
time t and t+ δ, someone infected at time τ ago will consequently infect someone else
with a probability of β(t, τ)δ. As a result, the number of cases at time t, I(t), is related
back to previous cases through the following renewal equation:

I(t) =

∫ t

0

β(t, τ)I(t− τ)dτ. (1)

Suppose that β(t, τ) is separable, that is:

β(t, τ) = Re(t)w(τ),

where, with no loss of generality, we assume∫ ∞
0

w(τ)dτ = 1,

such that

Re(t) =

∫ ∞
0

β(t, τ)dτ.

This function Re(t) therefore estimates the number of people someone infected at time t
would infect if the conditions of the epidemic remains constant. It was called
“instantaneous reproduction number” by Cori et al. [3]. In this paper, we refer to this
parameter as the effective reproduction number in order to distinguish it from the basic
reproduction number R0 – the average number of people infected by one infectious
person under a natural situation when no intervention is implemented. The effective
reproduction number Re is a very important parameter, since it can be shown that
when Re is greater than one, infections will increase and lead to an outbreak where
more and more people will be infected. If Re is less than one, then the outbreak will die
down eventually. The effective reproduction number can be influenced by four major
factors [4]: 1) transmissibility of the disease; 2) duration of the infectious period; 3)
number of contacts between infectious and susceptible individuals each day; and 4) the
percentage of people that are immune or no longer susceptible. We will show that this
parameter plays a major role in our forecasting model for COVID-19.

The normalized function w(τ) represents the relative transmissivity at a time τ after
infection. The distribution function w(τ), also called the distribution of the serial
interval, can be obtained only if the infection date for each case is known. In a real
world application, we usually only have the information of the reported dates of each
case, instead of the infection date, therefore, we will rely on either the external source of
data or we will make some assumptions about the serial distribution w(τ).

Plugging in the factorization for β(t, τ), the renewal function (1) becomes

I(t) = Re(t)

∫ t

0

I(t− τ)w(τ)dτ.

In practice, incidence data are obtained usually at daily intervals, and thus are discrete.
Therefore, the discrete version of the above renewal equation is

I(t) = Re(t)

t∑
j=1

I(t− j)w(j), t = 1, 2, · · · , T, (2)
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where T indicates the last time point of the incidence series.
Even though we could obtain an estimate of Re from the above equation, the

estimate can be highly variable, due to reporting errors (for example, under-reporting
and delayed reporting) associated with the incidence case series. Therefore, we follow
the setup of Cori et al. [3] and view the cases as arising from a Poisson Process, where
the mean parameter is given by the renewal equation (2). In order to obtain a more
stable estimate of Re(t), we also assume that Re(t) is the same for a total of τ days
during the period [t− τ + 1, t]. Explicitly, the likelihood function of the cases during the
time period [t− τ + 1, t] is as follows:

Pr(It−τ+1, · · · , It|I0, I1, ..., It−τ , w,Re(t)) =

t∏
j=t−τ+1

e−Re(t)Λj{Re(t)Λj}Ij

Ij !
,

where

Λj =

j∑
s=1

Ij−sw(s).

Following Cori et al. [3], we will use a Bayesian framework and assume Re(t) has a
prior Gamma distribution with shape parameter a and scale parameter b. Since we have
a Poisson likelihood, a gamma prior is conjugate, and should result in a gamma
posterior for Re(t) with shape parameter a∗ and scale parameter b∗, where

a∗ = a+

t∑
j=t−τ+1

Ij , b∗ =
1

1
b +

∑t
j=t−τ+1 Λj

. (3)

For now, we set a and b to be hyper parameters specified by the user. We defer future
discussion of these parameters and the serial interval function w(s) to the next section.

This procedure can now be used to get the posterior distribution of Re(t) for any
time interval [t− τ + 1, t]. The interval length τ is chosen such that there is a large
enough data set to provide stable estimates, and small enough to capture the
time-varying nature of Re(t). Eventually, we will use the posterior distribution of Re(T )
to predict future cases, where T is the last time point of the observed incidence series.

For short-term forecasting of new cases, we propose a method that uses very few
assumptions and is therefore straightforward to model. We simply assume that in the
near future after time T , Re(t) will 1) stay the same; 2) increase 5%; 3) decrease 5%.
For the first scenario that Re(t) will stay the same, we perform the following procedures
for making predictions:

1. Draw a new R∗e from the posterior gamma distribution of Re(T ), as specified by
(3), where T is the end time point of the observed incidence series.

2. Then we draw IT+1 from a Poisson distributing with a mean function obtained by
the renewal function (2).

3. Similarly, we draw sequentially the values for IT+2, IT+3, · · · , IT+K , where K is
predefined forecasting period. Thus we obtain one complete forecast series,
IT+1, IT+2, · · · , IT+K .

4. Repeat steps (1) through (3), and obtain multiple sample series, from which we
can get predicted means I∗t , and the predicted 95% confidence intervals [IL∗t , IU∗t ],
t = T + 1, · · · , T +K.

Since the reproduction number Re may change with policy implementation and
public behavior, we also predict the scenarios when Re changes by δ, for example,
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δ = 5%, or δ = −5%. Either way, we borrow the posterior distribution obtained from
Re(T ), and assume that the mean parameter changes by δ, but the variance stays the
same. This is equivalent to setting the posterior distribution for Re to be a gamma
distribution with shape parameter a∗δ and scale parameter b∗δ , where a∗δ = a∗δ2,
b∗δ = b∗/δ. Then we follow the same steps outlined above to predict the means and the
95% confidence intervals for IT+1, IT+2, · · · , IT+K .

Appendix B. Choosing Model Parameters

The goal of our proposed method is to make as few approximations as possible, so that
we can make reasonable predictions without having to rely on the correct specification
of the assumptions. However, given only the incidence data, the reproduction number
Re(t) can not be determined uniquely [4], so some basic assumptions are necessary. The
most important assumption is the serial interval distribution. Based on literature
reviews, we adopted a discretized gamma distribution [3]. The mean of 3·95 days and a
standard deviation of 4·24 days were based on the work of Ganyani et al. [5] using
COVID-19 data from Tianjin, China. If desired, a prior can be placed on the
parameters for the mean and standard deviation of the serial interval, and this approach
was discussed in estimating Re(t) values in Cori et al. [3].

There are other hyper parameters that must be supplied. In our method, we assume
that each Re(t) has a gamma prior distribution, with shape and scale parameters a and
b. It is common knowledge that the posterior distribution of Re(t) depends both on the
parameters in the prior distribution, and the observed data. When the incidence
number is relatively high, as experienced in Texas and other states during the Summer
and Fall of 2020, the prior parameters have very little effect on the final posterior
distribution. Our experience suggests that a wide range of choices worked for a and b as
hyper-parameters. Choosing a single a and b and using the same prior in general for all
Re(t) work well. We have chosen a value of a = 1, b = 5 following the work of Cori et
al. [3]. Another strategy is to choose the prior parameters so that the prior has a mean
that is equal to the previous estimate Re(t− τ), and a standard deviation resembling
the posterior standard deviation of the previous Re(t− τ).

The last parameter we need to decide is the interval parameter τ , since we based our
prediction on the estimated Re(T ) during the interval [T − τ + 1, T ], where T is the end
time of a time series upon which we wish to make a forecast. The choice of τ is a
compromise between the variability and the accuracy of the predictions. In general,
choosing τ to be small will result in highly variable estimates of Re(t), but will be more
accurate due to the fact that Re(t) may be different at different times. In contrast, a
large τ is less accurate, but also less variable, as it uses more data to fit Re(t). In our
experience, a choice between 7 and 12 days worked well when we applied them to the
real data sets.

We end this section on a note of using a Poisson distribution for the likelihood of the
observed incidence sequence. Despite the over-dispersion issue associated with the
Poisson distribution assumptions (i.e. the Poisson distribution assumes that the
variance is the same as the mean, but in reality, the variance is often larger than the
mean), our experience is that the predicted cases can vary a lot due to the change of the
underlying reproduction number Re(t). By allowing Re(t) to take different values in the
prediction, we will capture the uncertainty of the future incidence series in a different
way. Our prediction interval will be determined by different transmission rate scenarios:
the upper bound is given by the upper 95% confidence limit when the transmission rate
increase 5%, and the lower bound is given by the lower 95% confidence interval limit
when the transmission rate decreases 5%.
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